
Designing Hardware for Cryptography and
Cryptography for Hardware

Srinivas Devadas∗
Simon Langowski
Nikola Samardzic

Sacha Servan-Schreiber
Daniel Sanchez

Massachusetts Institute of Technology
Cambridge, MA, USA

ABSTRACT
There have been few high-impact deployments of hardware imple-
mentations of cryptographic primitives. We present the benefits
and challenges of hardware acceleration of sophisticated crypto-
graphic primitives and protocols, and briefly describe our recent
work. We argue the significant potential for synergistic codesign
of cryptography and hardware, where customized hardware accel-
erates cryptographic protocols that are designed with hardware
acceleration in mind.

CCS CONCEPTS
• Security and privacy → Cryptography; Security in hard-
ware;

KEYWORDS
cryptography, hardware acceleration, hardware security
ACM Reference Format:
Srinivas Devadas, Simon Langowski, Nikola Samardzic, Sacha Servan-Schreiber,
and Daniel Sanchez. 2022. Designing Hardware for Cryptography and
Cryptography for Hardware. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’22), November
7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3548606.3559393

1 INTRODUCTION
The Advanced Encryption Standard (AES) is a standardized scheme
for symmetric key encryption [42]. Since the introduction of the
AES-NI hardware instruction set in the early 2010s, there has been
a tremendous growth in cryptographic software taking advantage
of hardware-accelerated AES. These applications stem far beyond
data encryption. For example, constructing one-way compression
functions (i.e., keyed hash functions) from AES offers concrete per-
formance boosts using hardware acceleration compared to software
implementations of purpose-built hash functions. Similarly, hard-
ware acceleration has motivated many uses of AES for instantiating
∗Keynote speaker.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3559393

other cryptographic primitives such as PRGs and PRFs. Hardware
acceleration of these basic primitives has had tremendous down-
stream effects. Complex cryptographic primitives [9, 11, 29, 41]
and applied systems [17, 19, 21, 43, 55] are often designed to use
AES (because of the optimization enabled by using AES-NI). These
cryptographic schemes and protocols were planned around the
hardware they would be deployed on—specifically around one ac-
celerated cryptographic primitive.

Another example that benefited from hardware acceleration is
public-key cryptography. Proposals for hardware acceleration of
RSA date back to 1980 [48], and virtually all smart cards in use
today include hardware to accelerate public-key operations.

It is conceivable that additional hardware accelerated crypto-
graphic primitives could result in a cambrian explosion of novel
applications and systems.

One of the reasons for why AES was chosen by Intel is its wide
acceptance by both government and industry entities “and its ex-
pected long term importance” [28]. We tease out two properties
that we believe made AES especially appealing for hardware ac-
celeration: (1) stability and (2) generality. Stability captures how
unlikely a primitive is to change over time and generality measures
the impact such a primitive could have on downstream applications.

Stability. Building special-purpose hardware requires a large
investment (money, time, and resources) from chip makers and se-
curity experts. Further, in contrast to software, it is difficult (some-
times even impossible) to update hardware once deployed “in the
wild.” Therefore, any candidate cryptographic primitive should be
vetted, widely accepted by cryptographers and security experts,
and be unlikely to change down the road. Implementing hardware
acceleration for new cryptographic primitives that have not stood
the test of time is risky and may quickly result in obsolete hardware.
Such changes can occur fairly frequently in cryptography. For exam-
ple, recently it was found that the security of the Barreto-Naehrig
elliptic curve [6], which was used in many pairing-based verifiable
computation schemes and cryptocurrencies, provided only 100 bits
of security as opposed to the claimed 128 bits [5, 37]. Another re-
cent example is Supersingular Isogeny Diffie–Hellman (SIDH) [35],
which was believed to be secure, even against post-quantum com-
puters. Recently, however, this assumption was shown to be false
under certain parameters, requiring, at minimum, updating all se-
curity parameters [13, 39, 49]. Tackling a more challenging design
problem of parameterizable hardware acceleration can mitigate or
avoid these situations, and provide more stability.

https://doi.org/10.1145/3548606.3559393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3559393


CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Srinivas Devadas, Simon Langowski, Nikola Samardzic, Sacha Servan-Schreiber, & Daniel Sanchez

Generality. When accelerating a cryptographic primitive, it is
important to target constructions that are likely to accelerate a
large number of other primitives and applications using them. For
example, it has been known for a long time that AES (or more
generally one-way permutations) can be used to realize PRGs, PRFs,
one-way compression functions, and a host of other cryptographic
tools [7, 26, 33].

When cryptographic accelerators make sense. Most cryptographic
operations are used too infrequently to be accelerated. For exam-
ple, key agreement protocols used ubiquitously on the Internet
to establish connections between two machines. However, they
are typically executed once per connection and therefore not used
frequently enough to merit acceleration. As such, a hardware ac-
celerator for key agreement would be an inefficient use of precious
resources. In contrast, digital signatures and encryption are ubiqui-
tous and used repeatedly by many devices, possibly making them
better candidates for acceleration.

The chicken and the egg. In many instances, hardware accelera-
tors have found usage outside of their original intended purpose. It
is difficult to predict which primitives are worthwhile accelerating
because current usage of the primitive is not always indicative of
its potential usage if a hardware accelerator were to exist for it.
As an example, consider our key agreement example above. If key
agreement were cheap, new kinds of protocols that don’t require
long-lived sessions (e.g., a DNS server doing per-DNS-query key
agreement), or systems that avoid complex designs like TLS session
resumption may suddenly appear. In many cases, if a hardware
accelerator were to be developed for some primitive, then cryp-
tographic protocols could be tweaked or redesigned to use it, as
was exemplified with AES-NI. Moreover, accelerators designed for
one domain may find wide usage in a completely different domain.
Graphics Processing Units (GPUs) were originally developed for the
purpose of accelerating computer graphics. Today, GPUs are heavily
used in machine learning and cryptocurrency mining—applications
that couldn’t be further removed from rendering pixels. The po-
tential impact on cryptographic protocols from new accelerators
is difficult to gauge and might only appear obvious in retrospect,
similarly to the trajectory of GPUs and the AES instruction set.
However, the decision to design and build a hardware accelerator
is often contingent on the primitive already being widely deployed
and used, resulting in a conundrum.

2 DESIGNING HARDWARE FOR CRYPTO
As cryptographers have worked to solve more complex problems,
solutions inevitably require larger overheads. However, as comput-
ers and protocols have improved, these technologies have become
viable in real-world implementations. For example, Path ORAM
has recently been deployed in the Signal messenger [15], zero-
knowledge proofs are used widely in cryptocurrencies [23, 31, 51],
and private information retrieval can be used for resolving DNS
queries anonymously [20] and for certificate transparency [30]. We
often imagine these technologies as adding “security” or “privacy”
to some baseline functionality, at some cost in performance. By ac-
celerating cryptography with hardware, we can remove the added

overheads and avoid the performance costs of building more secure
and private systems.

Consider Fully Homomorphic Encryption (FHE) [25], a class
of encryption schemes that enables generic computation on en-
crypted data, allowing secure offloading of computation. Even mod-
ern, highly optimized schemes [12, 14] have very significant over-
heads. To avoid the overheads of FHE, accelerators for private deep
learning, Gazelle [36] and Cheetah [45], combine shallow homo-
morphic encryption (HE) with multi-party computation (MPC).
Unfortunately, these systems require very frequent communication
with the client, essentially after every single level of multiplication.
While they do accelerate private deep learning, they are limited by
high client-server communication and client encryption/decryption
overheads. Delphi [40] shows that each DNN inference imposes
gigabytes of traffic, which quickly bottlenecks the performance.
CHOCO [54] shows that, even after accelerating client operations,
communication costs still dominate.

As we describe below, recent work has resulted in FHE now
bordering on practicality, thanks to hardware acceleration [22, 36,
45, 47, 50, 56].

F1 Accelerator for FHE. F1 [22] is the first programmable FHE
accelerator, i.e., capable of executing full FHE programs. F1 is a wide-
vector processor with novel functional units deeply specialized
to FHE primitives. This organization provides so much compute
throughput that data movement becomes the key bottleneck. Thus,
F1 is primarily designed to minimize data movement. It does so
by speeding up shallow FHE computations (i.e., those of limited
multiplicative depth) by roughly 5,000× over a 4-core CPU. F1
becomes memory-bandwidth bound on deeper computations (e.g.,
deep neural networks). This is because deep FHE programs require
very large ciphertexts (tens of MBs each) and different algorithms,
which F1 does not support well.

CraterLake Accelerator for FHE. CraterLake [50] addresses these
shortcomings and is the first accelerator to effectively speed up
arbitrarily large FHE programs. CraterLake introduces a new hard-
ware architecture that efficiently scales to very large ciphertexts,
novel functional units to accelerate key kernels, and new algo-
rithms and compiler techniques to reduce data movement. These
advances help CraterLake outperform a 32-core CPU by roughly
4,500× and deliver performance on deep benchmarks that is an
order of magnitude better than a scaled-up F1, with the same chip
area as CraterLake. These speedups enable new applications for
FHE, such as real-time inference using deep neural networks.

In order to perform arbitrary computations, ciphertexts need
to be periodically refreshed using a computationally-expensive
procedure called bootstrapping. By dramatically accelerating boot-
strapping, CraterLake avoids the high communication costs of HE-
MPC and shallow HE designs. To avoid bootstrapping, these prior
approaches require the client to receive, re-encrypt, and resend
ciphertexts that have exhausted their multiplicative budgets. In the
CraterLake benchmarks [50], avoiding each bootstrapping would
require transferring over 13MB between client and server, which
would make client-server communication two orders of magni-
tude more time-consuming than the actual server computation
(assuming a standard 100Mbps link). Specifically, these transfers
correspond to the server sending noisy (intermediate) ciphertext to



Designing Hardware for Cryptography and Cryptography for Hardware CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

the client, which the client decrypts, then reencrypts, and resends
back to the server. Even if we ignore client computation latency,
on a 100Mbps connection this would require over one second per
ciphertext. In contrast, CraterLake bootstraps this ciphertext in
3.9ms, 256× faster. Bootstrapping therefore greatly reduces en-
cryption and network overheads, and hardware acceleration of
bootstrapping reduces its computational overhead.

3 DESIGNING CRYPTO FOR HARDWARE
Many cryptographic protocols require high overheads in terms of
communication (bandwidth) and computation. We argue that the
design of cryptography for hardware should focus on the commu-
nication costs. This is simply because, while computation can be
accelerated using parallelism and specialized hardware, acceler-
ating communication between parties is more difficult, requiring
more extensive (e.g., physical infrastructure) changes.

Consider a concrete example of Amdahl’s law [3] applied to a
protocol that spends 50% of its time in computation and 50% of its
time in communication. Providing a 100× speedup to computation
will only result in a 2× speedup to the protocol. However, if we
had a slower protocol that traded communication for computation,
then, when hardware acceleration is applied, this protocol will be
faster overall. For a protocol that runs in a reasonable time-frame
without acceleration, a 1000 − 10000× speedup to computation will
make computational costs negligible, and only the communication
costs will remain.

We can also compare computation and communication costs
from a viewpoint of energy consumption. It takes ∼1,000× as much
energy to transmit an 8-bit word off-chip (i.e., DRAM access) as
to perform word addition on-chip [32, 44]. Further, transmitting
the same word over the Internet increases energy consumption
by many orders of magnitude compared to a DRAM access [18],
resulting in an inherent cost differential.

Few current protocols outside of FHE are designed for this sig-
nificant skew between communication and computation costs, and
we argue that hardware acceleration further exacerbates this skew.
As acceleration is able to speed up and reduce energy cost of com-
putation by several orders of magnitude, communication costs be-
come the only bottleneck. Therefore, cryptography designed for
hardware should focus on minimizing communication costs. For
example, [38] provides a codesign of a Private Information Retreival
(PIR) protocol and near-storage compute to reduce communication
costs.

Finally, back to the notion of generality, given dedicated accel-
erators such as F1 and CraterLake [22, 50] that accelerate FHE,
can we design other cryptographic schemes that take advantage of
the same hardware? For example, verifiable computation (VC) is
a cryptographic protocol that enables a (usually computationally
limited) entity to verify the correctness of an expensive computa-
tion delegated to an untrusted server [16, 27]. FHE and VC share
many common characteristics: (1) They convert the computation
to be performed into a circuit, (2) an untrusted server evaluates
the circuit on inputs to produce outputs, and (3) this evaluation
is extremely computationally expensive on CPUs. Can we design
and build a shared accelerator for FHE and VC? This motivates
designing VC schemes that are lattice-based (whereas current VC

schemes are group-based). Lattice-based VC schemes [2, 10, 24, 34]
might be amenable to acceleration, but hardware and cryptography
will have to meet in the middle. Although both schemes are based
on lattices, they differ slightly in the parameters, fields, and other
structures required.

4 LOOKING TO THE FUTURE
Hardware acceleration of AES supercharged the deployment of
cryptography on the Internet. Are there other primitives useful in
multiple cryptographic protocols that would have a similar impact?

The learning with errors (LWE) assumption [46] is assumed to
be post-quantum secure, making it a good candidate for hardware
acceleration (in comparison to factoring and discrete-logarithm
style assumptions, which are broken with quantum computers [7]).
This has motivated standardization of post-quantum cryptogra-
phy [1] which will necessitate fast post-quantum cryptography.
Efforts along these lines include Amazon Web Services enabling hy-
brid post-quantum schemes for TLS [52, 53], the development and
cryptoanalysis [13, 39, 49] of NIST candidates [1], key agreement
protocols based on LWE [8], and many more. Unfortunately, most
post-quantum secure cryptographic algorithms are slower than
their pre-quantum counterparts; hardware acceleration can help
close this gap. Accelerating the underlying operations for LWE,
for example, would be applicable to a host of primitives, such as
FHE, verifiable computation, and even cryptographic primitives
that do not use the LWE assumption. For example, an accelerator
for LWE that achieves significant speedups over CPUs (even with
SSE and AVX instructions) could impact an extraordinary number
of cryptographic primitives, ranging from multi-party computation
to obfuscation [4].

We believe a successful marriage of hardware acceleration and
cryptography has high potential for impact: by lowering the cost of
cryptographic techniques, these techniqueswill become an essential
part of the secure datacenters of the future, saving billions of dollars
and enabling security in a sustainable, energy-efficient way.

ACKNOWLEDGEMENTS
We thank Henry Corrigan-Gibbs, Raluca Ada Popa, Ron Rivest, and
Nickolai Zeldovich for insightful comments and suggestions.

REFERENCES
[1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,

John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status re-
port on the second round of the nist post-quantum cryptography standardization
process. US Department of Commerce, NIST, 2020.

[2] Martin R Albrecht, Valerio Cini, Russell WF Lai, Giulio Malavolta, and Sri Aravin-
daKrishnan Thyagarajan. Lattice-based snarks: Publicly verifiable, preprocessing,
and recursively composable. Cryptology ePrint Archive, 2022.

[3] Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint
computer conference, pages 483–485, 1967.

[4] Sebastian Banescu, Martín Ochoa, Nils Kunze, and Alexander Pretschner. Idea:
benchmarking indistinguishability obfuscation–a candidate implementation. In
International Symposium on Engineering Secure Software and Systems, pages 149–
156. Springer, 2015.

[5] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for
pairings. Journal of cryptology, 32(4):1298–1336, 2019.

[6] Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime
order. In International workshop on selected areas in cryptography, pages 319–331.
Springer, 2005.

[7] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft
0.5, 2020.



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Srinivas Devadas, Simon Langowski, Nikola Samardzic, Sacha Servan-Schreiber, & Daniel Sanchez

[8] JoppeWBos, Craig Costello, Michael Naehrig, andDouglas Stebila. Post-quantum
key exchange for the tls protocol from the ring learning with errors problem. In
2015 IEEE Symposium on Security and Privacy, pages 553–570. IEEE, 2015.

[9] Joppe W Bos, Onur Özen, and Martijn Stam. Efficient hashing using the aes in-
struction set. In InternationalWorkshop on Cryptographic Hardware and Embedded
Systems, pages 507–522. Springer, 2011.

[10] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner. Efficient
post-quantum snarks for rsis and rlwe and their applications to privacy. In
International Conference on Post-Quantum Cryptography, pages 247–267. Springer,
2020.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 1292–1303, 2016.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, ITCS ’12, New York, NY, USA, 2012.
Association for Computing Machinery.

[13] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh
(preliminary version). Cryptology ePrint Archive, 2022. https://eprint.iacr.org/
2022/975.

[14] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, 2017.

[15] Graeme Connell. Technology deep dive: Building a faster ORAM layer for
enclaves. https://signal.org/blog/building-faster-oram/, 2022.

[16] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical veri-
fied computation with streaming interactive proofs. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, pages 90–112, 2012.

[17] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous
messaging system handling millions of users. In 2015 IEEE Symposium on Security
and Privacy, pages 321–338. IEEE, 2015.

[18] David Costenaro and Anthony Duer. The megawatts behind your megabytes:
going from data-center to desktop. Proceedings of the 2012 ACEEE Summer Study
on Energy Efficiency in Buildings, ACEEE, Washington, pages 13–65, 2012.

[19] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica. DORY:
An encrypted search system with distributed trust. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), pages 1101–1119,
2020.

[20] Natnatee Dokmai, L Jean Camp, and Ryan Henry. A proposal for assisted private
information retrieval. Cryptology ePrint Archive, 2022.

[21] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Ex-
press: Lowering the cost of metadata-hiding communication with cryptographic
privacy. In 30th USENIX Security Symposium (USENIX Security 21), pages 1775–
1792, 2021.

[22] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron Dres-
linski, Christopher Peikert, and Daniel Sanchez. F1: A fast and programmable
accelerator for fully homomorphic encryption. In Proceedings of the 54th annual
ACM/IEEE International Symposium on Microarchitecture, 2021.

[23] Ethereum Foundation. Zero-knowledge rollups. https://ethereum.org/en/
developers/docs/scaling/zk-rollups/, 2022.

[24] Rosario Gennaro, Michele Minelli, Anca Nitulescu, and Michele Orrù. Lattice-
based zk-snarks from square span programs. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages 556–573,
2018.

[25] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09, pages
169–178, 2009.

[26] Oded Goldreich. Foundations of cryptography: a primer, volume 1. Now Publishers
Inc, 2005.

[27] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating compu-
tation: interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64,
2015.

[28] Shay Gueron. Intel® advanced encryption standard (aes) new instructions
set. https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-
standard-new-instructions-set-paper.pdf, 2010.

[29] Shay Gueron and Fabian Schlieker. Software optimizations of ntruencrypt for
modern processor architectures. In Information Technology: New Generations,
pages 189–199. Springer, 2016.

[30] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-
john, and Vinod Vaikuntanathan. One server for the price of two: Simple and fast
single-server private information retrieval. Cryptology ePrint Archive, Paper
2022/949, 2022. https://eprint.iacr.org/2022/949.

[31] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol
specification. GitHub: San Francisco, CA, USA, page 1, 2016.

[32] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10–14. IEEE, 2014.

[33] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the twenty-first annual ACM symposium

on Theory of computing, pages 44–61, 1989.
[34] Yuval Ishai, Hang Su, and David J Wu. Shorter and faster post-quantum

designated-verifier zksnarks from lattices. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 212–234, 2021.

[35] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In International Workshop on Post-Quantum
Cryptography, pages 19–34. Springer, 2011.

[36] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE:
A low latency framework for secure neural network inference. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1651–1669, 2018.

[37] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A
new complexity for the medium prime case. In Annual international cryptology
conference, pages 543–571. Springer, 2016.

[38] Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh
Gupta, Yufei Ding, and Yuan Xie. Inspire: In-storage private information retrieval
via protocol and architecture co-design. In Proceedings of the 49th Annual In-
ternational Symposium on Computer Architecture, ISCA ’22, page 102–115, New
York, NY, USA, 2022. Association for Computing Machinery.

[39] Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary starting
curve. Cryptology ePrint Archive, 2022. https://eprint.iacr.org/2022/1026.

[40] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. Delphi: A cryptographic inference service for neural networks.
In 29th USENIX Security Symposium (USENIX Security 20), pages 2505–2522, 2020.

[41] Tilo Müller, Felix C Freiling, and Andreas Dewald. TRESOR runs encryption
securely outside RAM. In 20th USENIX Security Symposium (USENIX Security 11),
2011.

[42] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris
Dworkin, James Foti, and Edward Roback. Report on the development of the
advanced encryption standard (aes). Journal of research of the National Institute
of Standards and Technology, 106(3):511, 2001.

[43] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. Spectrum:
High-bandwidth anonymous broadcast. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 229–248, 2022.

[44] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya
Agrawal, Stephen W Keckler, and William J Dally. Fine-grained dram: Energy-
efficient dram for extreme bandwidth systems. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 41–54, 2017.

[45] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S Lee,
Gu-Yeon Wei, and David Brooks. Cheetah: Optimizing and accelerating homo-
morphic encryption for private inference. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pages 26–39. IEEE, 2021.

[46] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM (JACM), 56(6):1–40, 2009.

[47] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. Heax: An architecture
for computing on encrypted data. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, page 1295–1309, New York, NY, USA, 2020. Association for Computing
Machinery.

[48] Ronald L Rivest. A description of a single-chip implementation of the rsa cipher.
LAMBDA Fourth Quarter, 1980.

[49] Damien Robert. Breaking sidh in polynomial time. Cryptology ePrint Archive,
2022. https://eprint.iacr.org/2022/1038.pdf.

[50] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srini Devadas, Karim Eldefrawy, Christopher Peikert, and Daniel
Sanchez. Craterlake: A hardware accelerator for efficient unbounded computa-
tion on encrypted data. In Proceedings of the 49th annual International Symposium
on Computer Architecture (ISCA-49), 2022.

[51] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474.
IEEE, 2014.

[52] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum tls without
handshake signatures. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1461–1480, 2020.

[53] Amazon Web Services. Using hybrid post-quantum tls with aws kms. https:
//docs.aws.amazon.com/kms/latest/developerguide/pqtls.html, 2022. Accessed:
2022-08-30.

[54] McKenzie van der Hagen and Brandon Lucia. Practical encrypted computing for
iot clients. arXiv preprint arXiv:2103.06743, 2021.

[55] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei
Zaharia. Splinter: Practical private queries on public data. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), pages
299–313, 2017.

[56] Ye Zhang, Shuo Wang, Xian Zhang, Jiangbin Dong, Xingzhong Mao, Fan Long,
Cong Wang, Dong Zhou, Mingyu Gao, and Guangyu Sun. Pipezk: Accelerating
zero-knowledge proof with a pipelined architecture. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA), pages 416–428.
IEEE, 2021.

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://signal.org/blog/building-faster-oram/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038.pdf
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html

	Abstract
	1 Introduction
	2 Designing hardware for crypto
	3 Designing crypto for hardware
	4 Looking to the Future
	References

