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Abstract—Sparse CNNs dramatically reduce computation and
storage costs over dense ones. But sparsity also makes CNNs more
data-intensive, as each value is reused fewer times. Thus, current
sparse CNN accelerators, which process one layer at a time, are
bottlenecked by memory traffic.

We present ISOSceles, a new sparse CNN accelerator that dra-
matically reduces data movement through inter-layer pipelining:
overlapping the execution of consecutive layers so that a layer’s
output activations are quickly consumed by the next layer without
spilling them off-chip. Pipelining greatly increases reuse, but it is
challenging to implement with existing approaches, which are lim-
ited to dense CNNs. ISOSceles relies on a novel input-stationary
output-stationary (IS-OS) dataflow that consumes inputs and pro-
duces outputs in the same order, greatly reducing intermediate
sizes over existing dataflows. ISOSceles implements IS-OS effi-
ciently and leverages time-multiplexing and dynamic scheduling
to pipeline multiple layers despite the large variations in work
that sparsity induces.

On a wide range of sparse CNNs, ISOSceles outperforms a
state-of-the-art accelerator by gmean 4.3× (up to 6.7×), and re-
duces traffic by 4.7× (up to 8.5×) while using less area.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) achieve state-of-the-

art performance on many machine learning tasks, but are com-

putationally expensive. Exploiting sparsity is a promising way

to reduce the compute and storage costs of CNNs. Sparse CNNs

leverage the fact that a substantial fraction of values in weights

and activations are zeros. Hardware accelerators exploit weight

and activation sparsity by skipping multiplications by zero [7]

and by not storing zero values [34].

Sparsity in weights and activations arises for different rea-

sons, and to different degrees. First, weight pruning removes

filter weights with near-zero values [19]. This process creates

significant weight sparsity: prior work has shown that 80% to

over 95% of weights can be pruned with negligible accuracy

loss [26]. Second, activation sparsity arises because common

non-linear activation functions like ReLU [29] convert negative

activations into zeros. Prior accelerators have exploited spar-

sity in weights [44], activations [2], or both [17, 34] to reduce

execution time, energy, and data movement over dense CNNs.

Sparse CNNs put more pressure on the memory system than

dense ones, so existing accelerators are dominated by data move-

ment rather than computation costs. This is because sparsity

reduces computation more than memory footprint and traffic.

For example, a convolutional layer with 90% sparse weights and

activations reduces the footprint by 10×, but reduces multipli-

cations by about (1−0.9) · (1−0.9), i.e., 100×. Reuse is also

greatly decreased, as each weight and activation is used many

fewer times. This reduces arithmetic intensity, the number of

compute operations per byte of data fetched from memory. For

example, sparsifying the ResNet-50 model reduces arithmetic

intensity from 128 to 11 operations/byte.

Accelerating sparse CNNs requires techniques that reduce

off-chip traffic. In this paper, we show that pipelining consec-

utive CNN layers is an effective approach. Most accelerators

process one layer at a time, producing all output activations for a

given layer before starting the next layer. Since input and output

activations are large, they get spilled off-chip, causing substan-

tial memory traffic. Inter-layer pipelining avoids this traffic by

overlapping the execution of consecutive layers, so that each

output activation produced by one layer is quickly consumed

by the next layer. Thus, most activations are reused on-chip,

and only the first layer’s input activations and last layer’s out-

put activations incur off-chip traffic. Pipelining multiple layers

requires maintaining their weights on-chip, but sparsity makes

this practical. For example, with 90% weight sparsity, an accel-

erator can pipeline 10 layers with the same amount of on-chip

storage that a dense accelerator uses to store weights for one

layer. This improves activation reuse by about 10×.

Though inter-layer pipelining has major potential to accel-

erate sparse CNNs, it requires solving two key challenges: (1)

finding a dataflow (i.e., a computation schedule) that minimizes

the amount of intermediate activations between layers (so they

can be consumed without spilling them off-chip) without adding

other types of traffic (e.g., sacrificing reuse in weights) and that

efficiently traverses the compressed data structures in sparse

CNNs; and (2) building an accelerator that achieves high utiliza-

tion despite the high dynamism introduced by sparsity: due to

zero activations and weights, different layers have large and fast

variations in work, so standard ways to pipeline them (e.g., run-

ning different layers on different parts of the chip) do not work

well. We tackle these challenges with ISOSceles, the first accel-

erator that exploits inter-layer pipelining effectively to improve

sparse CNN performance.

Prior accelerators use dataflows that cannot be pipelined effec-

tively [2, 17, 34, 44] (Sec. II). For example, a dataflow may be

output-stationary, producing outputs one element at a time but

inducing poor reuse of inputs, or input-stationary, consuming

inputs one element at a time but producing partial outputs out of

order. These dataflows can be tiled, so that a single output tile is



produced from an input tile. However, due to the nature of convo-

lutions, output tiles are smaller than input tiles. This causes far-

away reuse of input halos (the input elements used by multiple

output tiles) and deep pipelines must use large tiles, which add

substantial on-chip footprint. In fact, Fused-Layer [3] leverages

tiling to pipeline dense CNNs, but achieves limited benefits (-6%

to 27% speedups). This is mainly due to the higher arithmetic in-

tensity of dense CNNs, but also to the limited degree of pipelin-

ing that tiling allows. Some dense accelerators, Brein [4] and

Tangram [16], combine output- and input-stationary dataflows

to pipeline two layers, but they are limited to pipelining only

two layers. Finally, these pipelining approaches do not support

sparsity, forgoing its performance and efficiency gains.

To tackle these challenges, we introduce a novel input-sta-

tionary output-stationary (IS-OS) dataflow (Sec. III). IS-OS

consumes input activations and produces output activations in

the same order, producing outputs in thin wavefronts instead of

the 2D tiles of prior work. These wavefronts can be consumed

immediately by the next layer, minimizing inter-layer storage.

Moreover, IS-OS supports efficient indexing into compressed

data structures (input and output activations, weights, and par-

tial results), enabling all data to be stored in compressed form

to reap the footprint benefits of sparsity. Finally, IS-OS does

not add undue traffic to other structures (e.g., weights), and

supports the same optimizations as other dataflows (e.g., tiling

to accommodate layers whose weights do not fit on-chip).

We then present the ISOSceles architecture (Sec. IV), which

implements the IS-OS dataflow to pipeline sparse CNNs effec-

tively. ISOSceles processes each layer with a unit that contains

an input-stationary (IS) frontend and an output-stationary (OS)

backend. The IS frontend accepts an input wavefront fetched

from off-chip or delivered on-chip directly from the previous

layer, and its MAC units convolve it with sparse weights. The

OS backend features mergers that combine and reduce partial

results to generate an output wavefront that can be delivered

directly to another IS frontend or written off-chip. To achieve

high utilization under sparsity, ISOSceles time-multiplexes and

dynamically schedules PEs to avoid load imbalance and keep

intermediate activations small. A programmable interconnect

allows diverse CNN models to be mapped to ISOSceles.

We evaluate ISOSceles using cycle-level simulation and RTL

synthesis on a variety of sparse CNNs (Sec. VI). Over the dense

Fused-Layer [3] accelerator, ISOSceles is gmean 7.5× (up to

18.0×) faster, and reduces off-chip traffic by 3.6× by exploiting

sparsity. ISOSceles outperforms SparTen [17], a state-of-the-

art sparse CNN accelerator, by gmean 4.3× (up to 6.7×), and

reduces traffic by 4.7× (up to 8.5×) with significantly less area.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the key CNN computa-

tions and relevant dense CNN accelerators, then describe the

advantages and challenges of sparse CNNs and accelerators.

A. Prior dense dataflows and accelerators

The key computation in a CNN layer is a 3D convolution of

a set of C input activation planes of H ×W elements (with one
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first two iterations of outermost loop.

i = Tensor(shape=[C,H,W])

f = Tensor(shape=[K,C,R,S])

o = Tensor(shape=[K,P,Q])

for k = [0, K):

for p = [0, P):

for q = [0, Q):

for c = [0, C):

for r = [0, R):

for s = [0, S):

o[k,p,q] +=

i[c,p+r,q+s] 

* f[k,c,r,s]

(b) Loop nest.

Fig. 1: Output-Stationary (OS) dataflow.

plane per input channel) with filters consisting of a C×R×S-

element set of weights, to produce an output activation plane

with P×Q elements (where P = H−R+1 and Q =W −S+1).

A layer may have multiple output channels K, resulting from

applying K filters to the input activations to produce K output

activation planes. Fig. 1a shows the filters, input activations,

and output activations, and their dimensions.

The computation of a layer can be expressed as a 6-level loop

nest (omitting the optional loop for batch size, N). A specific

ordering of the loop nest corresponds to a schedule for the

computation, and is referred to as a dataflow [7, 33, 39]. Tiling,

which changes the order of computation, can be represented

with additional loop levels. Tiling reorders the computation to

achieve reuse on smaller chunks, or tiles, of a tensor; tile sizes

are chosen to fit in on-chip buffers.

Different dataflows induce different reuse for the input acti-

vations, output activations, and weights. For example, Fig. 1b

shows the loop nest for the output-stationary (OS) dataflow. OS

produces each output one element at a time, attaining maxi-

mum reuse of partial outputs. However, filter weights and input

activations have worse reuse. Fig. 1a shows how OS proceeds

over time, highlighting the inputs and filters used to produce

the first and second output planes (corresponding to the two

first iterations of the outermost loop in Fig. 1b). Similar to

OS, input-stationary (IS) and weight-stationary (WS) dataflows

prioritize reuse of inputs and weights [7].

Most dense CNN accelerators follow a fixed dataflow and

operate on one layer at a time, incurring a significant cost for

holding input and output activations off-chip [6, 7, 9, 14, 24].

We focus on the few that support inter-layer pipelining.

Dense accelerators with pipelining: The Fused-Layer CNN

accelerator [3] pipelines the execution of multiple layers. Fused-

Layer uses a tiled OS dataflow, producing output activations

tile by tile and reusing them as the input to the next layer.

Fig. 2 illustrates this dataflow across four layers, for the case

where each layer has a single input and output channel (i.e.,

C = K = 1). Fig. 2 shows the input tiles required at previous

layers to produce an output tile at the last layer. Due to the

nature of convolutions, output tiles are smaller than input tiles,

causing far-away reuse of input halos, the elements of an input

tile shared by multiple output tiles. To reduce the impact of

halos, tiles need to be relatively large, requiring substantial on-

chip storage to hold tiles and halos. Furthermore, input halos



Layer 1 Layer 2 Layer 3 Layer 4

Fig. 2: Fused-Layer CNN acceler-

ator dataflow (using layers with a
single input and output channel).

Layer 1 Layer 2 Layer 3 Layer 4

Fig. 3: Input-stationary output-
stationary (IS-OS) dataflow (using

layers with a single input and
output channel).

grow with the number of pipelined layers (Fig. 2), increasing

their overheads. While Fused-Layer reduces traffic substantially

for some CNNs, it yields modest speedups (-6% to 27%), largely

because dense networks are less bottlenecked by data movement

than sparse ones.

Fig. 3 shows how our novel IS-OS dataflow differs from

prior tile-based pipelining in the dense setting. Like Fig. 2, it

shows multiple layers. The key difference is that IS-OS pro-

duces thin and tall wavefronts instead of 2D tiles. Activations

are produced and consumed in the same order, and wavefronts

in earlier layers are ahead in the W dimension (by S positions

per layer, i.e., by the width of the filters). This reduces the sizes

of intermediates and avoids or greatly reduces halos, enabling

deeper pipelines. Moreover, IS-OS supports sparsity efficiently

by allowing the efficient (concordant) traversal of compressed

data structures in sparse CNNs, unlike Fused-Layer (Sec. II-B).

Finally, IS-OS spatially parallelizes loop dimensions like H (ac-

tivation height) to maximize vertical reuse and handle sparsity

with simple hardware. Fused-Layer parallelizes differently, on

channel dimensions C and K, to simplify inter-PE communica-

tion. Sec. III describes IS-OS in detail.

Prior work beyond Fused-Layer proposed dense dataflows that

allow some inter-layer pipelining. Brein [4] and Tangram [16]

pipeline two layers by chaining an output-stationary layer with

an input-stationary layer. While simpler than Fused-Layer, they

can only pipeline two layers. By contrast, our IS-OS dataflow

allows pipelining an arbitrary number of layers.

B. Leveraging sparsity in CNNs
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Fig. 4: Input activation and weight

sparsity in ResNet-50.

Much prior work has lever-

aged sparsity to reduce the

cost of CNN inference. Weight

pruning zeroes out weights

based on some criteria. In un-

structured pruning [19], all

weights below a threshold are

pruned away. Then the result-

ing sparse CNN is retrained

to retain accuracy. Prior work

has shown that 50–95% of weights can be trimmed with no

or negligible accuracy loss [18, 19, 26]. Structured pruning

techniques zero out a larger groups of weights, e.g., an entire

channel [21]. Structured pruning allows using existing hardware

efficiently, like GPUs, but quickly degrades accuracy by im-

posing strict constraints on weights. In this work, we focus on

unstructured pruning, which allows greater pruning but requires

new hardware to handle the resulting unstructured sparsity.

Another source of sparsity, activation sparsity, arises from

non-linear activation functions like ReLU [29], which turn nega-
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Fig. 5: A sparse weight tensor illustrated in the fibertree abstraction [39]

(left) and its Compressed Sparse Fiber (CSF) format (right).

tive activations into zeros. Activation sparsity is input-dependent

and unstructured, as negative values may appear at any location.

Leveraging both weight and activation sparsity yields the

largest reductions in execution time, energy, and data movement.

Fig. 4 shows the weight and activation sparsity of a pruned

ResNet-50 CNN [26]. Each data point represents one layer and

higher means sparser (100% denotes all zero values). As Fig. 4

shows, weights are typically sparser than activations, with 90%

sparsity across layers in this case. Activation sparsity varies

more, ranging from 20% to 80%.

Compressed data structures: An advantage of sparse data is

that it can be compressed, e.g., storing only nonzero values and

their coordinates, saving memory capacity and traffic. Sparse

tensors can be described abstractly (i.e., without the details of

their specific format) through the fibertree representation [39].

Fig. 5 (left) shows the fibertree of a 4D sparse filter tensor.

The fibertree shows only the nonzero values in the tensor, and

elements at each level, or rank [39], represent a sub-tensor that

includes all the children below that element. For example, the

root node F represents the entire sparse filter. F1 at the C rank

points to the set of nonzero weights with the same input channel

c= 1 (F [1, :, :, :]). Note that F2 is not present, meaning that input

channel c = 2 is empty. F1,2,4 at the K rank represents all filter

weights at input channel c = 1, row id r = 2, and output channel

k = 4 (F [1,2,4, :]). The leaf nodes are the filter weights; their

subscripts denote their coordinates at every rank.

Actual designs must store tensors using one of the myriad

concrete formats [10, 39] rather than the abstract representa-

tion above. Compressed Sparse Fiber (CSF) [25, 37], shown in

Fig. 5 (right), is a commonly used format for higher-dimensional

sparse tensors (CSF generalizes the CSR/CSC formats for 2D

matrices). CSF stores a sparse tensor using one array per rank.

Each array element is a tuple of the coordinate at the current

rank and an offset to the next rank’s array, where all the subse-

quent elements share the same coordinate. For example, tuple

(2,6) at rank R denotes that elements at rank K’s array at indices

[6,8) all share the same R coordinate of 2 (the upper bound 8

is indicated by the next tuple, (4,8)). The array at the bottom

rank (S) consists of tuples of coordinates (at rank S) and values.

Unlike uncompressed data structures, compressed formats

can be traversed efficiently only in some orders. For example,

in CSF, traversing all ranks sequentially is efficient. These are

called concordant traversals [39]. By contrast, other traversals,

i.e., discordant traversals, are inefficient. For example, accessing

elements at random in CSF would require a bisection search.

To be efficient, sparse CNN dataflows should maximize the



use of concordant traversals. This requires a careful codesign

of the dataflow and data structures, and makes some opera-

tions harder. For example, tiling and halos are more complex

with a representation like CSF. Specifically, Fused-Layer’s tiled

dataflow [3] would require discordant traversals of halos even if

activations were produced in a tiled CSF format, causing need-

less fetches. Instead, IS-OS traverses activations in wavefronts

(Fig. 3), achieving concordant traversals of all compressed data

structures, making IS-OS more efficient on sparse CNNs.

Sparse accelerators: SCNN, SparTen, and GoSPA are represen-

tative sparse single-layer CNN accelerators (Sec. VII discusses

other accelerators). SCNN [34] exploits both weight and activa-

tion sparsity. Its input-stationary dataflow allows efficient con-

cordant traversal of input activation and weights. SparTen [17]

improves on SCNN by introducing a novel intersection-based

PE design and a load balancing scheme. Sparse input activations

and weights are represented as bit masks, enabling efficient dot

products in the PEs. GoSPA [12] improves on SparTen through a

novel implicit intersection mechanism that uses statically known

weights to avoid fetching input activations that will not produce

output activations. These accelerators execute sparse CNNs

layer by layer. Their input/output stationary dataflows create

long output/input activation reuse. Thus, pipelining multiple

layers would require a large amount of on-chip storage.

III. IS-OS DATAFLOW

We now present the input-stationary-output-stationary (IS-

OS) dataflow for efficient pipelining in sparse CNNs. For ease

of understanding, Sec. III-A first presents IS-OS in a dense

setting. Sec. III-B then explains the sparse IS-OS dataflow.

A. Dense IS-OS dataflow

Input-output behavior: A key characteristic of IS-OS is that

it consumes input activations and produces output activations

in the same order, resulting in thin wavefronts between pipeline

stages instead of wide tiles. Fig. 3 from Sec. II showed this basic

idea for the case with a single input and output channel. Fig. 6

shows this input-output behavior in more detail for the general

case, with multiple input and output channels. Fig. 6 highlights

the input and output wavefronts for one layer at two different

points in time. Each wavefront is a single column, i.e., a vertical

slice of a single activation plane at a specific channel. Over time,

the IS-OS layer consumes the input wavefront by wavefront,

advancing first through the input channels, C and then in the

horizontal input dimension, W . The output wavefront is always

S positions behind the input wavefront in the horizontal output

dimension, Q, i.e., it lags by the horizontal size of the filters. This

is because, in a convolution, the output wavefront at horizontal

dimension P = i− S is dependent on input wavefronts with

horizontal dimension W in (i−S, i]. Thus, output wavefronts

are produced when their dependencies are cleared.

Fig. 7 shows the input-output behavior at a finer granularity,

showing how wavefronts are produced and consumed channel by

channel. Fig. 7 shows a single intermediate layer. It’s important

to note that an IS-OS layer will consume input wavefronts and

produce output wavefronts independently within the channels.
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i = Tensor(shape=[H,W,C]) # compressed

f = Tensor(shape=[C,R,K,S]) # compressed

o = Tensor(shape=[P,Q,K]) # compressed

# IS frontend

tmp1 = Tensor(shape=[H,R,K,Q]) # uncompressed on Q

for h = [0,H): # spatial

for w = [0,W): # pipeline

for c = [0,C):

for r in [0,R):

for k in [0,K):

for s in [0,S): # spatial

tmp1[h,r,k,w-s] += i[h,w,c] * f[c,r,k,s]

tmp1_t = tmp1.transpose() # [H,R,K,Q] -> [K,Q,H,R]

# OS backend

tmp2 = Tensor(shape=[P,K,Q]) # compressed

for p = [0,P): # spatial

for k = [0,K):

for q = [0,Q): # pipeline

for r in [0,R):

h = p + r

tmp2[p,k,q] += tmp1_t[k,q,h,r]

o = tmp2.transpose() # [P,K,Q] -> [P,Q,K]

Fig. 8: Loop nest for the IS-OS dataflow. Black code describes the dense
IS-OS dataflow. Red code denotes additions for the sparse IS-OS dataflow.

In other words, the input and output channels are not the same

at a given point in time, as the two diagrams in Fig. 6 show.

But they are always S columns apart.

IS-OS loop nest: Fig. 8 shows the IS-OS loop nest, i.e., the

implementation of each IS-OS block in Fig. 6.

Unlike prior dataflows, we write IS-OS not using a single loop

nest, but two: an input-stationary (IS) frontend and an output-

stationary (OS) backend. Importantly, frontend and backend are

pipelined, using a small amount of intermediate storage to com-

municate. This intra-layer pipelining of frontend and backend

enables the input-output behavior described above, which in



turn enables inter-layer pipelining.

While for the dense case, the code in Fig. 8 could be writ-

ten as a single loop nest, this would require costly discordant

traversals for the sparse case. Instead, Fig. 8 is written using

two loop nests that access all data structures in a single order,

plus two transposition operations. The transpositions enable

efficient concordant traversal of the data structures, and also

have a straightforward sparse implementation (mergers).

The IS frontend (top loop in Fig. 8) consumes input activa-

tions wavefront by wavefront (proceeding through channels, C

and then input activation horizontal dimension, W ). Each input

value at channel C is multiplied with K×R×S filter values cor-

responding to the K output channels. This produces K ×R×S

values per input element. These values are buffered and accu-

mulated along the S (horizontal filter) dimension to produce a

stream of partial results, which are written to the tmp1 array.

The OS backend (bottom loop in Fig. 8) produces output

activations wavefront by wavefront (proceeding along output

channels, K, and output activation horizontal dimension, P). To

do this, the backend consumes partial results, which the frontend

placed in tmp1, and accumulates them along the R (vertical

filter) dimension. However, tmp1 has dimension order H ×

R×K×Q, so reducing across R would require non-contiguous

accesses. To avoid these, tmp1 is transposed (i.e., its dimensions

are permuted) between the frontend and backend, creating a

tmp1 t array with dimension order K ×Q×H ×R, so that

the backend can accumulate across the innermost dimension.

Similarly, the OS backend performs one final transpose to leave

the output channel, K, as the innermost dimension, so that output

wavefronts are produced channel by channel, then column by

column (consistent with how inputs are consumed).

It is important to realize that the intermediate arrays (tmp1,

tmp1 t, and tmp2) need not be produced completely before

being consumed (which would occupy a lot of storage): pipelin-

ing the frontend and backend, and pipelining the backend with

the frontend of the next layer, means that all intermediates are

pipelined across the Q dimension (output activation column).

Pipelining still needs some intermediate storage to hold par-

tial results (essentially the size of K ×R×S output activation

wavefronts), but this is reasonably small in practice.

B. Sparse IS-OS dataflow

The previous section has introduced the dense IS-OS dataflow

in a way that lends itself well to sparsity. We describe the high-

level effects of sparsity here, and present the full ISOSceles

implementation of this sparse dataflow in the next section.

Assume that input activations, output activations, and filters

are in a compressed format like CSF (Sec. II-B). This brings

several benefits. First, this reduces the sizes of all structures, as

only nonzeros are stored. Second, because the code in Fig. 8 tra-

verses all data structures sequentially, resulting in efficient con-

cordant traversals on CSF structures; and transposes of sparse

data structures, as we will see later, can be efficiently imple-

mented with high-radix mergers. Third, sparse IS-OS avoids

ineffectual work: specifically, only nonzero inputs and weights

are multiplied to produce partial results.
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Fig. 9: ISOSceles spatial components.

Despite these benefits, sparsity also brings challenges. Specifi-

cally, it introduces large and fast variations of work across layers,

as the number of effectual multiplications in a layer is unknown

in advance. This requires techniques to load balance hardware

resources across layers to avoid low utilization.

Finally, since input and output activations are sparse, input

and output wavefronts need not be simple columns as Fig. 6

showed: because zeros are not represented, each wavefront will

be a wavy line consisting of the earliest unprocessed nonzero

along the input channel dimension at the input (and output

channel dimension at the output). This lets different parts of

the layer run at slightly different positions, with synchronization

dictated only by data dependences. Though this is difficult to

visualize, the hardware is simple, since it just streams in nonzero

values and their coordinates.

IV. ISOSCELES ARCHITECTURE

We now present the ISOSceles architecture, which efficiently

implements the IS-OS dataflow and pipelines multiple layers.

For ease of understanding, Sec. IV-A first presents ISOSceles’s

structure. This shows the key implementation techniques with-

out concerns for limited resources or low utilization. Sec. IV-B

shows how time-multiplexing helps ISOSceles achieve high

hardware utilization. Finally, Sec. IV-C discusses how ISOSce-

les can handle both large and small layers through tiling and

spatial/temporal mapping.

A. ISOSceles spatial structure

Overview: Fig. 9 shows a version of ISOSceles that is fully

spatial, i.e., without time-multiplexing. Each ISOSceles IS-OS

block processes one neural network layer. To pipelines multiple

layers, this implementation handles each layer with a separate

hardware IS-OS block, and blocks communicate intermediate

activations through FIFO queues. This spatial design is a step-

ping stone to ISOSceles’s full implementation, which we will

extend with time-multiplexing in Sec. IV-B to handle multiple

layers with a single IS-OS block.

Because each layer uses a different set of filters, in this spatial

design each IS-OS block uses a separate filter buffer that stores

all the layer’s filter weights on-chip. (We will later share a

single filter buffer across layers, and tile large layers whose

weights do not fit on-chip.) ISOSceles uses the Compressed

Sparse Fiber (CSF) [25, 37] format for all data structures.

IS-OS block overview: Each ISOSceles IS-OS block consists

of an IS frontend and an OS backend that implement the two

loop nests described in Fig. 8. The frontend and backend are
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Fig. 11: ISOSceles IS frontend and OS backend.

pipelined to reduce intermediate storage. Internally, frontend

and backend both consist of a number of lanes. The vertical

dimension of activations (H for the frontend and P for the

backend) is spatially mapped across lanes, so each lane handles

a single row of input or output activations. (For now, assume we

have enough lanes to accommodate the whole layer; Sec. IV-C

describes how to handle larger layers.)

Overview of lanes and cross-lane communication: Each lane

of the IS frontend reads across the horizontal input activation

dimension (W ) and performs a partial convolution, accumulating

across the horizontal filter dimension (S). Each lane of the OS

backend collects partial results from the frontend and produces

results along the horizontal output activation dimension (Q).

To do this, each OS backend lane accumulates partial results

along the vertical filter dimension (R). These partial results

are generated by different lanes of the IS frontend, so each

backend lane consumes values from R nearby frontend lanes.

For example, Fig. 9 shows the cross-lane communication pattern

with R = 3 filters: each backend lane consumes partial results

from the R = 3 surrounding frontend lanes, e.g., backend lane 5

consumes partial results from frontend lanes 4, 5, and 6. Modern

CNNs typically use small filter kernels (e.g. R = 1,3,5), so

the NoC overhead of this cross-lane communication is limited.

Each backend lane connects with the five closest frontend lanes

directly. Larger kernels (R > 5) can be executed through multi-

hop communication between backend lanes. Furthermore, lanes

are decoupled through queues to tolerate load imbalance and

on-chip memory access latency.

Main memory accesses: ISOSceles interfaces with off-chip

memory through input activation fetchers and output activation

writers, shown in Fig. 9. Each per-lane fetcher reads one input

activation row (dimension H) of the first layer from main mem-

ory. No other off-chip reads are needed in the entire pipeline

because all subsequent IS-OS blocks consume output activa-

tions from the previous IS-OS block. Similarly, each per-lane

writer streams one output activation row (dimension P) of the

last layer to main memory.

The IS-OS dataflow enables efficient concordant traversals of

input and output activations. Therefore, fetchers and writers are

implemented as simple FSMs that traverse compressed tensors

(like prior work [22, 42, 43]). To hide memory latency, they

are decoupled from the main execution pipeline using queues.

We now detail the implementation of frontend and backend

lanes using a concrete example, shown in Fig. 11. Fig. 10 shows

the format of the sparse tensors used in the example.

IS frontend lane: Each frontend lane computes a partial con-

volution of one input activation row and its associated weights.

The lane (1) consumes the input activation row element by ele-



ment, (2) fetches the filter weights based on the input activation’s

channel (C), and (3) sends the activation value and filter weights

to a set of PEs, which perform the multiply-accumulates.

Fig. 11 illustrates this process for frontend lane 5. The front-

end consumes input activation sub-tensor I5I5I5 (shown as a stream

of nonzeros I5,7,1I5,7,1I5,7,1, I5,9,0I5,9,0I5,9,0...), one element per cycle. Since the

current input activation is from input channel 1, the filter sub-

tensor FFF111 is fetched. The filter fetcher fetches the correspond-

ing weights (F1,2,4F1,2,4F1,2,4, F1,2,7F1,2,7F1,2,7...) from the shared filter buffer. These

weights are associated with different rows, r, and output chan-

nels, k, and are sent to different PEs.

The filter buffer is shared across lanes, so it needs to support

the highest throughput in our design (serving up to 4096 ele-

ments/cycle in our implementation). We achieve this cheaply

with three techniques. First, since each input fetches many

weights, the filter buffer uses wide words to supply many

weights in parallel. Second, the filter buffer is heavily banked,

especially along input channels. Third, when multiple lanes

request weights for the same input channel, we coalesce their

requests and serve them with one access, avoiding stalls.

Each frontend lane has R×K PEs. PEr,k is responsible for

handling a filter sub-tensor with a specific row, r, and output

channel, k. In our example, filter F1,2,4F1,2,4F1,2,4 (along with input ac-

tivation I5,7,1I5,7,1I5,7,1) is sent to PEr=2,k=4. The PE conducts a vector

(weight) scalar (input activation) product and accumulates re-

sults in partial result registers t15,2,4,6t15,2,4,6t15,2,4,6 and t15,2,4,7t15,2,4,7t15,2,4,7. Upon receiv-

ing input activation I5,7,1I5,7,1I5,7,1, the PE outputs partial result t15,2,4,5t15,2,4,5t15,2,4,5

if it is not zero. This is because input (I5,7,1I5,7,1I5,7,1) at column 7 can

only contribute to output activation at column 6 and 7 (assum-

ing a length S = 2 filter). The PE then knows that the partial

convolution on column 5 is completed and thus pushes partial

result at column 5 (t15,2,4,5t15,2,4,5t15,2,4,5) to its output queue, to be consumed

by the backend. Each PE only holds S partial results, t15,2,4,6t15,2,4,6t15,2,4,6

and t15,2,4,7t15,2,4,7t15,2,4,7. By generating partial results T 1T 1T 1 (tmp1 in Fig. 8)

in a pipelined fashion, ISOSceles never needs to materialize

T 1T 1T 1 entirely and stores it compressed on-chip. As described in

Sec. III-A, the uncompressed size needed to hold partial results

is a reasonably small R×K ×S per lane.

OS backend lane: Each OS backend lane produces one output

activation row (along dimension Q) by accumulating partial re-

sults t1t1t1 produced by the frontend. Accumulation happens along

the R (vertical filter) dimension. Each backend lane sources par-

tial results from R (adjacent) frontend lanes. To do this, the lane

(1) consumes partial result tensors from appropriate frontend

queues, (2) reorders them using a set of mergers to leave H and

R as the innermost dimensions, (3) accumulates partial results

over the R dimension to complete the convolution, and (4) se-

rializes all accumulated values using a final merger. The lane

also implements batch normalization and non-linear activation

functions to produce the final output activations.

Fig. 11 shows backend lane 3, which is responsible for pro-

ducing output row 3. We first focus on output channel k = 4:

(1) The lane consumes partial result sub-tensors T 14,1,4T 14,1,4T 14,1,4 (from

frontend lane 4 PEr=1,k=4) and T 15,2,4T 15,2,4T 15,2,4 (from frontend lane 5

PEr=2,k=4) (we omit partial results from other lanes for simplic-

ity). (2) The R-merger at k = 4 reorders T 14,1,4T 14,1,4T 14,1,4 (h = 4,r = 1)

and T 15,2,4T 15,2,4T 15,2,4 (h = 5,r = 2) so that H and R appears at the in-

nermost dimension in the merged stream. As a consequence Q

appears at the outermost dimension (t14,1,4,t14,1,4,t14,1,4,222, t15,2,4,t15,2,4,t15,2,4,222, t15,2,4,5t15,2,4,5t15,2,4,5,

t14,1,4,7t14,1,4,7t14,1,4,7...), which reduces memory footprint for the upcoming

reduction process. (3) The reducer accumulates partial results

(with the same column index, e.g., q = 2q = 2q = 2) over the R (vertical

filter) dimension using a simple adder. This completes the con-

volution. t14,1,4,t14,1,4,t14,1,4,222 and t15,2,4,t15,2,4,t15,2,4,222 are added together (and so are

subsequent elements with same column index q). The resulting

T 23,4T 23,4T 23,4 is output activation element of row 3 at channel k = 4.

There are K (output channel dimension) R-mergers, each

working to produce one row of a specific output channel k. In

our example of lane 3, other than T 23,4T 23,4T 23,4 generated by R-merger

(k = 4), output row 3 at channel 7 (T 23,7T 23,7T 23,7) is generated by R-

merger (k = 7). T2T2T2 in lane 3 is organized as a compressed tensor

of shape K×Q. However, the IS frontend of the next layer con-

sumes activations channel by channel then column by column

(K is the innermost loop). (4) A final K-merger serializes all K

accumulated streams (T 23,4T 23,4T 23,4, T 23,7T 23,7T 23,7...) so that K is the innermost

loop at the output activation O3O3O3. This emits output in the same

order they’re consumed by the next layer. Finally, O3O3O3 is passed

to the Point-wise Operation Unit (POU), including batch nor-

malization (BN) and ReLU (increasing activation sparsity). The

final output activation row is then sent to the next layer.

The backend uses cheap scalar mergers, which suffice be-

cause each frontend lane consumes a single element per cycle.

R-mergers have a low radix and are implemented using a com-

binational comparator tree [43]. K-mergers need a higher radix

(K = 256), so we implement them with a pipelined min-heap [5].

B. Time-multiplexing in ISOSceles

The spatial design described so far (Fig. 9) uses one IS-OS

block per layer and one lane per activation row. Fig. 12 shows

the ISOSceles design with time-multiplexing support, which

instead has a single IS-OS block with a fixed number of lanes.

Multiple lanes are pipelined temporally instead of spatially, by

time-multiplexing them over the single IS-OS block.

In this section, we discuss the rationale and changes needed

to temporally pipeline multiple layers. In Sec. IV-C, we discuss

how to use a fixed number of lanes efficiently.

The key motivation for temporal pipelining is that the spa-

tial approach, where each IS-OS block handles a single layer,

suffers from severe underutilization. First, sparsity introduces

underutilization within each layer. For example, the MAC units

in the PE arrays often spend cycles idle because filter weights

are often zero. Second, work imbalance across layers causes

underutilization too: each layer requires a different amount of

work (e.g., because layers use filters with different sizes and

sparsities), and this amount of work changes over time (e.g.,

due to zero input activations). When consecutive layers are

pipelined spatially, using multiple IS-OS blocks, one of them

becomes the bottleneck and leaves others even more underuti-

lized. By time-multiplexing layers over a single IS-OS block,

we can avoid both of these issues.

Effective time-multiplexing requires two extensions: the ad-

dition of per-layer contexts that hold the intermediate values
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for each layer, and dynamic scheduling to decide which layer

(context) to process among the ready ones at different points in

the pipeline. These modifications are the same as those needed

to make a processor pipeline multi-threaded.

Contexts: Fig. 12 shows the addition of per-layer contexts at

different points in the frontend and backend lanes. These are

SRAM memories that hold the distinct intermediate state of

each layer. The main points where this happens are at the PE

arrays in the frontend (where contexts hold partial results that

are then consumed by backend lanes), and the R-mergers (where

contexts hold the T 1 tensors being transposed).

Our implementation supports pipelining 2–16 layers, so our

contexts increase state by a factor of 16. Different contexts share

the same physical SRAM memories, so when fewer contexts

are used, more space can be allocated to each context (e.g.,

each PE array context can hold more partial results, increasing

decoupling between frontend and backend lanes).

Replicated fetchers, K-mergers, and POUs: Since time-

multiplexing increases utilization, the very first and last stages

of each lane can bottleneck throughput. Therefore, as Fig. 12

shows, we replicate the filter fetchers in the frontend, and both

the final K-mergers and POUs in the backend, instead of time-

multiplexing them (using 16 replicas in our implementation).

This allows each frontend/backend lane to consume/produce

multiple elements per cycle, and is a small cost (Sec. V).

PE array: Because convolution layers have different filter sizes

(S = 1,3,5), using a fixed number of MAC units per PE (as

in the spatial design) causes underutilization. For example, if

the PE is designed to handle S = 5, when a layer with S = 1

is mapped to the PE, 80% of the MAC units are idle, creating

significant internal fragmentation. ISOSceles addresses this by

having coarse-grain PEs, where each PE contains more than S

MAC units (e.g. 8 in our implementation). The filter fetcher now

sends a long vector of compressed weights (which may span

multiple r and k) along with the input activation value to the PE

each cycle. The PE performs the same scalar vector products

and accumulates them to the wider partial result registers. This

coarse-grain PE design also benefits the context array’s design:

it adopts the same wide-word design as the filter buffer, because

partial results are read/written contiguously to the context array

from the PE. The PE double-buffers partial results to hide the

access latency of the context array SRAM.

Dynamic scheduling: ISOSceles performs dynamic schedul-

ing of the PE arrays to control the overall throughput of stages.

Because the amount of work per stage changes over time, a

static schedule that apportions a fixed number of PEs to each

layer is insufficient and would cause load imbalance. However,

doing cycle-by-cycle dynamic scheduling would be too expen-

sive, as there are many PEs and multiple contexts. Instead, dy-

namic scheduling is performed periodically: every 100 cycles,

the scheduler reallocates the PEs among layers based on the

demand of each layer in the prior 100-cycle interval. The sched-

uler monitors the number of MACs requested by each layer in

an 100-cycle interval and allocates PEs to layers proportionally

to their demand. In practice, we find this dynamic scheduling

algorithm to effectively smooth out load imbalance.

Programmable interconnect: Diverse CNN models can be

mapped to ISOSceles by configuring the interconnect shown

in Fig. 12. Fig. 13 shows an example of how we map one

ResNet block to ISOSceles. Each ResNet block (left) consists

of a three-layer main branch and a skip connection. At the

end of the block, activations from the main branch and the

skip branch are added together. Each inter-layer connection is

directly translated into a hardware unit connection. For layer0,

the fetcher pushes input activation from off-chip to queue0.

Queue0 connects with the pipeline (from intersect0 to POU0)

responsible for the inference of layer 0. The output of layer 0

is pushed from POU0 to queue1 (to be consumed by layer 1).

The same is true for other layers.

Configuring ISOSceles: Beyond mapping layer connections

onto the interconnect, ISOSceles hardware is configured with

the layer information. This includes configuring the activation

fetchers and writers, filter fetcher, context array, and POUs. We

currently write this manually, but this can be automated with

simple extensions to deep learning frameworks like PyTorch.

C. Handling different layer sizes and types

ISOSceles is flexible enough to process convolutional layers

of widely varying sizes. Because ISOSceles streams through in-

put and output activation wavefronts horizontally (i.e., over the

W and Q dimensions), there is no limit to how large these can

be. But the vertical dimensions (H and P) are spatially mapped

across lanes and ISOSceles uses a fixed number of frontend and

backend lanes (64 in our implementation). In addition, ISOSce-

les handles other layer types like depth-wise convolution and

fully-connected layers with minimal hardware changes.

Handling large layers: In ISOSceles, each frontend lane con-

sumes one input activation row, and each backend lane produces

one output activation row. When the number of rows (P) in the

activation exceeds the number of hardware lanes, ISOSceles



TABLE I
CONFIGURATION OF THE ISOSCELES SYSTEM.

Lane Parameter Value ISOSceles Parameter Value

Multiplier width 8b # Lanes 64
Accumulator width 16b Filter buffer 1MB

# MAC units 64 DRAM bandwidth 128GB/s
Context array 8KB Summary

Queues 8KB Total # MAC units 4096
# Merger 16 Total memory size 2MB

Merger radix 256 Frequency 1GHz

TABLE II
AREA BREAKDOWN OF ISOSCELES.

ISOSceles Area (mm2) Lane Area (mm2)

64 Lanes 18.4 64 MAC Units 0.069
Filter buffer 7.5 Mergers 0.060

Buffers 0.121
Fetcher 0.010

Crossbar 0.021
Others 0.007

Total 26.0 Total 0.288

TABLE III
CONFIGURATION OF THE SPARTEN SYSTEM.

Cluster Parameter Value SparTen Parameter Value

Multiplier width 8b # Clusters 64
Accumulator width 16b Filter buffer 1MB

# MAC units 64 DRAM bandwidth 128GB/s
Buffers 64KB Summary

Frequency 1GHz Total # MAC units 4096
Total memory size 5MB

tiles the output row dimension P to accommodate it. Tiling P

is also conducted when the context array memory requirement

(proportional to P) exceeds its capacity. Without considering

striding and padding, due to the nature of convolution, input

activations (H ×W ) are slightly larger than output activations

(P×Q). For each output tile, the corresponding input activation

tile is slightly larger. Therefore, for two disjoint output tiles,

their corresponding input tiles will have some overlapping rows

at the boundary, also referred as input halos [15, 34]. When

processing the output tiles, ISOSceles needs to read the input

halos from off-chip memory. Traversing these halos in the com-

pressed input are concordant since each row of input belongs

to a separate sub-tensor. With a large number of lanes, halos

are a small portion of the input activation, so their effect on

off-chip memory traffic and performance is limited.

When the sizes of filters in large layers exceed filter buffer

capacity, ISOSceles runs them layer by layer and, if necessary,

tiles the output channel K dimension so that each tile fits on-

chip. We show later (Sec. VI-C) that, even in this single-layer

execution mode, ISOSceles is still incurs less traffic than prior

accelerators thanks to the IS-OS dataflow.

Handling small layers: When P is significantly smaller than

the number of lanes (e.g., 16 with 64 lanes), mapping a whole

activation row to one lane is inefficient (e.g., leaving 75% of

lanes idle in our example). ISOSceles solves this by mapping

one row to multiple adjacent processing lanes. In the frontend,

at every step, one input activation element is consumed and the

corresponding weight sub-tensor (K×R×S) is fetched. Instead

of sending the input activation and weight sub-tensor to one

frontend lane, ISOSceles splits the weight sub-tensor according

to its output channel dimension K and dispatches each weight

partition to one frontend lane. Each frontend and backend lane

only handles a subset of K and all backend lanes in aggregate

handle all output activations. In the loop nest view (Fig. 8),

ISOSceles makes the K dimension partially spatial. Reflected

in Fig. 7, when P=16 and we have 64 lanes, we consume 4

columns in parallel to fill all lanes.

Handling other layers: The POU handles point-wise layers

like batch normalization and ReLU. Depth-wise convolution is

supported by simply disabling input channel C accumulation

and fetching filters from only one output channel K per input

activation. Grouped convolution can be supported with a similar

mechanism. ISOSceles executes fully-connected layers in an

input-stationary way, reusing most of the frontend structure. For

batch 1 inference, it performs an SpMV between the sparse

weight matrix and input activation vector. Weights are streamed

from DRAM (as they exhibit no reuse). All frontend lanes share

the same input activation; each lane processes a weight sub-

column to generate a partial result sub-column. The operation is

completed once all inputs are consumed. Fully connected layers

bypass the backend logic and directly send output from the

context array. Global average pooling is supported by treating

it as a convolution where kernel size matches input size.

V. EXPERIMENTAL METHODOLOGY

System: We build a cycle-level simulator to evaluate ISOSceles.

Table I shows its configuration. Our design consists of 64 lanes

(frontend and backend), an 1 MB global filter buffer, and an

128 GB/s High-Bandwidth Memory (HBM) interface. Each lane

contains 64 8-bit multipliers, 8 KB of context arrays to hold

partial results, 8 KB of queues to support inter-layer pipelining,

and 16 radix-256 throughput-1 mergers. The full system has

4096 MAC units with a total of 2 MB on-chip storage.

We have implemented ISOSceles’s components in RTL and

synthesized them in 45 nm using the FreePDK library [30],

with a 1 GHz target frequency. Table II shows ISOSceles’s area

breakdown by component. Overall, this is a small accelerator

even at 45 nm, and ISOSceles would take just 4.7 mm2 when

scaled to 16 nm [34]. By comparison, a single HBM2e interface

is about 15 mm2 [11, 31]. ISOSceles is able to saturate this

interface while using a small amount of area.

Baselines: We compare with Fused-Layer [3] and SparTen [17].

Fused-Layer is a dense CNN accelerator that pipelines multiple

layers. We implement its 2D tile-based dataflow and configure

it to have similar area as ISOSceles, using a 2.5MB filter buffer

and the same memory bandwidth and number of MAC units as

ISOSceles. SparTen is a state-of-the-art accelerator for sparse

CNNs. We model its output-stationary dataflow, memory traf-

fic, and layer-by-layer execution strategy for sparse CNNs. We

enhance our SparTen baseline with GoSPA’s activation filtering

optimization [12] to reduce further traffic (Sec. II). Table III

lists its configuration. SparTen is sized to match ISOSceles’s

bandwidth and number of MAC units. However, SparTen re-

quires 5 MB (over 2× more) on-chip storage.

Workloads: We use ResNet-50 [20], MobileNetV1 [23], VGG-

16 [36], and GoogLeNet [40] as representative sparse CNNs

on ImageNet [13]. ResNet-50 and MobileNetV1 are pruned

using STR [26] to achieve 6 different levels of weight sparsity

for ResNet-50 (81%, 90%, 95%, 96%, 98%, and 99%) and 2

levels for MobileNetV1 (75% and 89%). We prune VGG-16 and

GoogLeNet with magnitude-based pruning so that their weight

sparsities (68% and 58%) match prior work [17, 34]. We further

emulate an aggressive version of VGG-16, where 90% of the

weights are pruned to show that increasing weight sparsity has
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Fig. 14: ISOSceles speedups, and comparison of cycles and off-chip traffic across CNNs. R81-R99: ResNet-50 w/ 81%-99% weight sparsity. V68, V90:

VGG-16 w/ 68% and 90% weight sparsity. G58: GoogLeNet w/ 58% weight sparsity. M75, M89: MobileNetV1 w/ 75% and 89% weight sparsity.

TABLE IV
PIPELINEABLE WORKLOADS IN RESNET-50 WITH 96% WEIGHT SPARSITY

(R96), L: NUMBER OF LAYERS.

Workload
name

L layers
Workload
name

L layers

l1.0.conv1 4
layer1.0.conv{1,2,3},
layer1.0.downsample

l1.1.conv1 6
layer1.1.conv{1,2,3},
layer1.2.conv{1,2,3}

l2.0.conv1 4
layer2.0.conv{1,2,3},
layer2.0.downsample

l2.1.conv1 3 layer2.1.conv{1,2,3}

l2.2.conv1 6
layer2.2.conv{1,2,3},
layer2.3.conv{1,2,3}

l3.0.conv1 4
layer3.0.conv{1,2,3},
layer3.0.downsample

l3.1.conv1 3 layer3.1.conv{1,2,3} l3.2.conv1 6
layer3.2.conv{1,2,3},
layer3.3.conv{1,2,3}

l3.4.conv1 6
layer3.4.conv{1,2,3},
layer3.5.conv{1,2,3}

l4.0.conv1 4
layer4.0.conv{1,2,3},
layer4.0.downsample

l4.1.conv1 6
layer4.1.conv{1,2,3},
layer4.2.conv{1,2,3}

a compounding factor on compute intensity reduction. Overall,

we evaluate 11 sparse CNNs (6 ResNet-50: R81, R90, R95,

R96, R98, R99; 2 MobileNetV1: M75, M89; 2 VGG-16: V68,

V90; 1 GoogLeNet:G58). Fused-Layer runs the dense CNNs

on uncompressed data.

Benchmarks: We execute ResNet-50, MobileNetV1 and VGG-

16 end-to-end, including all layers (FC, batch normalization,

etc.); for GoogleNet, we evaluate a subset of representative

layers. We pipeline layers greedily from the start of network

to the end until the storage requirements (filter buffer, context

array, or queues) exceed on-chip resource availability. Since

pooling layers are not amenable to pipelining, we run them

unpipelined. If a single layer is too large to fit on-chip, it is

tiled (following Sec. IV-C).

For ResNet-50, ISOSceles pipelines at ResNet block granu-

larity. For denser ResNet, it usually pipelines 1-2 ResNet blocks

(4-6 convolutional layers) including the skip connection. In later

layers (e.g. l4.0.conv1), weights are large, so ISOSceles can only

execute them layer by layer to not overflow the filter buffer.

Table IV shows all the pipelineable layers in R96 (only the

first convolution layer and FC layer are not pipelined). Sparser

ResNet-50 (R98 and R99) can pipeline more layers, typically

9-15 layers. On average, ISOSceles pipelines 3-5 layers per

run for ResNet-50 with different sparsity levels. To model the

extra traffic incurred by the skip connection in SparTen, we

fuse the skip connection with the last convolutional layer in a

ResNet block. For MobileNetV1, we can pipeline 3-7 layers

until the context array reaches its capacity and pooling layer

serves as pipeline boundary. In VGG-16, ISOSceles tiles the

first 4 layers on P because their activation heights exceeds the

number of lanes. Then we can pipeline 2-3 convolutional layers

until the pooling layer. For the sparser VGG (V90), we further

tile on P for convolutional layers in the middle (even though

their activation heights are smaller than number of lanes) to

reduce the context array capacity requirement for each layer. In

this way, ISOSceles can turn 6 non-pipelineable convolutional

layers (features.24-40) into two pipelines (each containing

a group of three convolutional layers). Finally, we evaluate the

Inception 3a block in GoogLeNet. Branches 2 and 3 (each con-

taining 2 layers) are pipelined, and the single-layer branches 1

and 4 are executed separately. We evaluate inference without

batching, since it will provide no benefit for these designs.

VI. EVALUATION

A. Performance and memory traffic

Fig. 14a reports the speedups of SparTen and ISOSceles over

Fused-Layer on all 11 sparse CNNs. Fused-Layer and ISOSceles

pipeline multiple layers (as described in Sec. V), but SparTen

does not. SparTen and ISOSceles leverage weight and activation

sparsity, but Fused-Layer does not.

By leveraging sparsity, ISOSceles outperforms Fused-Layer

by gmean 7.5× (and up to 18.0× on R99). Speedups grow with

sparsity, as sparser networks have less compute and memory

traffic. Furthermore, sparser networks have smaller filter weights,

which allows ISOSceles to pipeline even more layers (from up

to 6 layers in R81, to up to 15 layers in R99). For example,

speedups on ResNet increase from 5.9× to 18.0× when weight

sparsity grows from 81% to 99%.

By leveraging inter-layer pipelining, ISOSceles outperforms

SparTen by gmean 4.3× (and up to 6.7×, on MobileNetV1

with 89% weight sparsity). Speedups on ResNet with various

weight sparsity level range from 3.9× to 5.6×. ISOSceles is

5.6× and 6.7× faster than SparTen on MobileNetV1 with two

sparsity levels. SparTen performs worse than Fused-Layer on

MobileNetV1 due to frequent depth-wise convolutions, which

have low compute intensity. Inter-layer pipelining reduces traffic

more than sparsity for these layers, resulting in better perfor-

mance. For VGG-16, ISOSceles is 1.9× and 5.3× faster on the

variants with 68% and 90% weight sparsity, respectively. Finally,

ISOSceles outperforms SparTen by 1.7× on GoogLeNet.

Fig. 14b reports the number of cycles (lower is better) that

Fused-Layer, SparTen, and ISOSceles take to run each sparse

CNN, and Fig. 14c shows the total off-chip memory traffic
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Fig. 15: Memory bandwidth utilization.
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Fig. 16: MAC array utilization.
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(lower is better). Each bar is normalized to Fused-Layer’s traffic,

and is broken down by weight and activation traffic.

Fig. 14c shows that ISOSceles enjoys dramatically lower

memory traffic than both Fused-Layer and SparTen, highlight-

ing the synergy between inter-layer pipelining and sparsity. By

contrast, there is no clear winner between Fused-Layer and

SparTen. Thanks to pipelining, Fused-Layer features little acti-

vation traffic. But Fused-Layer is dominated by weight traffic,

since weights are dense. SparTen has much lower weight traf-

fic owing to its use of sparsity. But SparTen is dominated by

activation traffic since it does not pipeline layers. Except in the

sparsest ResNet variants, this limitation makes SparTen incur

more traffic than Fused-Layer, sometimes by large amounts (up

to 2.4× more in M75), and 1.3× more on average.

By contrast, Fig. 14c shows that ISOSceles achieves both low

weight traffic (thanks to sparsity) and activation traffic (thanks

to pipelining). ISOSceles enjoys 3.6× less traffic than Fused-

Layer, and 4.7× less traffic than SparTen.

B. Architectural analysis

Fig. 15 compares the off-chip memory bandwidth utilization

for the baselines and ISOSceles across CNNs. The height of

each bar shows the average fraction of time memory is being

used; 1.0 means bandwidth is saturated all the time. Fused-

Layer only utilizes 47% of the off-chip bandwidth. This is

because dense CNN inference has high compute intensity and

is compute-bound most of the time. SparTen, on the other hand,

always saturates memory bandwidth, and thus is memory-bound

on sparse CNNs. This is caused by its single-layer execution

strategy, which generates large off-chip transfers of activations.

By contrast, ISOSceles reduces memory bandwidth pressure

through inter-layer pipelining. As a result, 3 of the 11 networks

no longer need the full 128GB/s bandwidth, and are mainly

compute-bound. This is why its traffic reductions over SparTen

are generally larger than its performance gains. For the other

8 networks, ISOSceles is also bandwidth-bound, so its higher

compute intensity translates directly into speedups.

Fig. 16 shows the MAC array utilization rate across all net-

works. ISOSceles achieves an average 35% MAC array utiliza-

tion, 3.4× larger than SparTen. This is because the improved

compute intensity due to inter-layer pipelining increases utiliza-

tion. Fused-Layer achieves nearly 100% MAC utilization, again

showing that it is compute-bound. Because sparse CNNs have

15× fewer MACs than dense ones, ISOSceles widely outper-

forms Fused-Layer despite having lower MAC array utilization.

Note that, while Fused-Layer is more compute-bound than

ISOSceles, it also incurs much more memory traffic. Therefore,

if we increase the number of MACs in Fused-Layer to make it

memory-bound (which would cost significant area), ISOSceles

would still be about 3× faster than Fused-Layer.

ISOSceles’s MAC array utilization decreases when ResNet

becomes sparser. This is because higher sparsity reduces the

number of effectual operations and makes ResNet more memory-

bound. VGG-16, on the other hand, achieves a relatively high

MAC utilization, over 50%. We note that 100% average uti-

lization is not achieved for several reasons. First, each network

contains a mix of compute- and memory-bound phases. For

example, in VGG-16, convolutional layers are heavily pipelined

and expose decent reuse so that they are compute-bound. The

final three FC layers are essentially SpMV operations and the

large weight matrix exhibits no reuse. Therefore, ISOSceles is

memory-bound in these layers. The accelerator spends about

60% time in compute-bound phases, and about 40% in memory-

bound phases. Second, the dynamic scheduler reallocates MAC

units across layers every 100 cycles. The fragmentation caused

by load imbalance causes some underutilization.

Fig. 17 shows the energy per end-to-end inference (obtained

using a 14/12nm process with commercial tools) on the ResNet-

50 and MobileNetV1 CNNs, broken down by component. En-

ergy consumption per image ranges from 0.2mJ to 1.9mJ across

CNNs. SRAM energy is mainly associated with filter buffer

reads and context array accesses for MAC operations. As CNNs

become sparser, operational intensity falls, reducing the contri-

bution of SRAM and compute energy. Overall, DRAM energy

dominates, especially for sparser networks. This shows that

reducing DRAM traffic (through inter-layer pipelining) is the

correct way to improve energy efficiency on sparse CNN in-

ference: due to their much higher traffic, the other accelerators

will be even more severely dominated by DRAM energy, even

if their on-chip structures are simpler. VGG-16 end-to-end con-

sumes 10.1mJ (V68) and 3.7mJ (V90) per image and shows

similar breakdowns. The large model size and number of MACs

contribute to the higher energy consumption.

C. Effect of pipelining

We now break down ISOSceles’s benefits over SparTen by fo-

cusing on one CNN, ResNet-50 with 96% weight sparsity (R96).

Beyond ISOSceles and SparTen, we also evaluate ISOSceles-

single, which uses the IS-OS dataflow but executes the inference

layer by layer instead of pipelining. Fig. 18 reports the cycles
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Fig. 18: Execution time (cycles) of different layer groups/pipelines on R96.

taken by each of the different layer pipelines that make up R96

(each group of bars shows an ISOSceles pipeline, or their equiv-

alent group of layers for the other accelerators). Because the

number of activation rows in the first layer exceeds the number

of lanes, ISOSceles tiles the first layer on P (Sec. IV-C) and

executes it tile by tile. Therefore ISOSceles has the same perfor-

mance as ISOSceles-single. For other parts of the CNN, ISOSce-

les pipelines 4-6 convolutional layers (1-2 ResNet blocks) based

on storage requirements. ISOSceles runs FC layer by layer.

ISOSceles-single reduces execution time by 1.9× over

SparTen. Its off-chip traffic reductions match its speedups

for all layers, because R96 is memory-bound (as we saw in

Fig. 15). This shows that the IS-OS dataflow has merits over

prior dataflows by itself. This is because the IS-OS dataflow

reads/writes input/output activations once per layer, incurring

only compulsory traffic. SparTen’s OS dataflow has poor reuse

of input activations and may read them multiple times. Tiling

in SparTen helps input reuse but it still causes more traffic

than compulsory. In this ResNet execution, layers that are not

pipelined (first convolution and FC layer), running in ISOSceles-

single mode, only account for 16% of execution time.

Comparing ISOSceles and ISOSceles-single shows the bene-

fits of inter-layer pipelining. From Fig. 18, ISOSceles reduces

execution time by 2.6× over ISOSceles-single. Since ResNet is

memory-bound, traffic reductions are again similar: ISOSceles

incurs 2.7× less traffic than ISOSceles-single.

VII. ADDITIONAL RELATED WORK

Prior work has proposed accelerators that leverage sparsity

beyond SCNN, SparTen, and GoSPA (Sec. II-B). Cambricon-

X [44] exploits weight sparsity by storing weights compressed

on-chip. It uses sparse weights to fetch the corresponding input

activations in an irregular way. Eyeriss [7] gates MAC units

when an input is 0 to save energy, but this incurs idle cycles. Cn-

vlutin [2] skips ineffectual multiplications caused by activation

sparsity, reducing cycles over Eyeriss. Eyeriss v2 [8] proposes a

flexible NoC to handle sparse layers with varying reuse. ESCA-

LATE [27] decomposes convolution using SVD into lower-rank

operations: a small set of kernels and a large coefficient matrix

that is more amenable to pruning. Its architecture maximizes

reuse of these structures. Dual-side sparse tensor core [41] lever-

ages bitmap-based im2col and outer-product based SpGEMM

to support weight and activation sparsity in GPU tensor cores.

The work mentioned above exploits value sparsity in CNNs,

i.e., eliminating ineffectual work cause by values that are zero.

Another line of work focuses on exploiting bit-level sparsity by

performing bit-serial computation and skipping zero bits. Bit-

pragmatic [1] skips zero bits in input activations and weights.

A new encoding scheme and compute schedule reduce its area

and energy. Bitlet [28] introduces bit interleaving to condense

multiple values (with zero bits) into fewer values (with all 1

bits) to improve the utilization of bit-serial PEs. Bit Fusion [35]

leverages the fact that different CNN layers require different

bit precision. It proposes a flexible multiplier array that han-

dles variable-precision operations. Bit sparsity is orthogonal to

ISOSceles. ISOSceles could be extended to leverage it.

Prior accelerators on sparse matrix-sparse matrix multipli-

cation can also be used to accelerate sparse convolution by

leveraging the Toeplitz transformation [39], though at an effi-

ciency cost. ExTensor [22] leverages hierarchical intersection to

eliminate ineffectual work. OuterSPACE [32] and SpArch [45]

use an outer-product based dataflow. And Gamma [43] and Ma-

tRaptor [38] implement Gustavson’s dataflow to reduce memory

traffic and accelerator area. SpArch and Gamma use high-radix

mergers for efficiency, which ISOSceles takes inspiration from.

But these accelerators are not designed for CNNs: they cannot

pipeline operations, run a single matrix multiplication at a time,

and are tuned for very sparse matrices, so they have far less

compute throughput (32–64 MACs) than ISOSceles.

While ISOSceles and these prior accelerators target different

problems, ISOSceles’s techniques are general and should apply

to sparse matrix and tensor acceleration. For instance, small

changes to ISOSceles would allow it to support Gustavson’s

dataflow (by using the fetcher, PE array, and K-merger, and

bypassing other modules), which pipelines naturally. Supporting

sparse matrix-sparse matrix multiplication would allow lever-

aging ISOSceles’s sparse pipelining in other applications, like

transformers and sparse tensor algebra.

VIII. CONCLUSION

Sparse CNNs are dramatically more efficient than dense ones,

but also more memory-bound due to their limited reuse. We

have shown that inter-layer pipelining is an effective way to

increase reuse for sparse CNNs and substantially improve perfor-

mance. We have presented a novel dataflow, IS-OS, that allows

pipelining many CNN layers with a minimal amount of interme-

diate state; and ISOSceles, an accelerator that implements this

dataflow and leverages time-multiplexing to pipeline multiple

layers at high utilization, avoiding the load imbalance issues

caused by sparsity. ISOSceles outperforms a state-of-the-art

accelerator by 4.3× gmean, chiefly by dramatically reducing

off-chip traffic by 4.7×.
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