
SPZIP: ARCHITECTURAL SUPPORT FOR EFFECTIVE DATA

COMPRESSION IN IRREGULAR APPLICATIONS

Yifan Yang, Joel S. Emer, Daniel Sanchez

ISCA 2021

Session 12B (June 16, 2021 at 8 PM EDT)

Irregular applications are memory bound
2

 Irregular applications, such as graph analytics and sparse linear

algebra, are an increasingly important workload domain

 Irregular applications are often memory bound

 Data compression is an attractive approach to accelerate irregular

applications

Social network analysis Navigation Scientific computing

Existing data compression solutions are not tailored for irregular applications
3

Hardware compression
units for sequentially
accessed long streams

e.g., IBM z15 [ISCA’20]

Compressed memory
hierarchies support
random accesses

e.g., VSC [ISCA’04]

This work is optimized for
indirect, data-dependent
accesses to short streams

Understanding access patterns in irregular applications
4

v0

v2
v3

vertices neighbors

Graph Adjacency List

Existing data compression solutions are not tailored for irregular applications
5

✘
Limited compression gain
on short streams

✘
Data decompression
increases critical path
latency

v0

v2
v3

vertices neighbors

Hardware compression
units for sequentially
accessed long streams

e.g., IBM z15 [ISCA’20]

Compressed memory
hierarchies support
random accesses

e.g., VSC [ISCA’04]

This work is optimized for
indirect, data-dependent
accesses to short streams

Compressing data structures in irregular applications is hard
6

Core

Graph Adjacency List

access access access

v0

v2
v3

vertices neighbors

vertex data

 Challenge 1: Access and

decompression are

interleaved

Compressing data structures in irregular applications is hard
7

 Insight 1: Specialized hw to

accelerate data access and

decompression

 Exploit decoupled execution

to hide memory access and

decompression latencies

Fetcher Core

Graph Adjacency List

access access decompressaccess

v0

v2
v3

vertices
neighbors

vertex data

 Challenge 1: Access and

decompression are

interleaved

compressed

Compressing data structures in irregular applications is hard
8

 Challenge 2: Need to support
various access patterns and
compression formats

 Insight 2: Programmable
hardware

 A pipeline consists of a set of
composable operators
expressing the traversal and
decompression of data structures

 Dataflow Configuration
Language (DCL)

Access Access

Fetcher Core

Decompress

Graph Adjacency List

v0

v2
v3

vertices neighbors

Agenda
9

 Motivation

 SpZip Dataflow Configuration Language (DCL)

 SpZip Design

 Evaluation

Dataflow Configuration Language (DCL) overview
10

 A DCL program expresses the traversal, decompression and compression of

data structures in irregular applications

 DCL program is an acyclic graph of composable operators

 Operators are connected by queues to exploit pipeline parallelism

Range

Decompress

Indir

Memory access operator

… ; 𝑖2 ; 𝑖1 … ;𝐴 𝑖2 ; 𝐴[𝑖1]

… ; 𝑖2, 𝑗2 ; (𝑖1, 𝑗1) … ;𝐴 𝑗2−1 ,… , 𝐴[𝑖2]; 𝐴 𝑗1−1 ,… , 𝐴[𝑖1]

… …

in Core

Traversing a sparse matrix in DCL
11

Compressed Sparse Row (CSR) format

0 2 4 5 7

1,a 2,b 0,c 2,d 3,e 1,f 2,g

offsets

rows

0 1 2 3 4

OffsetsQInputQ RowsQ

Range

Memory

Range0

offsets[0]

0

offsets[1]

2

rows[0]

1,a4

rows[1]

2,b

offsets[2] rows[2]

0,c

rows[3]

2,d

{coordinate, value} pairs

in DCL

Accessing
offsers

Accessing
rows

5

rows[offsets[i]:

offsets[i+1]]:

for i in range(numRows):

for {col, val} in

visit({col, val})

in DCL

in Core

Traversing a sparse matrix in DCL
12

CSR format

row0 row1 row2 row3

offsets

rows

0 1 2 3 4

OffsetsQInputQ

Range Range

RowsQ

rows[offsets[i]:

offsets[i+1]]:

for i in range(numRows):

for {col, val} in

visit({col, val})
uncompressed

in DCL

in Core

Decompress

Compressed
RowsQ

Data decompression support in DCL
13

for i in range(numRows):

for {col, val} in

visit({col, val})

CSR with individually compressed rows

decompress(

)

rows[offsets[i]:

offsets[i+1]]:
row0 row1 row2 row3

offsets

rows

0 1 2 3 4

compressed

OffsetsQInputQ

Range Range

RowsQ

compressed

Decompress

Compressed
NeighsQ

Using DCL in PageRank traversing multiple data structures
14

offsets

neighs

0 1 2 3 4

compressed

OffsetsQInputQ

Range Range

NeighsQ

Compressed Adjacency Matrix

Range

ContribsQSource Vertex Data

Indir
PrefetchDestination
Vertex Data

contribs

scores

Graph
adjacency

matrix

Core

def PageRankIter(Graph g, Array scores,
Array contribs)

for src in range(g.numVertices):
for dst in decompress(g.neighs[g.offsets[src]:

g.offsets[src+1]]):
scores[dst] += contribs[src]compressed

Agenda
15

 Motivation

 SpZip Dataflow Configuration Language (DCL)

 SpZip Design

 Evaluation

SpZip Overview
16

 SpZip augments each CPU

core with a programmable

fetcher and compressor

 The fetcher accelerates

data structure traversal

and decompression

 The compressor compresses newly generated data before storing it off-chip

 Fetcher and compressor issue conventional cache line requests

LLC

…

Main Memory

Fetcher

Core

Compressor

L2

L1 Fetcher

Core

Compressor

L2

L1

SpZip exploits decoupled execution
17

 The fetcher and compressor communicate with core

through queues to exploit decoupled execution

 The fetcher runs ahead of the core to traverse and decompress data, hiding

memory access and decompression latencies

Fetcher

Core

CompressorL1

Fetcher

SpZip fetcher microarchitecture
18

 Access Unit and Decompression

Unit implement DCL operators

 Scratchpad holds queues

between operators

 Queues between operators

allow pipeline parallelism

Access Unit

Range Indir

Decomp. Unit

Delta BPC

Scheduler

ctxt 0 ctxt k…

L2

Core

Scratchpadq1 q2 … qnq0

RangeRange

Fetcher

SpZip fetcher is programmable
19

 Scratchpad is configurable to

support variable numbers and

sizes of queues

 DCL operators are time-

multiplexed on the same

physical unit

 Scheduler holds operator

contexts and chooses which

operator to fire each cycle

Access Unit

Range Indir

Decomp. Unit

Delta BPC

Scheduler

ctxt 0 ctxt k…

L2

Core

Compressed
NeighsQ

OffsetsQInputQ NeighsQ

Scratchpadq1 q2 … qnq0

ctxt 0 ctxt 1

Range Range Decompress

Compressor

SpZip compressor overview
20

 Compression uses a

different set of DCL

operators

 Similar decoupled and

programmable design

as the fetcher

 See paper for more

details

Scheduler

ctxt 0 ctxt k…

LLC

Core

Scratchpadq1 q2 … qnq0

MQU
Compress

Unit
SWU

StreamWr MemQ Compress

Agenda
21

 Motivation

 SpZip Dataflow Configuration Language (DCL)

 SpZip Design

 Evaluation

Evaluation Methodology
22

 Event-driven simulation using ZSim

 SpZip system

16 Haswell-like OOO cores

32 MB L3 cache

4 memory controllers (51.2GB/s)

SpZip adds 0.2% area overhead

of per-core fetcher and

compressor

 Irregular applications

 PageRank, PageRank Delta,

Connected Components, Radii

Estimation, BFS, Degree Counting,

SPMV

 Large real world inputs

Up to 100 million vertices

Up to 1 billion edges

SpZip improves performance and reduces traffic
23

See paper for
24

 DCL support for compressing data structures

 Programmable compressor design

 Additional evaluation results

 Impact of preprocessing

 Benefits over compressed memory hierarchies

 Impact of decoupled fetching vs data compression

Conclusions
25

 Irregular applications have indirect, data-dependent memory access patterns

that make compression challenging

 SpZip makes data compression practical for irregular applications

 Decoupled execution hides memory access and decompression latencies

 DCL and programmable design support wide range of data structures and

compression formats

 SpZip achieves significant speedups and memory traffic reductions on

irregular applications

THANKS FOR YOUR ATTENTION!

ISCA 2021

Session 12B (June 16, 2021 at 8 PM EDT)

