
Accelerating RTL Simulation with Hardware-So�ware Co-Design

Fares Elsabbagh
MIT CSAIL

Cambridge, MA, USA

farese@csail.mit.edu

Shabnam Sheikhha
MIT CSAIL

Cambridge, MA, USA

shab@csail.mit.edu

Victor A. Ying∗

MIT CSAIL

Cambridge, MA, USA

victory@csail.mit.edu

Quan M. Nguyen
MIT CSAIL

Cambridge, MA, USA

qmn@csail.mit.edu

Joel S. Emer
MIT CSAIL

Cambridge, MA, USA

emer@csail.mit.edu

Daniel Sanchez
MIT CSAIL

Cambridge, MA, USA

sanchez@csail.mit.edu

ABSTRACT

Fast simulation of digital circuits is crucial to build modern chips.

But RTL (Register-Transfer-Level) simulators are slow, as they can-

not exploit multicores well. Slow simulation lengthens chip design

time and makes bugs more frequent.

We present ASH, a parallel architecture tailored to simulation

workloads. ASH consists of a tightly codesigned hardware archi-

tecture and compiler for RTL simulation. ASH exploits two key

opportunities. First, it performs data�ow execution of small tasks

to leverage the �ne-grained parallelism in simulation workloads.

Second, it performs selective event-driven execution to run only the

fraction of the design exercised each cycle, skipping ine�ectual

tasks. ASH hardware provides a novel combination of data�ow and

speculative execution, and ASH’s compiler features several novel

techniques to automatically leverage this hardware.

We evaluate ASH in simulation using large Verilog designs. An

ASH chip with 256 simple cores is gmean 1,485× faster than 1-core

Verilator, and it is 32× faster than parallel Verilator on a server CPU

with 32 complex cores, while using 3× less area.

CCS CONCEPTS

• Computer systems organization → Parallel architectures; •

Hardware → Electronic design automation.

KEYWORDS

simulation, register-transfer-level, hardware acceleration, data�ow

execution, speculative execution, domain-speci�c architectures.

ACM Reference Format:

Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen,

Joel S. Emer, and Daniel Sanchez. 2023. Accelerating RTL Simulation with

Hardware-Software Co-Design. In 56th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO ’23), October 28-November 1, 2023,

Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/

10.1145/3613424.3614257

∗Victor A. Ying began working at Tenstorrent after this work was done.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614257

1 INTRODUCTION

Fast simulation of digital circuits is crucial for e�ective digital

design. Current processors and SoCs integrate hundreds of complex

components, including cores, accelerators, and memory hierarchies.

Simulating these systems is needed to explore their design space and

verify their correctness. In particular, veri�cation dominates chip

design cost [24]. Unfortunately, existing simulators are slow. This

increases design time, limits the e�ciency of the resulting design

(due to insu�cient design exploration), and makes hardware bugs

more likely (due to insu�cient veri�cation coverage).

Simulation can happen at di�erent levels of abstraction. In this

work, we focus on accelerating Register-Transfer-Level (RTL) sim-

ulation, i.e., the precise simulation of a hardware design written

in a Hardware Description Language (HDL) like Verilog. RTL sim-

ulation is a common bottleneck in chip design, as it is needed to

debug an evolving implementation and evaluate and improve its

performance, power, and area.

Prior work has built software and hardware techniques to accel-

erate RTL simulation. Unfortunately, these techniques have major

drawbacks. The fastest software simulators, like Verilator [56], are

purpose-built optimizing compilers that translate RTL code into an

e�cient software program (e.g., in C++) [8, 46, 56]. But simulators

scale poorly across CPU cores, because parallelism is �ne-grained:

work must be split into small tasks with few operations each. But

these tasks havemany data dependences and need frequent synchro-

nization. This causes high overheads on conventional multicores,

which erase most of the bene�ts of parallelization (Sec. 2).

Since simulators are so slow, chip designers often resort to spe-

cialized emulators, which map a design to hundreds to thousands of

FPGAs [13, 63] or specialized processors [9, 12]. Emulators work at a

lower level of abstraction (logic gates), which limits their e�ciency;

they are large and expensive; and they su�er very long compile

times, days to weeks for large designs [23]. This limits emulators

to �nal integration testing, when the design is nearly �nished and

bug-free. By contrast, simulators compile designs in minutes, so

they are the only option for most of the design cycle, when changes

are frequent (Sec. 2.4). Thus, we focus on accelerating software

simulation, retaining its fast compilation while achieving dramatic

speedups.

We propose the ASH (Accelerator of Simulated Hardware) sys-

tem, a carefully co-designed architecture and compiler for RTL

simulation. We present two ASH variants that target the key accel-

eration opportunities in RTL simulation:

1

https://doi.org/10.1145/3613424.3614257
https://doi.org/10.1145/3613424.3614257
https://doi.org/10.1145/3613424.3614257

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

Data�ow execution with DASH: RTL simulation is naturally

expressed as many tasks whose outputs drive the inputs of other

tasks, so it is a perfect match for data�ow (i.e., data-driven) execu-

tion [15]. Data�ow execution has the potential to expose abundant

parallelism, as each task can run as soon as its inputs have been

produced. Unfortunately, RTL simulation fails to scale on current

multicores because it needs small tasks to expose su�cient paral-

lelism, but small tasks have prohibitive overheads on multicores

that negate the bene�ts of parallelism.

DASH (Data�ow ASH) tackles this challenge by providing novel

hardware mechanisms for data�ow execution of small tasks. We

extend a multicore with hardware to orchestrate data�ow execu-

tion: DASH hardware gathers inputs and dispatches tasks to cores

after inputs are available. DASH implements a novel prioritized

data�ow execution that orders tasks to reduce in-�ight tasks, avoid-

ing the overheads of prior data�ow architectures [17, 40, 62]. DASH

also features a simple, partitioned memory system without cache

coherence specialized to the needs of simulation.

Selective event-driven execution with SASH: In most digi-

tal designs, only a small fraction of the signals change each cy-

cle [7, 16, 31], so simulating the whole design every cycle is waste-

ful. Selective execution—simulating only the active fraction of the

design—is more e�cient. Prior work has proposed event-driven

simulators and architectures [1, 14, 19, 20, 26] where work happens

through events that may schedule other events for later execu-

tion. Unfortunately, these prior systems lack support for data�ow

execution, so running data�ow tasks selectively incurs costly syn-

chronization through memory that negates the bene�ts of selective

execution.

SASH (Selective event-driven ASH) tackles this challenge by ex-

tending DASH with selective execution, running only tasks whose

inputs change during a given cycle. Selective execution introduces

dynamic data dependences: each task receives inputs only from

producers that have run, but not from skipped ones. SASH handles

these dependences with speculative execution, running each task

with its received inputs and using old values for non-received ones

(i.e., speculating that these inputs will not change this cycle). A

late-received input causes the task to abort and re-execute.

ASH compiler: The ASH compiler builds on Verilator and intro-

duces novel techniques to parallelize RTL code automatically and

e�ciently, place tasks and data to minimize communication, and

e�ectively use DASH’s data�ow scheduling hardware as well as

SASH’s speculative execution features.

In summary, ASH leverages classic compiler and architecture

concepts, including data�ow and speculative execution, and con-

tributes new techniques to make their combination e�cient and

use them automatically. While prior systems used either task-level

data�ow [17, 75] or speculation [1, 18, 27], ASH is the �rst to com-

bine them, achieving good scalability and avoiding ine�ectual work.

We evaluate ASH in simulation, on four large Verilog designs that

include CPU cores, GPU cores, and accelerators. Our contributions

make RTL simulation scale to hundreds of cores. A 256-core ASH

system is gmean 1,485× faster than serial Verilator on a system

with a single (simple) core, and it is gmean 32× faster than parallel

Verilator on a commercial CPU with 32 complex cores while using

3× less area.

2 MOTIVATION AND BACKGROUND

In this section, we �rst introduce the key characteristics of RTL

simulation. We then present its two key optimization opportunities

and quantify the limitations of existing systems, including parallel

simulators and FPGA emulators.

2.1 Understanding RTL simulation

RTL simulation functionally evaluates a digital circuit written in an

HDL like Verilog. RTL simulation precisely evaluates how signals

and state elements (e.g., registers) evolve over clock cycles. For

instance, Fig. 1a shows a 2-stage pipeline that computes the dot-

product of two 4-element vectors. In an RTL simulation, a testbench

feeds inputs each simulated cycle, and compares the outputs (and

maybe other signals) against a reference model. It may also evaluate

performance (e.g., cycles taken on a long computation) and power

(by measuring component activities). Thus, RTL simulation veri�es

digital designs and analyzes their e�ciency.

In this work, we focus on simulating synchronous circuits, by

far the dominant design style (other styles, like asynchronous cir-

cuits [11], are rarely used). These systems comprise combinational

logic and clocked registers. (For simplicity, we assume that all reg-

isters are driven by one clock, but our techniques also work with

multiple clock domains [70].)
Comb. logic

Wire

Register
clk

a[0]
b[0]

clk

a[1]
b[1]

clk

a[2]
b[2]

clk

a[3]
b[3]

clk

out

*

*

*

*

+

+

+

(a) Example 2-stage pipeline.

* * * * + +
+

Input Register Output

Dataflow node Dataflow edge

(b) Data�ow graph for (a).

Figure 1: RTL simulation of

synchronous circuits can be ab-

stracted as a data�ow graph.

Data�ow graphs: RTL sim-

ulation of synchronous cir-

cuits can be abstracted as

the execution of a data�ow

graph, where nodes repre-

sent combinational logic and

edges represent data values.

Fig. 1b shows the data�ow

graph for the circuit in

Fig. 1a, with inputs on the

top and the only output on

the bottom. The same reg-

isters are shown on both

top and bottom, as they are

read and written every cy-

cle. RTL simulation evaluates

each node in the data�ow

graph once per simulated cy-

cle in an order consistent

with its data�ow edges.

RTL simulators: Modern

RTL simulators like Verilator [56], ESSENT [8], RepCut [71], and

Cuttlesim [46] are compilation-based: they translate HDL code to a

data�ow intermediate representation (IR), then translate the IR to

a software program that simulates the circuit. For example, Fig. 2

shows how an ALU is translated from Verilog to e�cient C++.

Translation leverages the semantic similarities of HDLs and soft-

ware languages, e.g., arithmetic operations are directly translated

to C++ arithmetic operations, not bit-level operations.

RTL simulation admits two key optimizations: executing the

data�ow graph in parallel, and executing only the nodes whose

inputs change. We quantify the shortfalls of existing systems, show-

ing the need for hardware support.

2

Accelerating RTL Simulation with Hardware-So�ware Co-Design MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

typedef bit [63:0] Word;

typedef enum {ADD, MUL, AND, XOR} AluOp;

module alu(input Word a, input Word b,

 input AluOp op, output Word out);

 always_comb begin

 case (op)
 ADD: out = a + b;

 MUL: out = a * b;

 AND: out = a & b;

 XOR: out = a ^ b;

 endcase
 end

endmodule

(a) Verilog RTL code for a simple ALU.

a

0

3

1

2

b

op

out
64

64

64

+

*

(b) ALU hardware.

class alu {

 // Inputs
 uint64_t a, b;

 uint8_t op;

 // Outputs

 uint64_t out;

 void eval() {

 if (op == 0) out = a + b;

 else if (op == 1) out = a * b;

 else if (op == 2) out = a & b;

 else if (op == 3) out = a ^ b;
 }

};

(c) Generated C++ code for (a).

Figure 2: Fast RTL simulators compile HDL code (e.g., Verilog) to a software program.

100 101 102 103 104

(a) Finer tasks increase parallelism.

0

250

500

Ex
pe

ct
ed

Pa
ra

lle
lis

m

100 101 102 103 104

(b) Speedup over serial simulation.

0

2

4

Pa
ra

lle
l

Sp
ee

du
p

100 101 102 103 104

 Number of tasks
(c) Tiny tasks uncover low activity.

0.0

0.5

1.0

A
ct

iv
ity

Fr
ac

tio
n

(a) Finer tasks increase parallelism.
100 101 102 103 104

(a) Finer tasks increase parallelism.

0

250

500

Ex
pe

ct
ed

Pa
ra

lle
lis

m

100 101 102 103 104

(b) Speedup over serial simulation.

0

2

4

Pa
ra

lle
l

Sp
ee

du
p

100 101 102 103 104

 Number of tasks
(c) Tiny tasks uncover low activity.

0.0

0.5

1.0

A
ct

iv
ity

Fr
ac

tio
n

(b) Speedup over serial simulation.

100 101 102 103 104

(a) Finer tasks increase parallelism.

0

250

500

Ex
pe

ct
ed

Pa
ra

lle
lis

m

100 101 102 103 104

(b) Speedup over serial simulation.

0

2

4

Pa
ra

lle
l

Sp
ee

du
p

100 101 102 103 104

 Number of tasks
(c) Tiny tasks uncover low activity.

0.0

0.5

1.0

A
ct

iv
ity

Fr
ac

tio
n

(c) Tiny tasks uncover low activity.

Figure 3: E�ects of varying task

size for Verilator. More tasks (x-

axis) means �ner grain.

2.2 Parallel execution needs small tasks

RTL simulators can parallelize execution by leveraging the data�ow

graph, which exposes the available parallelism: independent paths

can be evaluated in parallel. However, �ne-grained dependences

cause serialization: for instance, in Fig. 1b the adder tree can be

partially parallelized, but two inputs feed into the �nal adder. In

practice, combinational paths have tens of nodes, with edges fan-

ning in and out, creating complex dependences that make parallel

execution challenging.

The granularity of scheduling is a key aspect of parallelization.

Each node in the data�ow graph performs a tiny amount of work, of-

ten just a single assignment. On current multicores, communication

costs would make individually scheduling these nodes extremely

expensive. Instead, data�ow nodes are �rstmerged into larger tasks.

Then, this task-level data�ow graph is scheduled across cores.

Merging nodes into larger tasks introduces delicate tradeo�s

between work-e�ciency and parallelism. On the one hand, larger

tasks are more work-e�cient. On the other hand, merging too much

causes two problems: it reduces parallelism and creates tasks with

many inputs and outputs, which are harder to schedule. For instance,

merging the four independent multiplier nodes in Fig. 1b reduces

parallelism by 4× and produces a task with 8 inputs and 4 outputs.

The problem is that existing multicores force simulators to create

huge sequential tasks that sacri�ce most of the parallelism. This

happens because communication and synchronization are very ex-

pensive: communicating a single value across cores is done through

shared memory, and costs hundreds of cycles. Tasks must have

thousands of operations to amortize these costs. But larger tasks

also have more dependences, inducing needless serialization that

tanks parallelism.

To quantify this problem, we use Verilator [56] to compile an

RTL simulator for Chronos, a graph-processing accelerator with

128 processing engines (see Sec. 8 for methodology details). Veri-

lator iteratively merges data�ow nodes into large tasks. It tries to

avoid lengthening the critical path, i.e., the costliest chain of tasks

from initial values (inputs or registers) to �nal values (outputs or

registers). Merging nodes can produce a costlier task on the critical

path, so Verilator stops merging when the parallelism, i.e., the ratio

of total cost of all tasks to critical path cost, reaches a threshold.

Fig. 3a shows how parallelism grows with the number of tasks.

The x-axis uses a logarithmic scale to show the wide range of op-

tions: from serial simulation using one task, to restricting Verilator

to only do merges that

avoid hurting the criti-

cal path, which produces

74K tiny tasks. Fig. 3a

shows that parallelism is

plentiful, but only with

many small tasks: merely

achieving 100× parallelism requires about 2000 tasks.

Fig. 3b shows how this potential parallelism translates to per-

formance. It reports speedup over serial Verilator across the range

of task counts (and granularities) on a 32-core AMD Zen 2 CPU.

Verilator schedules tasks statically to a �xed number of threads

(a good strategy, as task costs are known at compile time). We

adapt Verilator to allow varying threads and merging level inde-

pendently, and report the performance of the best thread count for

each merging level.

Unfortunately, Fig. 3b shows that parallel execution yields lim-

ited speedups: the best performance is for 203 tasks, which is only

3.5× faster than serial simulation despite an expected parallelism of

18.7. Such limited speedups are typical for Verilator’s multithreaded

simulations [57, 58]. This is because, even with 203 relatively large

tasks, each task has only about a microsecond worth of work, and

synchronization costs dominate. These costs make speedups plum-

met with smaller tasks. DASH’s support for data�ow execution

avoids these costs, enabling small tasks with high parallelism.

2.3 Selective execution needs small tasks

Digital systems have low activity factors: a small fraction of the

logic switches each cycle [7, 16, 31]. Simulators can exploit this by

evaluating only the nodes whose inputs change.

E�ective selective execution demands small tasks. Fig. 3c reports

the fraction of work performed by active tasks, averaged across

simulated cycles. A task is active and must execute if any of its

inputs has changed since it last executed. With small tasks, active

tasks make up only 20% of work. But larger tasks make it more

likely that some logic within each task is active, making inactive

tasks rare. Below 2000 tasks, the activity factor is pegged to 100%.

Prior work has developed serial simulators that exploit low ac-

tivity factors through conditional execution [8]. But the inability

of parallel simulators to deal with small tasks makes selective exe-

cution ine�ective, and to our knowledge, state-of-the-art parallel

RTL simulators are non-selective [57].

3

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

In parallel simulation, skipping inactive tasks adds complexity

because any active task must now know which inputs change and

which stay the same. Prior work has proposed conservative and opti-

mistic parallelization approaches. With conservative parallelization,

as done in the Chandy-Misra-Bryant (CMB) algorithm [14], each

inactive task must send null messages to indicate lack of changes in

its outputs. This approach still traverses the entire data�ow graph

each cycle—it skips only the work within each task, but not the

communication. For the tiny tasks needed in RTL simulation, this is

ine�cient.

Time Warp [25, 26] avoids null messages and conservative syn-

chronization by using an optimistic approach: tasks execute spec-

ulatively, assuming that no other inputs will be received, and an

input received out of order causes the task to abort and re-execute.

But Time Warp has no concept of data�ow execution: each task

carries one argument from a single simulated object to another.

Thus, while prior accelerators used this optimistic approach in

other domains [1, 20, 27], they lack the hardware support needed to

manage speculative execution of data�ow tasks. Aswe later quantify

(Sec. 10), ASH is the �rst system with su�cient hardware support

to make selective execution pro�table in parallel RTL simulation.

2.4 Emulation versus simulation

Hardware emulators are the only platforms capable of running

billion-gate designs at MHz speeds. Emulators work by mapping

gates directly to hardware elements, either FPGAs or specialized

gate processors. However, their long compile times make emula-

tors ill-suited to crucial parts of the chip design process, such as

design space exploration and prototyping, when RTL changes are

extremely frequent.

Current FPGA-based emulators include Cadence’s Protium [13]

and Synopsys’s ZeBu [63]. Their compilation times span from days

to weeks, as partitioning, placing, and routing a design across many

FPGAs is a very complex process. Processor-based emulators use a

large collection of ASICs instead of o�-the-shelf FPGAs: Cadence’s

Palladium [12] uses a massive array of Boolean processors; and

Mentor’s Veloce Strato [37] uses custom FPGAs tailored to emula-

tion. (Sec. 10.3 describes additional systems.) ASIC-based systems

have lower compilation times (hours to days) and better debug-

ging capabilities than FPGA-based ones, but they are slower and

more expensive. Thus, emulators are restricted to late in the design

process, when changes are rare.

Simulation is the best choice for evaluating RTL designs at high

speeds and at large scales. To concretely quantify its advantages, Ta-

ble 1 shows the times to compile, and then run, Chronos in (1) pure

software simulation, (2) SASH, and (3) emulation on 2 FPGAs. Sim-

ulated duration is important, because di�erent activities demand

di�erent durations: one million cycles (∼ 1ms) su�ces for short

tests, one billion cycles (∼ 1 s) enables thorough performance eval-

uation, and one trillion cycles (∼ 20min) enables running complex

software. During RTL development, 1M-1Bcycle tests are common.

To benchmark emulation, we use a system with two large Alveo

U250 FPGAs [74] directly connected through 200Gbps links. Chronos

does not �t in one FPGA. By manually partitioning the design and

applying Virtual Wires [6], we achieve a 1.4MHz speed, limited

by inter-FPGA latency. After days of tuning, this design compiled

System Compile Sim.
Time to simulate

time speed 1M cycles 1B cycles 1T cycles

SW sim. 2 mins 11 KHz 3.9 mins 1.1 days 3 years
SASH 2 mins 414 KHz 2.4 mins 43 mins 28 days
FPGA ×2 13 hours 1.4 MHz 13.2 hours 13.4 hours 8.7 days

SASH/FPGA 332× 18.9× 0.3×

Table 1: Simulation vs. FPGA emulation.

in 13 hours (running both FPGA compiles in parallel). Commercial

emulators can automate partitioning but at the cost of longer com-

pile times, so this compilation time is generous to emulators.

SASH has a somewhat lower simulation speed than emulation,

but compiles Chronos in 2 minutes. This enables a much shorter

design and debug cycle than emulation: in the time it takes to carry

out a billion-cycle FPGA emulation run, engineers could have done

nearly 20 SASH runs.

3 SYSTEM OVERVIEW

Fig. 4 shows an overview of the ASH system. ASH consists of a

co-designed hardware architecture and RTL compiler. The archi-

tecture e�ciently supports the two key optimizations identi�ed in

Sec. 2: it scales simulation to many cores using data�ow execution,

and it avoids needless work through selective execution. The RTL

compiler leverages these features to achieve high performance.

ASH hardware is designed from the ground up to support �ne-

grain tasks. The ASH chip consists of multiple tiles, and each tile

has several cores and a task management unit that queues and dis-

patches tasks to cores. We design two variants of ASH, and present

them in stages: DASH (Sec. 4) supports task data�ow specialized to

simulation workloads, and SASH (Sec. 5) adds speculation to DASH

to achieve selective execution. ASH does not use global coherence;

it performs all inter-tile communication through task arguments;

and it performs task-driven instruction prefetching (Sec. 6) to cope

with the high instruction footprints of RTL simulation.

Our ASH compiler implementation is based on Verilator, a state-

of-the-art Verilog/SystemVerilog simulator [56]. Verilator supports

parallelization on shared-memory multicores, which as we have

seen, achieves limited speedups (Sec. 2.2). We thus contribute new

compiler techniques that automatically divide work into �ne-grain

data�ow tasks, partition tasks and their data across tiles, andmodify

these tasks for selective, speculative execution. We explain these

compiler contributions as we introduce DASH and SASH.

M
e
m
o
ry

DASH (Sec. IV)
Prioritized task dataflow

SASH (Sec. V)
Speculative task dataflow

o
th

e
r tile

s

ASH Chip

Core Core Core Core

L1 L1 L1 L1

L2 Cache (tile-private)

Task Management Unit

m
e

m
o

ry

ASH Tile

ASH

Simulator

Input HDL (Verilog) DASH/SASH code

Compile
module foo;

module bar;

void task_foo1(args) {

 push_args(task_foo2…);

Figure 4: ASH system overview.

4

Accelerating RTL Simulation with Hardware-So�ware Co-Design MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

4 PRIORITIZED DATAFLOW EXECUTION
WITH DASH

This section presents the DASH system, which implements data�ow

execution but not selective execution—all tasks run in every simu-

lated cycle. We �rst present DASH’s execution model and ISA; then

describe its hardware implementation; and �nally explain how RTL

compiles to DASH.

4.1 Execution model and ISA

All computation in DASH happens through tasks. A task is a unit

of code—a function in our implementation. Tasks can have one or

more input arguments, which are produced by other tasks, and can

produce arguments for other tasks.

Data�ow execution: Hardware provides native support for data-

�ow execution of tasks. A task enqueues arguments for other tasks

with a push_args instruction. Hardware bu�ers the arguments for

each task; the task becomes ready when all its arguments are avail-

able. Ready tasks are queued and dispatched to cores for execution.

Cores execute each task to completion, and stall if no further tasks

are available.

Hardware support for data�ow execution avoids communication

through shared memory: a task enqueues output arguments from

registers, and when a task starts execution, its input arguments are

placed in registers.

Prioritized execution and timestamps: Prioritized execution is

DASH’s key distinguishing feature. Previous data�ow architectures

(Sec. 10.2) execute the data�ow graph in an unordered fashion. This

often produces an excessive number of in-�ight task arguments,

requiring large storage structures for arguments [3, 75].

Instead, DASH prioritizes tasks for execution: software assigns

an integer timestamp to each task, and hardware dispatches ready

tasks for execution in timestamp order. The DASH compiler assigns

timestamps to prioritize work in the critical path and keep a small

memory footprint. Thus, DASH hasmuch lower footprint than prior

data�ow architectures, and a simpler implementation (Sec. 9.3).

Timestamps also di�erentiate invocations of the same task. Each

task invocation has a di�erent timestamp (as each task runs once

per simulated cycle), and timestamps enable their arguments to

coexist. This allows overlapping the execution of successive cycles,

increasing parallelism.

Memory: Although task arguments are passed through registers,

tasks can also access memory. Supporting data accesses serves two

purposes. First, some simulated structures, like SRAM memories,

have a lot of state. It would be ine�cient to encode all this state in

data�ow edges; it is better to store this state in memory and have

data�ow nodes that access it. Second, hardware limits the number

of arguments per task (our implementation allows up to �ve 64-bit

arguments). Tasks that exceed this limit must store some inputs in

memory (Sec. 4.3.4).

Taskmapping:While memory stores some state, there is no global

shared memory, and all global communication happens through

task arguments. To enforce this restriction, each task is mapped to

run on a �xed tile, and all memory accesses to the same data must

happen from same-tile tasks.

Argument enqueue ISA: The push_args instruction conveys the

task’s metadata: function pointer, timestamp, tile id, and the total

void adderOut(uint16_t ts, uint64_t wire0, uint64_t wire1) {

 output_ports->reg_out = wire0 + wire1;
}

Timestamp = 1002, Tile = ADDEROUT_TILE

void adder1(uint16_t ts,

 uint64_t reg2,
 uint64_t reg3) {

 uint64_t wire1 = reg2 + reg3;
 push_args<&adderOut, ARG1,

 ADDEROUT_TILE,

 /*#parents=*/2>
 (ts + 1, wire1);

}

Timestamp = 1001, Tile = ADDER0_TILE Timestamp = 1001, Tile = ADDER1_TILE

wire1wire0

void adder0(uint16_t ts,

 uint64_t reg0,
 uint64_t reg1) {

 uint64_t wire0 = reg0 + reg1;
 push_args<&adderOut, ARG0,

 ADDEROUT_TILE,

 /*#parents=*/2>
 (ts + 1, wire0);

}

Figure 5: Task code for the adder tree in Fig. 1.

core

Inter-Tile Network

(5
,
a
d
d
e
r
0

,
re

g
1

)

(5
,
a
d
d
e
r
0

,
re

g
0

)

(5
,
a
d
d
e
r
1

,
re

g
2

)

(5
,
a
d
d
e
r
1

,
re

g
3

)

M
E
R
G
E

…

(5
,
a
d
d
e
r
0

,
re

g
0

,
re

g
1

)

(7
,
a
d
d
e
r
1

,
re

g
2

)

(6
,
a
d
d
e
r
0

,
re

g
0

)

(7
,
a
d
d
e
r
1

,
re

g
2

)

(6
,
a
d
d
e
r
O
u
t

,
w

ir
e

0
)

(7
,
a
d
d
e
r
1

,
re

g
3

)

11

2

3

4
5

1

2

3

4

5

6

AQ receives reg1 for adder0 at ts 5

and inserts based on timestamp priority.
Merge unit dequeues reg0 and reg1

for adder0 at ts 5.

If args missing, wait in the merge unit;

otherwise, merge and send to RTB.

RTB dispatches adder0.

adder0 runs, produces wire0, pushes

an arg descriptor for adderOut at ts 6.

6

ASB sends arg descriptors to

appropriate tiles.

AQ ASB

spill

Cache

task

accessesRTB

Figure 6: DASH tile, with descriptors from Fig. 5.

number of arguments. push_args may also convey one or more

argument values and their indices.

Fig. 5 shows this interface, with code for Fig. 1’s adder tree. Tasks

adder0 and adder1 can run in parallel, each enqueueing arguments

for the adderOut task to sum.

4.2 DASH hardware implementation

DASH extends each tile with a Task Management Unit (TMU)

shown in Fig. 6 that consists of two components: an Argument

Queue (AQ) and an Argument Send Bu�er (ASB).

Each execution of push_args creates an argument descriptor,

which includes the task metadata (function pointer, tile id, time-

stamp, and number of parents) and task arguments. This descriptor

is sent to the tile where the task is mapped, and queued in the AQ.

The TMU merges queued descriptors of ready tasks, and dispatches

them for execution.

The ASB is a simple FIFO that bu�ers produced argument de-

scriptors and autonomously sends them to their destination tiles.

The ASB makes push_args asynchronous: the core continues ex-

ecution and does not stall while the descriptor is sent. ASBs use

a push message protocol with NACKs and exponential backo� to

handle full AQs in destination tiles.

Each tile’s AQ stores in-�ight argument descriptors for tasks

mapped to the tile. Along with the argument descriptors, the AQ

also has a priority queue sorted by the pair (timestamp, task function

pointer). This enables quickly �nding the argument descriptors

5

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

for the lowest-timestamp queued task. We implement this �xed-

capacity priority queue using a pipelined heap [1, 10] that can pop

one descriptor per cycle.

The TMU’s merge unit consumes argument descriptors from the

AQ in priority order, and merges them into tasks. The merge unit is

similar to a reservation station [69] in an OOO core: it has a small

number of entries (16 in our implementation). Each entry gathers

the arguments for a task: the �rst descriptor for a task allocates

a new entry, and later arguments for the task are merged in the

same entry. After all the arguments are merged into one entry, the

entry is freed and the resulting ready task is queued for execution

at a core, in a small ready task bu�er, as shown in Fig. 6. Ready

tasks may execute out of order, while tasks with missing arguments

wait in the merge unit. Unlike reservation stations, since tasks may

arrive and allocate entries out of order, the merge unit may need to

evict an unready task back to the AQ to allow an earlier-timestamp

task to be merged. These evictions are very rare (Sec. 9.3).

The AQ has a small and �xed size (512 descriptors in our im-

plementation). When the AQ �lls up, a simple FSM spills high-

timestamp descriptors to memory and later returns these descrip-

tors to the AQ in timestamp order. This prevents high-timestamp

descriptors from starving low-timestamp ones.

Prioritized execution keeps DASH’s TMU small and e�cient.

Prior data�ow architectures implemented large wait-match units

that stored arguments for unready tasks and performed expen-

sive lookups to merge them and �nd ready tasks [17, 40, 62]. In-

stead, DASH uses tiny merge units similar to reservation stations,

which work almost as well as unbounded ones because most lowest-

timestamp tasks have all arguments available (Sec. 9.3). Moreover,

prior data�ow architectures hinder memory footprint: they ex-

ecute the data�ow graph in an unordered fashion, so produced

arguments may not be consumed for a long time. Instead, pri-

oritization produces arguments in the right order, so modestly

Extract

Dataflow Graph

Unroll

Partition

Coarsen

Prioritize

Allocate Args

(Reg/Memory)

Generate

Task Code

Verilator IR

Basic DFG

Unrolled DFG

Mapped DFG

Task DFG

+Timestamps

+DTTs

Task C++

Figure 7: DASH

compiler passes.

sized AQs su�ce to keep spills rare.

4.3 DASH compiler

We build DASH’s compiler by modifying

Verilator [56], a state-of-the-art compiler

that transforms Verilog RTL into an e�cient

parallel C++ simulator. We reuse its fron-

tend, which translates Verilog to a data�ow-

style IR. We then heavily modify its backend

to produce DASH code from this IR. Fig. 7

shows our backend’s compiler passes, which

we describe next.

4.3.1 Increasing parallelism with the un-

rolled dataflow graph. Existing RTL simu-

lators parallelize execution cycle by cycle,

and use a single-cycle data�ow graph like the

one introduced in Fig. 1b. In this representa-

tion, wires are converted to data�ow edges,

but registers, inputs, and outputs are in memory. This representa-

tion limits parallelism in two ways. First, it induces write-after-read

dependences within each simulated cycle: every read to a register

must be performed before the register is updated. For example, in

Fig. 1b, the adders in the second pipeline stage must read their

* + +
+

* * *

* + +
+

* * *

Cycle N

inputs

Cycle N+1

inputs

Cycle N

output

Cycle N+1

output

C
y
cl

e
 N

C
y
cl

e
 N

+
1

Figure 8: The unrolled data�ow graph turns registers into

cross-cycle edges (shown in red) to expose more parallelism.

registers before the multipliers in the �rst stage write them. Second,

the single-cycle data�ow graph makes it hard to parallelize across

cycle boundaries because it assumes that registers are up-to-date

at the start of each simulated cycle.

To overcome these limitations, we contribute the unrolled data�ow

graph. This representation turns registers into cross-cycle data�ow

edges. Fig. 8 shows this representation, distinguishing between

same-cycle edges (wires) and cross-cycle edges (registers). This

representation avoids write-after-read dependences and allows

overlapping computation from di�erent simulated cycles, exposing

more parallelism.

4.3.2 Mapping and coarsening dataflow nodes. DASH �rst parti-

tions the unrolled data�ow graph across tiles. Since sending argu-

ments across the chip consumes bandwidth and energy, we try to

both minimize cross-tile communication and balance work across

partitions. In addition, nodes that access the same data in memory

(e.g., an SRAM array, as explained in Sec. 4.1) are restricted to the

same tile. Finally, we map nodes that incur (rare) system tasks, like

I/O, to a �xed tile, which lets us use standard libraries despite the

lack of cache coherence.

We use METIS [29] to perform this partitioning, minimizing the

sum of cross-partition edge costs while keeping the sum of node

costs per partitions roughly balanced. We estimate a node’s cost as

the number of instructions within it and an edge’s cost as the bits

of its argument descriptor.

The compiler then coarsens the partitioned graph, producing

larger tasks from small data�ow nodes. We modify Verilator’s merg-

ing pass (described in Sec. 2.2) to prevent merging tasks from dif-

ferent partitions, prioritize merging tasks outside the critical path,

and limit task size.

After these passes, we have a task data�ow graph where each

task is mapped to a tile, and memory accesses are local to a tile: all

cross-tile communication is through descriptors.

4.3.3 Prioritizing tasks. DASH next assigns timestamps to tasks,

prioritizing their execution within and across cycles. Within a cycle,

each task has a depth 3 : the longest chain of tasks that produces an

argument for the task, measured from the start of the cycle. The

cycle depth � is the length of the deepest task chain in a cycle. For

instance, assuming that each node in Fig. 8 is a task, the multipliers

and initial adders have3 = 0, the �nal adder has3 = 1, and the cycle

has � = 2. Each task instance is given C8<4BC0<? = � · 2~2;4 + 3 ,

where 2~2;4 is the current cycle.

6

Accelerating RTL Simulation with Hardware-So�ware Co-Design MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

P

C

Cycle N

DTT

Cycle N+1

registers

Tile 1’s local

memory

DTT

P

CDTT

DTT

Tile 1

Tile 0

push_args

memory access

empty (RAW)

40B in registers

empty (WAR)

Tasks

P C DTT

Producer
Consum

er

D
ata

Transfer

Figure 9: Example showing how DTTs transfer values that do

not �t in register arguments from producers to consumers,

and how consumers read them from memory.

4.3.4 Allocating arguments to registers and memory. DASH hard-

ware allows each task to receive arguments in up to �ve 64-bit

registers. In most cases, all arguments �t in registers; non-�tting

values are read from memory.

If producer and consumer are on the same tile, the producer

simply writes the non-�tting values to memory (at a pre-allocated

location speci�c to the consumer task), and the consumer later

reads them. But since ASH does not have global shared memory,

when the producer is on a di�erent tile, values are communicated

through auxiliary data-transfer tasks (DTTs). Fig. 9 shows DTTs in

action: a producer must pass a large 120-byte value. It passes 40

bytes directly to the consumer through arguments, and creates two

DTTs to ship the remaining 80 bytes. Each DTT takes 40 bytes of

arguments from the producer, and is sent to the consumer’s tile,

where it writes these bytes to a �xed memory location. Each DTT

has a dataflow edge to the consumer task (with no arguments) to

preserve RAW dependences.

ASH hardware also limits the number of direct parents (producer

tasks) of each task (to 8 in our implementation). To address this, the

compiler emits a fan-in task tree for tasks with many arguments.

Similarly, if a produced argument has many consumers, the com-

piler emits a fan-out tree to pass these values in parallel and reduce

inter-tile communication.

Storing some arguments in a single memory location introduces

write-after-read (WAR) dependences (like we saw in Sec. 4.3.1 for

single-cycle data�ow graphs). For instance, in Fig. 9, the next-cycle’s

DTTs have aWAR dependence with the consumer. For simplicity,

we add cross-cycle edges to the task graph to respect WAR depen-

dences, using a push_args without arguments from the reader to

the writer. We do this selectively, adding a WAR edge only if the

dependence isn’t already covered by existing edges (often, a chain

of RAW edges already forces the writer to run after the reader).

The resulting task data�ow graph obeys hardware limits while

preserving two invariants: it encodes all dependences as data�ow

edges, and localizes all memory accesses.

Finally, the compiler generates C++ code for this task graph,

producing a DASH program.

5 SELECTIVE DATAFLOW EXECUTION

DASH runs all tasks in the data�ow graph, but many tasks are

ine�ectual because only a fraction of the logic switches each cycle.

SASH leverages low activity factors by running only tasks whose

inputs have changed on each cycle.

SASH extends DASH hardware to skip inactive tasks and to run

tasks speculatively, using optimistic parallelization as described in

Sec. 2.3.We �rst describe the changes needed for selective execution,

then those needed for speculation.

5.1 Selective execution

In SASH, parents only push arguments that are di�erent from

previous cycles. This requires simple hardware changes, shown

in Fig. 10. First, a task must be able to detect a change in their

produced output compared to previous cycles. Second, since each

task may only receive some of its arguments, it must �ll in the

missing arguments with their previous values.

Ine�ectual arguments are �ltered: SASH statically allocates a

per-task, hardware-managed, in-memory output argument bu�er

that holds the latest arguments the task has pushed. This bu�er

has �nite size because we restrict each task to push at most 8

descriptors, and each push has at most �ve 64-bit registers. Each

push_args reads the output bu�er and compares the new and

previous arguments. If they di�er, the output bu�er is updated

and an argument descriptor is pushed to the ASB. If they match,

no action is taken.

Task dispatch does not wait for all arguments: In SASH, every

task that has received at least one descriptor is ready. The TMU’s

merge unit now does not store multiple tasks: it merges the descrip-

tors for the lowest-timestamp task and dispatches it for execution.

Dispatched tasks �llmissing argumentswith old values: Since

tasks with inactive parents have missing arguments, SASH main-

tains a per-task, in-memory input argument bu�er that records the

latest arguments of the task. When a task is dispatched, before

starting execution, the input argument bu�er is read to retrieve the

task’s missing arguments, and then updated with the latest values.

Handling in-memory arguments: When a task consumes in-

puts from memory (Sec. 4.3.4), two types of descriptors carry no

arguments: those that encode read-after-write (RAW) dependences

(e.g., between DTTs and consumer in Fig. 9) and those that encode

WAR dependences (e.g., between consumer and next-cycle DTTs

in Fig. 9). When a descriptor has no arguments, push_args takes

an isRAW �ag to distinguish them. Argumentless RAW descriptors

are not �ltered, as they encode a memory dependence (in this case,

software checks whether the in-memory value is the same, and

skips pushing the descriptor if so). WAR descriptors are used in

speculative execution, described next.

5.2 Speculative execution

SASH dispatches tasks even if some of their arguments are miss-

ing. Given enough parallelism and appropriate timestamps, most

missing arguments arise because their producer task was skipped

or �ltered them. But occasionally, an argument is missing because

it is late, so using its old value is incorrect. To preserve correctness,

SASH runs tasks speculatively: on a late-arriving argument, the

task and all its consumers are aborted, and the task is re-executed

with the new argument.

SASH implements speculative execution by adapting techniques

from from Chronos [1] and Time Warp [26]. Note that, unlike most

speculative architectures (e.g., transactional memory), SASH does

7

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

core

Inter-Tile Network

M
E
R
G
E

1
AQ

RTB

TCQ ASB

Cache

rollbackspill

arg descriptor/

task

abort

message

requeue

message
memory

traffic

undo

log

child pointers

speculative

state

data (including

in/out arg buffers)

Figure 10: SASH tile.

not detect misspeculation through memory accesses. This results

in much simpler hardware.

Speculation and rollback: SASH uses a per-tile task commit queue

(TCQ) that holds the speculative state of uncommitted tasks. Each

dispatched task is allocated an entry in the TCQ.

SASH detects con�icts when descriptors arrive at the tile. The

TCQ is checked to �nd if a task with the same timestamp and func-

tion pointer was dispatched. If so, the task is aborted and requeued

to the AQ, along with the new argument.

WAR descriptors are handled di�erently: they undergo con�ict

detection as described above, but are not enqueued in the AQ and

are immediately discarded. This is because WAR descriptors do

not encode a true data dependence, they ensure that writers do

not clobber earlier readers. By con�ict-checking but discarding

the descriptor, we enforce its WAR dependence but prevent an

ine�ectual task from running.

SASH adopts eager versioning with undo logs to handle memory

accesses, following Chronos’s hardware-only implementation: on a

store, the core updates memory in-place, and pushes the old value

to a small in-memory undo log. If the task aborts, memory values

are restored from the undo log. The undo log is discarded when

the task commits. Note that updates to output and input argument

bu�ers are also logged.

Finally, SASH implements cancellation of pushed argument de-

scriptors as in Time Warp. When a task aborts, in parallel with

restoring memory, its TCQ deletes each argument descriptor that

the aborted task had pushed, sending messages to perform this

deletion if the argument descriptor is in a remote AQ. If the argu-

ment descriptor was used by a dispatched task, that task instance is

aborted. The AQ over�owmechanism fromDASH ismodi�ed to use

the spill policy from Chronos, spilling only argument descriptors

whose parents are not speculative.

High-throughput commits: To make commits fast, each TCQ

can bu�er tens of �nished tasks per core, and the TMU determines

which tasks are safe to commit in bulk, amortizing commit over-

heads over many tasks. Speci�cally, we use the Virtual Time proto-

col from Time Warp: periodically (every 100 ns in our implementa-

tion) each tile sends the timestamp of its earliest un�nished task

to a global arbiter, which �nds the minimum such value across all

tiles and broadcasts it. TCQs then commit all tasks with timestamps

lower or equal than this minimum. We follow Chronos’s Virtual

Time implementation: tiles and arbiter communicate through the

network, and each round of the protocol takes tens of cycles.

6 TASK-DRIVEN INSTRUCTION
PREFETCHING

Beyond data�ow and selective execution, ASH includes a simple

optimization to cope with high instruction footprints: large hard-

ware designs execute multiple megabytes of code per simulated

cycle. On conventional systems, this causes frequent instruction

cache (icache) misses that limit performance [5].

To avoid this problem, we add a simple task-driven instruction

prefetching mechanism that fetches the task’s code into the core’s

icache ahead of execution. We add a small Ready Task Bu�er (RTB)

to each core. The task unit pushes tasks to this RTB eagerly, so the

RTB holds the task that runs after the currently running task. The

core starts fetching a task’s code into the icache as soon as the RTB

receives it. To do this accurately, we include the task function’s size

(up to 8 cache lines) in some of the unused high-order bits of the

task pointer.

Task-driven instruction prefetching virtually eliminates icache

stalls and avoids overfetching, because tasks have a few tens of

instructions each and executemost of them (branches do not usually

skip whole cache lines).

7 HARDWARE COSTS

Component Area (mm2)

256 cores 45.1

64×1MB L2s 39.3

4×Mem ctrl+PHY 25.0

64×SASH TMU 5.6

Total 115.0

Table 2: Area breakdown.

We evaluate an ASH implemen-

tation with 256 scalar in-order

cores—for RTL simulation, us-

ing many simple cores that are

closely integrated is preferable

to using fewer complex cores,

as we will see later. We use a

2-level memory hierarchy with

1MB tile-private L2s and quad-

channel DDR5 memory, shown in

Fig. 4 and with parameters given in Table 3.

Table 2 shows the estimated area of the SASH system in a 7nm

process, which takes a modest 115mm2. We estimate core area us-

ing scaled-down Atom Bonnell cores [77], and other components

are measured from Alder Lake-S [51] (built in Intel 7). We estimate

SASH’s area requirements (DASH would be simpler) by synthesiz-

ing its key components based on the Chronos open-source RTL [67]

using yosys [73] on FreePDK45 [39] and scaling to 7nm. SASH adds

45 KB of state per tile and adds 4.8% to chip area, a modest overhead.

8 METHODOLOGY

We evaluate DASH and SASH using a simulator based on Swarm’s

simulator [2, 27, 76], which is execution-driven using Pin [36, 43].

We use detailed timing models for cores, caches, main memory,

on-chip network, and all ASH features. We simulate all task and

speculation overheads.

Baselines: We compare with Verilator running on two systems: a

32-core AMD Zen2 CPU (Threadripper 3975WX) at 3.5 GHz (also

used in Sec. 2); and a simulated multicore with the same parameters

in Table 3, but no ASH features and a shared, coherent LLC (instead

of tile-private L2s).

Benchmark hardware designs: We simulate the four large, com-

plex, and diverse hardware designs in Table 4:

8

Accelerating RTL Simulation with Hardware-So�ware Co-Design MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Cores

256 scalar in-order cores in 64 tiles (4 cores/tile), 2.5 GHz,

x86-64 (base) ISA, scoreboarded, stall-on-use, 8B-wide

2-stage ifetch, 2-level bpred with 512×10-bit BHSRs +

1024×2-bit PHT, 3-stage decode, 1-stage issue, 2-5-stage

backend, 16-entry ld/st queue

L1 caches 16 KB L1D & 16 KB L1I per core, 8-way, 2-cycle latency

L2 caches 1 MB per tile, 16-way, inclusive, 9-cycle latency

NoC
16×16 mesh, X-Y routing, 1 cycle/hop when going straight,

2 cycles on turns (like Tile64 [72]), 2.5 GHz

DRAM 4 controllers at chip edges, 120-cycle minimum latency

ASB 64-entry FIFO per tile for new argument descriptors

AQ 512 entries per tile to hold unmerged argument descriptors

Merge 16-entries per tile to merge descriptors, DASH only

RTB 1 entry per core holding merged task for dispatch

TCQ
512 entries per tile for SASH to track speculating tasks,

global Virtual Time computed every 100 ns

Table 3: Parameters of the evaluated systems.

(1) Vortex GPU system: We use the open-source Vortex GPU [68]

with 32 cores using 2 lanes and 4 warps each, running an OpenCL

kernel that performs vector addition.

(2) Chronos domain-speci�c accelerator: We use the Chronos open-

source framework [67] to generate an accelerator for Dijkstra’s

algorithm for shortest weighted paths. We simulate a 128-PE system

traversing a 128 × 128 grid.

(3) Chronos RISC-V manycore: To represent manycore systems, we

use another Chronos con�guration to generate 128 simple VexRiscv

cores [60] instead of specialized PEs.

(4) NTT wide functional unit: We evaluate a pipeline that computes

Number Theoretic Transforms (NTT). NTTs are similar in structure

to FFTs but use modular arithmetic; NTT functional units are a

key component of Fully Homomorphic Encryption accelerators [32,

52, 53]. We follow CraterLake’s NTT unit design [53], which we

implement from scratch. This unit performs 256-point NTTs using

a 256-wide, 8-stage pipeline with 1024 modular multipliers.

These designs have diverse activity factors (Table 4) and are large,

requiring multi-FPGA emulation (from 2 FPGAs for Chronos/PE,

as we saw in Sec. 2.4, to 6 FPGAs for NTT).

RTL compiler implementation: Our implementation adds 12 K

lines of code (LoC) to Verilator, and the whole compiler takes 86 K

LoC of C++. We retain Verilator’s fast compilation times: each

design takes 7.2–140s to compile (Table 4).

Verilator is a full-featured Verilog/SystemVerilog simulator, which

matches or outperforms state-of-the-art commercial simulators like

VCS [57, 58]. Verilator has fewer features than commercial sim-

ulators, e.g., no support for 4-state logic, VHDL, or private IPs.

However, these are not ASH limitations: ASH provides general-

purpose cores, and could accelerate other simulators.

Sampling: Each RTL simulation runs for many instructions (of-

ten trillions), so we use a sampling-based approach following Sim-

Points [55]. First, we functionally execute the whole RTL simulation

to record activity factors. Then, we select three cycle ranges repre-

sentative of the full program. We fast-forward to the start of each

range, warm up for 3 simulated cycles, and gather results for the

remainder of the range. The methodology ensures that our results

have the same activity factor as the full run. Even with sampling,

each simulation runs many millions of instructions.

9 EVALUATION

9.1 ASH widely outperforms baseline systems

Table 5 reports simulation speeds. Each row reports results for a

system, and each column shows the speed for a speci�c benchmark

design. Speeds are in KHz, i.e., thousands of simulated cycles per

second. The last rows report SASH’s speedups over the baselines.

Overall, SASH is 32× faster than Zen2 despite taking 3× less area

than Zen2, and it is 21× faster than the simulated 256-core baseline.

Parallel Verilator has limited scalability, so for the baselines, Ta-

ble 5 reports both their 1-core and best parallel speeds, showing

the best thread count on each cell (e.g., Zen2’s best Vortex result

is with 12 threads). DASH and SASH always improve with more

cores, so Table 5 reports only their 256-core speeds. The Zen2 sys-

tem achieves a gmean speed of 19.6 KHz, whereas the simulated

baseline multicore achieves 29.9 KHz. Note that, for the simulated

results, smaller systems have fewer tiles and thus less LLC. Thus, at

1-core, Zen2 widely outperforms the simulated baseline mainly due

to having much more cache; but on the best results, which have a

similar amount of LLC, the simulated baseline outperforms Zen2.

This happens because Verilator makes limited use of out-of-order

cores: its large code footprint and poor branch predictor perfor-

mance limit IPC below 1.0, so using simpler cores is preferable.

DASH and SASH achieve high simulation speeds: 263 KHz and

636 KHz gmean, respectively. DASH widely outperforms the base-

lines because it (1) exploits more parallelism; (2) avoids synchroniza-

tion overheads due to hardware support; and (3) reduces memory

stalls due to tile-private caches, distributed tasks, and prefetch-

ing. SASH further outperforms DASH due to selective execution.

SASH’s improvement over DASH is highly correlated with the

design’s activity factor (Table 4).

Looking across benchmarks, Table 5 shows that Vortex and

the two Chronos variants achieve similar simulation speeds, e.g.,

around 10KHz on Zen2. SASH has more pronounced di�erences

across designs due to varying activity factors (Vortex’s activity fac-

tor is only 7%, whereas Chronos/RV’s is 15%). The NTT benchmark

is quite di�erent from the others. First, despite being the largest

design in terms of area, NTT is the fastest to simulate and has a

lower code footprint (Table 4), as it is dominated by arithmetic

operations. This highlights a key advantage of simulation over em-

ulation: on arithmetic-heavy or structured benchmarks, a single

instruction (e.g., a multiply) can perform the functionality of many

gates. In these cases, simulating RTL code using CPU instructions

is especially advantageous over compiling it to gates and emulating

it. Second, the NTT benchmark has a near-100% activity factor,

representing a worst-case scenario for SASH vs. DASH. The fact

that SASH and DASH perform similarly on this benchmark shows

that SASH performs selective execution e�ciently.

9.2 Architectural analysis

We now present more detailed data to understand the performance

and e�ciency of DASH and SASH, and evaluate the impact of our

contributions.

Scalability: Fig. 11 shows the speedup of all simulated systems

as we scale from 1 to 256 cores. Larger systems have more tiles

and thus more total cache capacity (scaling this way keeps the area

ratio between cores and cache �xed).

9

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

Name Description Nodes Edges Tasks %DTTs
Task Paral- Activity 1-core Code Compile

Edges lelism Factor Cycles Footprint Time

Vortex Full-system GPU 245.5K 414.7K 86.3K 14.9 % 167.0K 672 7.1 % 8.6M 10.1MB 70.6s

Chronos/PE Graph accelerator 297.1K 635.0K 82.7K 57.4 % 207.0K 407 17.4 % 8.4M 16.2MB 140.5s

Chronos/RV RISC-V manycore 375.9K 733.2K 65.5K 51.3 % 184.0K 415 15.0 % 8.9M 13.7MB 134.1s

NTT Cryptographic accelerator 29.4K 41.7K 7.4K 0.0 % 11.8K 558 97.0 % 0.8M 0.7MB 7.2s

Table 4: Main characteristics of the benchmark hardware designs.

Design
Vortex

Chronos Chronos
NTT gmean

System /PE /RV

Zen2 t=1 3.8 3.1 2.8 101.0 7.6

Zen2 Best t=2414.8 t=1610.7 t=129.2 t=1101.0 19.6

Baseline t=1 0.2 0.3 0.2 2.6 0.4

Baseline Best t=6425.6 t=6419.3 t=6418.8 t=1686.0 29.9

DASH 256-core 201.3 108.1 133.0 1,644.7 262.7

SASH 256-core 686.5 413.9 340.5 1,689.2 635.8

SASH/Zen2 Best 46.5× 38.6× 36.8× 16.7× 32.4×

SASH/Baseline Best 26.8× 21.5× 18.1× 19.6× 21.3×

Table 5: Workload simulation speeds (in KHz) and speedups.

Compared to serial Verilator running on one core, 256-core

DASH is gmean 617× faster, and SASH is gmean 1,485× faster

(up to 2,877× on Vortex).

Fig. 11 shows that speedup increases linearly throughout the

range for DASH, showing that it leverages the plentiful parallelism

in these benchmarks. SASH also shows good scalability, though

the slope of the speedup curve drops somewhat between 128 and

256 cores for applications with a low activity factor (Vortex and

the Chronos variants). This is because SASH performs less work

per cycle, which tends to reduce dynamic parallelism (the ratio of

active work to critical path).

Cycle breakdowns: Fig. 12 gives more insight into these results by

showing how cores spend cycles for SASH systems of di�erent sizes.

Each plot reports results for a di�erent benchmark, and each bar

reports the number of cycles summed across all cores, normalized

to the cycles of the 1-core system (lower bars are better, and a height

of 1.0 denotes a speedup equal to the number of cores). Each bar

is broken down into the cycles that cores spend (1) running tasks

that later commit, (2) running tasks that later abort, and (3) idle

because the AQ is empty or the TCQ is full.

Fig. 12 shows two key trends. First, the number of committed

cycles decreases as the system size grows, with a sharp knee around

16 or 64 cores. This happens because L2 misses and memory stalls

fall as the system grows: each tile executes a smaller fraction of

the tasks, and the tasks’ working set �ts into the L2 caches for the

larger systems. This causes IPC to grow from about 0.2 at 1 core

to about 0.6 at 256 cores. Speci�cally, these models have both a

large code footprint and a substantial data footprint; this speedup

arises because the model’s data starts �tting in-cache (instruction

footprint is even larger, but those are prefetched, as we’ll see next).

Second, Fig. 12 shows that most time is spent running committed

tasks. Aborts are rare, and the slight scalability drop at 256 cores in

Vortex and Chronos/RV stems from idle cycles due to lack of work.

Energy breakdowns: Fig. 13 shows the chip energy consumed

by the 256-core DASH, SASH, and by the 256-core baseline system

1 16 64 12
8

25
6

Cores

0

1k

2k

3k

Sp
ee
du
p

Vortex

1 16 64 12
8

25
6

Cores

0

0.5k

1.0k

1.5k

2.0k
Chronos/PE

1 16 64 12
8

25
6

Cores

0

0.5k

1.0k

1.5k

2.0k
Chronos/RV

Baseline DASH SASH

1 16 64 12
8

25
6

Cores

0

250

500

750
NTT

Figure 11: Speedups of DASH and SASH over serial Verilator

on the 1-core simulated baseline as cores grow from 1 to 256.

1 4 16 64 12
8

25
6

Cores

0.0

0.5

1.0

A
gg

re
ga

te
 c

or
e

cy
cl

es Vortex

1 4 16 64 12
8

25
6

Cores

Chronos/PE

1 4 16 64 12
8

25
6

Cores

Chronos/RV
Committed Aborted Idle

1 4 16 64 12
8

25
6

Cores

NTT

Figure 12: Breakdown of core cycles for SASH on 1–256 cores.

Vortex Chronos/PE Chronos/RV NTT
0.00
0.25
0.50
0.75
1.00

N
or

m
al

iz
ed

 e
ne

rg
y

B
as

e
D

A
SH

SA
SH

B
as

e
D

A
SH

SA
SH

B
as

e
D

A
SH

SA
SH

B
as

e
D

A
SH

SA
SH

NoC
TMU
Caches
Cores
Static

Figure 13: Energy breakdown for 256-core baseline, DASH,

and SASH.

at its best-performing thread count (at 256 threads, the baseline is

often dominated by spin-waiting and far less e�cient). We model

core and network energy with McPAT at 22 nm and scale to 7 nm.

Caches are modeled at 7 nm using FinCACTI [54]. We also use these

tools to model energy consumed by the components of the Task

Management Unit (TMU, Sec. 4.2 and Sec. 5.1). Power stays under

60W across all systems and applications.

DASH consumes less energy than the baseline, thanks to exe-

cuting fewer instructions and completing faster (which reduces

static energy). SASH’s selective execution further reduces energy

for all benchmarks but NTT, where the near-100% activity factor

shows that speculative selective execution has modest energy costs.

TMU costs are small, and most task-related energy is spent sending

argument descriptors through the NoC.

10

Accelerating RTL Simulation with Hardware-So�ware Co-Design MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

9.3 Impact of ASH features

Prioritized data�ow: ASH’s prioritized data�ow execution has

two bene�ts over prior data�ow architectures: simplifying hard-

ware and keeping memory footprint in check (Sec. 4.2). We now

analyze these bene�ts.

16 32 64 ∞
Merge Unit Capacity

-10%

-5%

0%

+5%

+10%

Pc
t.

sp
ee

du
p

ch
an

ge

Figure 14: Sensitivity to

DASH merge unit size.

Fig. 14 shows DASH’s gmean per-

formance as the number of entries

in the merge unit grows, relative to

the default (16 entries). While small

merge units incur some degradation

(e.g., 8 entries is 3% slower), the de-

fault is su�cient, and a merge unit

with unbounded entries is only 3%

faster. Thus, prioritized tasks enable

data�ow execution with minimal re-

sources (each tile’s merge unit is

much smaller than the issue queue of a modern OOO core).

Unlike in OOO cores, arguments arrive at a tile out of order,

and a late-arriving task might evict a higher-timestamp task from

the merge unit. Such evictions are rare: one per 500 dequeues on

average (thousands of cycles elapse between evictions).

Vortex
Chronos/PE

Chronos/RV

NTT
0

10
20
30
40
50

N
or

m
al

iz
ed

 fo
ot

pr
in

t
 TS Order Unordered

Figure 15: Prioritization

reduces memory foot-

print.

Fig. 15 compares the memory foot-

print of prioritized vs. unordered

(conventional) data�ow. Unordered

data�ow execution runs each task as

early as its inputs become available.

This causes tasks within short paths

in the simulated design (the common

case) to run ahead of critical paths,

producing arguments that will not

be consumed for a long time. Fig. 15

shows that this is a major problem:

conventional data�ow increases av-

erage data footprint by 16.8× gmean

and by up to 47× (Chronos/PE) over

prioritized data�ow. With data footprint in the tens of megabytes

(Table 4), this blowup would cause substantial main memory tra�c,

hindering performance.

1 4 16 64 128256
Cores

0

1

2

3

4

Sp
ee

du
p

w
ith

 p
re

fe
tc

hi
ng

Figure 16: Speedup of

task-driven instruction

prefetching for SASH on

1–256 cores.

Instruction prefetching: So far, all

the results we have presented include

task-driven instruction prefetching.

Fig. 16 shows the speedup that

prefetching achieves on SASH (DASH

results are similar). Each bar shows

gmean speedup across benchmarks

for a speci�c core count. Smaller sys-

tems have greater need for prefetch-

ing because less code �ts on chip. At

1 core, most code is evicted every

simulated cycle. At 256 cores, Vortex,

Chronos/PE, and Chronos/RV still

have 3-6% of L1 instruction cache misses also miss in the L2, chie�y

due to L2 cache con�icts. Thus, prefetching code o�ers speedups

across system sizes (e.g., 1.9× at 256 cores). We observe a peak

memory bandwidth of 114GB/s at 256 cores (on Chronos/PE), with

code making up the vast majority of memory tra�c.

Vortex
Chronos/PE

Chronos/RV

NTT
0

100

200

300

A
vg

. Q
ue

ue
 O

cc
up

an
cy AQ TCQ

Figure 17: Average queue

occupancies per bench-

mark in 256-core SASH.

Queue utilizations: Fig. 17 re-

ports the average occupancies

of the per-tile Argument Queue

(AQ) and Task Commit Queue

(TCQ) on the 256-core SASH sys-

tem. Each group of bars reports re-

sults for a single benchmark. Each

structure holds up to 512 entries.

AQ occupancy corresponds to the

average number of in-�ight ar-

guments per tile, and TCQ occu-

pancy is the average number of

uncommitted tasks per tile. The

modest AQ occupancy shows that prioritized data�ow execution

works well: thanks to ordering tasks by timestamp, we execute

the data�ow graph in an order that incurs a modest number of

in-�ight arguments that comfortably �t in the AQs (three of the

designs never spill argument descriptors to memory at 256 cores,

and Vortex has minimal spilling). The TCQ occupancy shows that

tiles exploit out-of-order execution, running ahead of the earliest

un�nished task to extract speculative parallelism.

verilator
+hw

 df
+unroll
+m

apping
+selective

0
5

10
15
20
25

Sp
ee

du
p

Figure 18: Factor

analysis.

Factor analysis: Fig. 18 shows gmean

speedup vs. parallel Verilator as we add fea-

tures, quantifying the bene�ts of our hard-

ware and compiler techniques. +hw df uses

hardware data�ow execution within each

cycle. +unroll uses our unrolled data�ow

graph instead, which passes register values

through data�ow edges and increases paral-

lelism. +mapping uses our task partitioning

and coarsening algorithm instead of Veri-

lator’s; this con�guration is DASH. Finally,

+selective adds selective execution; this is

SASH. Fig. 18 shows that each of our contributions yields substan-

tial performance gains.

10 RELATEDWORK

We �rst discuss prior architectures with task-level speculative and

data�ow execution, and compare them with SASH and DASH, then

discuss other simulation-related techniques.

10.1 Prior task-level speculative architectures

Chronos [1] and Swarm [27] are the closest architectures to SASH.

Swarm is a shared-memory multicore with hardware support for

small ordered atomic tasks. Tasks can access arbitrary memory,

and cache coherence is used to detect con�icts, similar to other

speculative systems like HTM [21, 22, 38] and TLS [47, 59, 61].

Chronos avoids cache coherence by mapping each task to a �xed

tile and providing hardware support for mutual exclusion. These

systems target graph analytics and other domains, including non-

RTL event-driven simulation, as they are good match for Time

Warp’s [26] optimistic parallelization.

SASH’s speculation support borrows heavily fromChronos (Sec. 5,

Sec. 7). However, these systems are poorly suited for RTL simu-

lation because they do not support data�ow execution: each task

11

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

Vortex Chronos/PE Chronos/RV NTT
0
1
2
3
4
5

Sp
ee
du
p

6 7 1926 22 18 20

Baseline Swarm+DF
Swarm+SE

Chronos+DF
Chronos+SE

DASH
SASH

Figure 19: Speedup over best Verilator multicore run.

has a single parent and can run the moment it is created. This re-

quires implementing data�ow execution in software, which adds

substantial overheads.

To quantify these overheads, we simulate 256-core Swarm and

Chronos systems with similar parameters to ASH. Since these sys-

tems lack hardware support for data�ow execution, we modify our

compiler to do data�ow synchronization in software. Each producer

spawns a task for the consumer. All tasks except the last write their

arguments to memory and �nish. The last task gathers all argu-

ments and runs the consumer once. For selective execution, we

perform output �ltering in software.

Fig. 19 compares the performance of the baseline multicore,

Swarm and Chronos with data�ow non-selective (DF) and selective

(SE) execution, DASH, and SASH. Each group of bars shows, for

one benchmark, the speedup of each scheme vs. the best-thread

baseline. Swarm-DF is slower than the baseline, because the lack of

data�ow support adds large overheads: instruction footprint grows

by about 2×, and branches and memory accesses become more

frequent, limiting IPC. Swarm-SE has limited improvements over

Swarm-DF, and is signi�cantly faster only in Vortex, where the ac-

tivity factor is lowest. This happens because selective execution in

software adds even more overheads. Chronos shows similar trends

to Swarm: whereas Swarm uses a coherent cache hierarchy (like

the multicore baseline), Chronos uses private caches and avoids

coherence (like ASH); this makes Chronos somewhat faster than

Swarm. But these systems lack hardware support for data�ow exe-

cution, which is crucial to accelerate RTL simulation: DASH/SASH

are gmean 12.5×/12.9× faster than Chronos-DF/SE, respectively.

10.2 Data�ow architectures

Data�ow execution [15] runs operations as their inputs become

available, instead of following a �xed operation sequence. Data�ow

execution is a general principle to exploit �ne-grain parallelism,

and there is rich prior work applying it to a wide range of architec-

tures [15, 17, 40–42, 44, 62, 75].

Task-superscalar [17] is perhaps the closest to DASH. It performs

task-level data�ow execution, with dedicated on-chip structures

to track in-�ight arguments and dispatch tasks. As we have seen

(Sec. 4.2), DASH’s key distinguishing feature is prioritized data�ow

execution: DASH gives each task a timestamp, and follows this

priority at runtime. Sec. 9.3 showed that this addresses the key

challenges of data�ow architectures. First, prior systems require

large on-chip structures to track arguments, e.g., multi-megabyte

eDRAMs in Task Superscalar [17], or add metadata to main memory

as in I-Structures [4]. They also perform costly associative lookups

to �nd ready operands. Instead, DASH performs data�ow execution

on a tiny window of tasks (the number of merge unit entries).

Second, unordered data�ow systems often produce many live in-

�ight arguments, sacri�cing locality [3]. Sec. 9.3 showed order-of-

magnitude footprint blowups in in-�ight arguments, which ASH

avoids.

10.3 Hardware emulators

Rizzatti [48–50] reviews the rich history of hardware emulation, in-

cluding key technical and commercial developments. IBM’s YSE [45]

and EVE [9] were the �rst specialized architectures for emula-

tion, including ASIC processors to simulate 4-input logic gates and

storage elements. Early commercial emulators combined tens to

thousands of o�-the-shelf FPGAs [6, 30, 34], interconnected with a

low-latency network, and software to partition and map large cir-

cuits across FPGAs. Current processor- and FPGA-based emulators,

described in Sec. 2.4, all follow this template.

ASH fundamentally di�ers from hardware emulators in many

ways: (1) Emulators synthesize RTL to gates, which forces the use

of specialized processors or FPGAs; instead, ASH compiles RTL to

general-purpose code, where each instruction can simulate many

gates. (2) Emulators directly map gates to hardware elements so

emulator size limits the size of the emulated system; instead, ASH

simulates large systems by running tasks over time. Consequently,

(3) emulators are large and expensive, with costs in the millions of

dollars, whereas ASH systems can be small. (4) Due to these design

choices, emulators su�er from long compilation times, as Sec. 2.4

showed. Finally, (5) emulators do not leverage selective execution,

and cannot avoid ine�ectual work.

10.4 Batched GPU-accelerated simulation

RTLFlow [35] accelerates RTL simulation on a GPU by batching

di�erent tests, i.e., running them in a single group. Batching enables

using vectors to represent each signal (with each vector element

dedicated to a di�erent test), and makes simulation well-suited to

a GPU. Batching works well on small circuits when running thou-

sands of homogeneous tests: RTLFlow breaks even with Verilator

when batching 1K simulations, and is up to 40× faster with 64K

simulations.

However, RTLFlow has several limitations. First, large RTL de-

signs have large amounts of state, and batching blows up that state,

making simulation memory-bound and eventually overwhelming

memory capacity. For example, the Chronos/PE design has a data

footprint of 30MB (this includes registers, on-chip memories, and

the active pages of simulated main memory, which we optimisti-

cally assume are the same across all batched simulations). Batching

1K simulations, RTLFlow’s break-even point with Verilator, would

require 30GB of memory, roughly the size of an A100 GPU; 64K

simulations would require 1.9TB. Second, many use cases for RTL

simulation don’t use thousands of homogeneous tests. For instance,

test programs often have vastly di�erent lengths, and batching

requires running for the duration of the longest program. And de-

bugging an evolving RTL design often requires tracing a single long

run. By exploiting parallelism within a simulation, ASH avoids the

footprint issues of batching and supports use cases where simula-

tion latency is important.

12

Accelerating RTL Simulation with Hardware-So�ware Co-Design MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

10.5 Other simulation accelerators

Prior work has also proposed several FPGA-based simulation ac-

celerators, but these systems do not target RTL simulation. RAMP

Gold [65] and FAME [66] simulate a multicore system by o�oad-

ing core simulation to FPGAs, time-division multiplexing cores as

needed, and use a high-level timing model for the memory system.

RAMP Blue [33] emulates distributed message-passing architec-

tures. These systems are restricted to multicore designs.

Diablo [64] and FireSim [28] emulate datacenter-scale systems

and o�er scalable multi-FPGA emulation. However, these systems

target simulating large collections of loosely connected systems,

and use conservative (CMB-style) parallelization. Thus, while these

systems work well for scale-out systems (e.g., many simple in-order

cores connected through Ethernet), they cannot simulate a large

RTL model that does not �t in an FPGA. In addition, adapting

existing designs to these systems requires manual changes to the

RTL.

11 CONCLUSION AND FUTUREWORK

RTL simulation is a key bottleneck in chip design, and existing

simulators and emulators have serious drawbacks. By leveraging

classic parallelization approaches (data�ow and speculative execu-

tion) and through several novel techniques, we have dramatically

accelerated RTL simulation while retaining its fast compilation time

and �exibility.

DASH and SASH open exciting avenues for future work. Though

we have focused on RTL simulation, our combination of data�ow

and selective execution may be more broadly bene�cial, both for

other types of simulation (e.g., microarchitectural), and for work-

loads beyond simulation. Our compiler-based techniques may ex-

tend to these domains, making it possible to map their designs

automatically. Also, we have focused on a single-chip system, but

our techniques are general and should apply to other architecture

styles. For example, ASH could be implemented on a multi-FPGA

system using soft cores to accelerate simulation on existing infras-

tructure.

ACKNOWLEDGMENTS

We are grateful to all who have supported and given feedback

on this work, including Serge Leef, Sung-Kyu Lim, James Wilson,

Darrell Teegarden, Julian Warchall, Hyun Ryong (Ryan) Lee, Axel

Feldmann, Yifan Yang, Nikola Samardzic, Xingran (Maggie) Du,

Aleksandar Krastev, Nithya Attaluri, Clément Pit-Claudel, Thomas

Bourgeat, and Lauro Rizzatti. This work was supported in part

by DARPA under contract N00014-21-1-2960. Shabnam Sheikhha

was supported in part by an MIT EECS graduate fellowship. This

research was, in part, funded by the U.S. Government. The views

and conclusions in this document are those of the authors and

should not be interpreted as representing the o�cial policies, either

expressed or implied, of the U.S. Government.

REFERENCES
[1] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: E�cient Speculative

Parallelism for Accelerators. In Proc. of the 25th intl. conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXV).

[2] Maleen Abeydeera, Suvinay Subramanian, Mark C. Je�rey, Joel Emer, and Daniel
Sanchez. 2017. SAM: Optimizing Multithreaded Cores for Speculative Parallelism.

In Proc. of the 26th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT-26).

[3] Arvind. 2005. Passing the token. In Proc. of the 32nd annual Intl. Symp. on
Computer Architecture (ISCA-32).

[4] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. 1989. I-Structures: Data
Structures For Parallel Computing. ACM TOPLAS 11, 4 (1989).

[5] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. AsmDB: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proc. of the 46th annual Intl.
Symp. on Computer Architecture (ISCA-46).

[6] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Zimi Hanono, David M
Hoki, and Anant Agarwal. 1997. Logic emulation with virtual wires. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16, 6
(1997).

[7] Scott Beamer. 2020. A Case for Accelerating Software RTL Simulation. IEEE
Micro 40, 4 (2020), 112–119.

[8] Scott Beamer and David Donofrio. 2020. E�ciently exploiting low activity factors
to accelerate RTL simulation. In Proc. of the 57th Design Automation Conf. (DAC-
57).

[9] Daniel K Beece, G Deiberg, Georgina Papp, and Frank Villante. 1988. The IBM
engineering veri�cation engine. In Proc. of the 25th Design Automation Conf.
(DAC-25).

[10] Ranjita Bhagwan and Bill Lin. 2000. Fast and scalable priority queue architecture
for high-speed network switches. In Proc. of the IEEE Infocom 2000.

[11] Janusz A Brzozowski and Carl-Johan H Seger. 1995. Asynchronous circuits.
Springer.

[12] Cadence. 2015. Palladium Z1 enterprise emulation platform.
https://www.cadence.com/content/dam/cadence-www/global/en_US/
documents/tools/system-design-veri�cation/palladium-z1-ds.pdf, archived at
https://perma.cc/MD6F-EYGQ.

[13] Cadence. 2019. Protium X1 enterprise prototyping platform. https://www.
cadence.com/en_US/home/tools/system-design-and-veri�cation/emulation-
and-prototyping/protium.html.

[14] K. Mani Chandy and Jayadev Misra. 1981. Asynchronous distributed simulation
via a sequence of parallel computations. Commun. ACM 24, 4 (1981).

[15] Jack B Dennis and David P Misunas. 1975. A preliminary architecture for a
basic data-�ow processor. In Proc. of the 2nd annual Intl. Symp. on Computer
Architecture (ISCA-2).

[16] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Proc. of
the 38th annual Intl. Symp. on Computer Architecture (ISCA-38).

[17] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M. Badia,
Eduard Ayguade, Jesus Labarta, and Mateo Valero. 2010. Task Superscalar: An
Out-of-Order Task Pipeline. In Proc. of the 43rd annual IEEE/ACM intl. symp. on
Microarchitecture (MICRO-43).

[18] Richard Fujimoto. 1989. The virtual time machine. In Proc. of the 1st ACM Symp.
on Parallelism in Algorithms and Architectures (SPAA).

[19] Richard Fujimoto. 1990. Parallel discrete event simulation. Commun. ACM 33, 10
(1990).

[20] Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh C. Gopalakrishnan. 1992. Design
and evaluation of the rollback chip: Special purpose hardware for Time Warp.
IEEE Trans. Comput. 41, 1 (1992).

[21] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun. 2004. Transactional memory coherence and consistency. In
Proc. of the 31st annual Intl. Symp. on Computer Architecture (ISCA-31).

[22] Maurice Herlihy and J Eliot B Moss. 1993. Transactional memory: Architectural
support for lock-free data structures. In Proc. of the 20th annual Intl. Symp. on
Computer Architecture (ISCA-20).

[23] William N.N. Hung and Richard Sun. 2018. Challenges in large FPGA-based logic
emulation systems. In Proc. of the 2018 Intl. Symp. on Physical Design (ISPD).

[24] IBS data on IC design costs. 2018. As Chip Design Costs Skyrocket, 3nm Process
Node Is in Jeopardy. https://www.extremetech.com/computing/272096-3nm-
process-node.

[25] David Je�erson. 1985. Virtual time. ACM TOPLAS 7, 3 (1985).
[26] David Je�erson, Brian Beckman, Fred Wieland, Leo Blume, Mike DiLoreto, Phil

Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tupman, Van Warren, John
Wedel, Herb Younger, and Steve Bellenot. 1987. Distributed Simulation and the
Time Warp Operating System. In Proc. of the 11st Symp. on Operating System
Principles (SOSP-11).

[27] Mark C. Je�rey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A scalable architecture for ordered parallelism. In Proc. of the 48th annual
IEEE/ACM intl. symp. on Microarchitecture (MICRO-48).

[28] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system

13

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://perma.cc/MD6F-EYGQ
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.extremetech.com/computing/272096-3nm-process-node
https://www.extremetech.com/computing/272096-3nm-process-node

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, �an M. Nguyen, Joel S. Emer, and Daniel Sanchez

simulation in the public cloud. In Proc. of the 45th annual Intl. Symp. on Computer
Architecture (ISCA-45).

[29] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scienti�c Computing
20, 1 (1998).

[30] Ubaid R. Khan, Henry L. Owen, and Joseph L.A. Hughes. 1993. FPGA architectures
for ASIC hardware emulators. In Proc. of the Sixth Annual IEEE Intl. ASIC Conf.
and Exhibit.

[31] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. 2019. Sim-
mani: Runtime power modeling for arbitrary RTL with automatic signal selection.
In Proc. of the 52nd annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-52).

[32] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim,
Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: An accelerator for bootstrappable fully
homomorphic encryption. In Proc. of the 49th annual Intl. Symp. on Computer
Architecture (ISCA-49).

[33] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre-Yves
Droz. 2007. RAMP Blue: A message-passing manycore system in FPGAs. In Proc.
of the 2007 intl. conf. on Field Programmable Logic and Applications (FPL).

[34] Helena Krupnova and Gabriele Saucier. 2000. FPGA-based emulation: Indus-
trial and custom prototyping solutions. In Proc. of the 10th intl. conf. on Field-
Programmable Logic and Applications (FPL).

[35] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. 2023. From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation
with Batch Stimulus. In Proc. of the 51st Intl. Conf. on Parallel Processing (ICPP-51).

[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
SIGPLAN Notices (2005).

[37] Mentor/Siemens. 2017. Veloce Strato. https://eda.sw.siemens.com/en-US/ic/
veloce/strato-hardware/.

[38] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. 2006. LogTM: Log-based transactional memory. In Proc. of the 12nd IEEE
intl. symp. on High Performance Computer Architecture (HPCA-12).

[39] Nangate Inc. 2008. The NanGate 45nm Open Cell Library. http://www.nangate.
com/?page_id=2325.

[40] Rishiyur S. Nikhil and Arvind. 1990. Executing a program on the MIT tagged-
token data�ow architecture. IEEE Trans. on Computers 39, 3 (1990).

[41] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-data�ow acceleration. In Proc. of the 44th annual Intl.
Symp. on Computer Architecture (ISCA-44).

[42] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. 2015. Ex-
ploring the potential of heterogeneous Von Neumann/data�ow execution models.
In Proc. of the 42nd annual Intl. Symp. on Computer Architecture (ISCA-42).

[43] Heidi Pan, Krste Asanović, Robert Cohn, and Chi-Keung Luk. 2005. Control-
ling Program Execution through Binary Instrumentation. SIGARCH Computer
Architecture News (2005).

[44] Yale N Patt, Wen-mei Hwu, and Michael Shebanow. 1985. HPS, a new microar-
chitecture: Rationale and introduction. In Proc. of the 18th annual workshop and
symp. on Microprogramming and Microarchitecture (MICRO-18).

[45] Gregory F P�ster. 1982. The Yorktown simulation engine: Introduction. In Proc.
of the 19th Design Automation Conf. (DAC-19).

[46] Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala.
2021. E�ective Simulation and Debugging for a High-Level Hardware Language
Using Software Compilers. In Proc. of the 26th intl. conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXVI).

[47] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James Tuck, and
Josep Torrellas. 2005. Thread-level speculation on a CMP can be energy e�cient.
In Proc. of the Intl. Conf. on Supercomputing (ICS’05).

[48] Lauro Rizzatti. 2015. Hardware emulation: Three decades of evolution. Part
I. https://s3.amazonaws.com/veri�cationhorizons.veri�cationacademy.com/
volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-
evolution_vh-v11-i1.pdf, archived at https://perma.cc/F3DU-U6ZK. Veri�cation
Horizons 11, 1 (2015), 26–27.

[49] Lauro Rizzatti. 2015. Hardware emulation: Three decades of evolution. Part
II. https://s3.amazonaws.com/veri�cationhorizons.veri�cationacademy.com/
volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-
evolution-part-II_vh-v11-i2.pdf, archived at https://perma.cc/XB4N-C7MS.
Veri�cation Horizons 11, 2 (2015), 40–42.

[50] Lauro Rizzatti. 2015. Hardware emulation: Three decades of evolution. Part
III. https://s3.amazonaws.com/veri�cationhorizons.veri�cationacademy.com/
volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-
evolution-part-iii_vh-v11-i3.pdf, archived at https://perma.cc/BK4D-NAJX.
Veri�cation Horizons 11, 3 (2015), 15–18.

[51] Efraim Rotem, Yuli Mandelblat, Vadim Basin, Eli Weissmann, Arik Gihon, Ra-
jshree Chabukswar, Russ Fenger, and Monica Gupta. 2021. Alder Lake Architec-
ture. In IEEE Hot Chips 33 Symposium (HotChips-33).

[52] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-
grammable accelerator for fully homomorphic encryption. In Proc. of the 54th
annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-54).

[53] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. CraterLake: a hardware accelerator for e�cient unbounded com-
putation on encrypted data.. In Proc. of the 49th annual Intl. Symp. on Computer
Architecture (ISCA-49).

[54] Alireza Shafaei, Yanzhi Wang, Xue Lin, and Massoud Pedram. 2014. FinCACTI:
Architectural analysis and modeling of caches with deeply-scaled FinFET devices.
In Proc. of IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[55] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically characterizing large scale program behavior. In Proc. of the 10th intl.
conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X).

[56] Wilson Snyder. 2003. Verilator. https://www.veripool.org/verilator/.
[57] Wilson Snyder. 2018. Verilator 4.0: Open Source Simulation Goes Multithreaded.

In The Open Source Digital Design Conference (ORConf).
[58] Wilson Snyder. 2020. Verilator, Accelerated. In 2nd Workshop on Open-Source

Design Automation (OSDA).
[59] Gurindar S Sohi, Scott E Breach, and TN Vijaykumar. 1995. Multiscalar processors.

In Proc. of the 22nd annual Intl. Symp. on Computer Architecture (ISCA-22).
[60] SpinalHDL. 2018. A FPGA friendly 32 bit RISC-V CPU implementation. https:

//github.com/SpinalHDL/VexRiscv.
[61] J. Gregory Ste�an and Todd C. Mowry. 1998. The Potential for Using Thread-

Level Data Speculation to Facilitate Automatic Parallelization. In Proc. of the 4th
IEEE intl. symp. on High Performance Computer Architecture (HPCA-4).

[62] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew
Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. 2007. The WaveScalar
architecture. ACM Transactions on Computer Systems (TOCS) 25, 2 (2007).

[63] Synopsys Inc. 2018. ZeBu Server 4. https://www.synopsys.com/veri�cation/
emulation/zebu-server.html.

[64] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.
2015. DIABLO: A warehouse-scale computer network simulator using FPGAs. In
Proc. of the 20th intl. conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XX).

[65] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook,
David Patterson, and Krste Asanović. 2010. RAMP Gold: an FPGA-based architec-
ture simulator for multiprocessors. In Proc. of the 47th Design Automation Conf.
(DAC-47).

[66] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and
David Patterson. 2010. A case for FAME: FPGA architecture model execution. In
Proc. of the 37th annual Intl. Symp. on Computer Architecture (ISCA-37).

[67] The Chronos FPGA Framework to accelerate ordered applications. 2020. https:
//github.com/SwarmArch/chronos/.

[68] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon.
2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics. In Proc. of
the 54th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-54).

[69] Robert M Tomasulo. 1967. An e�cient algorithm for exploiting multiple arith-
metic units. IBM Journal of research and Development 11, 1 (1967).

[70] Ray Turner. 2004. A primer on processor-based emulation. EETimes, https:
//www.eetimes.com/a-primer-on-processor-based-emulation/.

[71] Haoyuan Wang and Scott Beamer. 2023. RepCut: Superlinear Parallel RTL Sim-
ulation with Replication-Aided Partitioning. In Proc. of the 28th intl. conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
XXVIII).

[72] David Wentzla�, Patrick Gri�n, Henry Ho�mann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. 2007. On-chip interconnection architecture of the Tile Processor. IEEE
Micro 27, 5 (2007).

[73] Claire Wolf. 2014. Yosys Open SYnthesis Suite. http://www.cli�ord.at/yosys/.
[74] Xilinx. 2019. Alveo U250 Data Center Accelerator Card. https://www.xilinx.com/

products/boards-and-kits/alveo/u250.html.
[75] Fahimeh Yazdanpanah, Carlos Alvarez-Martinez, Daniel Jimenez-Gonzalez, and

Yoav Etsion. 2013. Hybrid Data�ow/Von-Neumann Architectures. IEEE Trans. on
Parallel and Distributed Systems (2013).

[76] Victor A. Ying, Mark C. Je�rey, and Daniel Sanchez. 2020. T4: Compiling Sequen-
tial Code for E�ective Speculative Parallelization in Hardware. In Proc. of the
47th annual Intl. Symp. on Computer Architecture (ISCA-47).

[77] Rumi Zahir. 2012. Med�eld smartphone SOC Intel® Atom Z2460 processor. In
IEEE Hot Chips 24 Symposium (HotChips-24).

14

https://eda.sw.siemens.com/en-US/ic/veloce/strato-hardware/
https://eda.sw.siemens.com/en-US/ic/veloce/strato-hardware/
http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-evolution_vh-v11-i1.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-evolution_vh-v11-i1.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-evolution_vh-v11-i1.pdf
https://perma.cc/F3DU-U6ZK
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-evolution-part-II_vh-v11-i2.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-evolution-part-II_vh-v11-i2.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-evolution-part-II_vh-v11-i2.pdf
https://perma.cc/XB4N-C7MS
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-evolution-part-iii_vh-v11-i3.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-evolution-part-iii_vh-v11-i3.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-evolution-part-iii_vh-v11-i3.pdf
https://perma.cc/BK4D-NAJX
https://www.veripool.org/verilator/
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/verification/emulation/zebu-server.html
https://github.com/SwarmArch/chronos/
https://github.com/SwarmArch/chronos/
https://www.eetimes.com/a-primer-on-processor-based-emulation/
https://www.eetimes.com/a-primer-on-processor-based-emulation/
http://www.clifford.at/yosys/
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Understanding RTL simulation
	2.2 Parallel execution needs small tasks
	2.3 Selective execution needs small tasks
	2.4 Emulation versus simulation

	3 System Overview
	4 Prioritized Dataflow Execution with DASH
	4.1 Execution model and ISA
	4.2 DASH hardware implementation
	4.3 DASH compiler

	5 Selective Dataflow Execution
	5.1 Selective execution
	5.2 Speculative execution

	6 Task-Driven Instruction Prefetching
	7 Hardware Costs
	8 Methodology
	9 Evaluation
	9.1 ASH widely outperforms baseline systems
	9.2 Architectural analysis
	9.3 Impact of ASH features

	10 Related Work
	10.1 Prior task-level speculative architectures
	10.2 Dataflow architectures
	10.3 Hardware emulators
	10.4 Batched GPU-accelerated simulation
	10.5 Other simulation accelerators

	11 Conclusion and Future Work
	Acknowledgments
	References

