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ABSTRACT

Solving sparse systems of linear equations is a crucial component

in many science and engineering problems, like simulating physi-

cal systems. Sparse matrix factorization dominates a large class of

these solvers. E�cient factorization algorithms have two key prop-

erties that make them challenging for existing architectures: they

consist of small tasks that are structured and compute-intensive,

and sparsity induces long chains of data dependences among these

tasks. Data dependences make GPUs struggle, while CPUs and

prior sparse linear algebra accelerators also su�er from low com-

pute throughput.

We present Spatula, an architecture for accelerating sparse ma-

trix factorization algorithms. Spatula hardware combines systolic

processing elements that execute structured tasks at high through-

put with a �exible scheduler that handles challenging data depen-

dences. Spatula enables a novel scheduling algorithm that avoids

stalls and load imbalance while reducing data movement, achieving

high compute utilization. As a result, Spatula outperforms a GPU

running the state-of-the-art sparse Cholesky and LU factorization

implementations by gmean 47× across a wide range of matrices,

and by up to thousands of times on some challenging matrices.
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1 INTRODUCTION

Solving sparse systems of linear equations, i.e., �nding G such that

�G = 1 when� is a sparse matrix and 1 is a vector, is a fundamental

problem in scienti�c computing [8, 22, 35, 36]. Solving sparse linear

equations is the dominant computation across many applications,

including simulating circuits [7, 18] and physical systems [32],
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computational �uid dynamics [59], and optimization [5, 31]. As

a result, supercomputers spend a substantial fraction of time on

solvers [4, 42].

Matrix factorization (Section 2) is the dominant component of

direct solvers. Matrix factorization decomposes� into two matrices

with a particular structure that makes solving �G = 1 easy (e.g.,

� = !* , where ! is lower-triangular and * is upper-triangular).

When � is dense, matrix factorization algorithms are regular and

compute-intensive, and existing accelerators like GPUs achieve

high e�ciency [27]. But� is often highly sparse, which causes poor

performance on GPUs and CPUs. For example, on a large circuit

matrix (FullChip) [16] that has 0.0003% nonzeros, the state-of-

the-art GPU factorization algorithm STRUMPACK [22] achieves

only 0.3 GFLOP/s on an NVIDIA V100 GPU—just 0.004% of its

peak �oating-point throughput. STRUMPACK su�ers this dismal

utilization despite using sophisticated algorithms and schedules

that seek to use GPUs as best as possible [1].

Sparsity in linear solvers is unavoidable, because it arises from

problem structure. For example, consider circuit simulation: a cir-

cuit may have millions of nodes, but each node is connected to only

a handful of other nodes. Therefore, many problem domains will al-

ways yield highly sparsematrices. This is di�erent from applications

like deep learning, where sparsity is induced as an optimization

(e.g., by pruning) and can be shaped or controlled [64].

To tackle this challenge, we present a hardware accelerator for

sparse matrix factorization algorithms, including Cholesky and LU.

These algorithms have two key properties that thwart GPUs, CPUs,

and more specialized sparse accelerators [29, 45, 57, 68]:

First, sparse matrix factorization algorithms contain long chains

of dependences among tasks, which are hard to schedule. Since

GPUs lack �ne-grained control over scheduling, they su�er from

ine�cient schedules that cause load imbalance and force excessive

data movement. Prior sparse linear algebra accelerators are also

insu�cient: most focus on speci�c kernels, such as sparse matrix-

sparse matrix multiplication (SpMSpM) [50, 68, 69], and even more

�exible ones like ExTensor [29] and Tensaurus [57] handle loop

nests that do not support these complex data dependences.

Second, sparse factorization is nonetheless dominated by struc-

tured compute operations on smaller matrices that can be e�ectively

accelerated at very high throughput using systolic arrays. No prior

architecture can handle this combination of sparse and structured

features: the vector datapaths and tensor cores of GPUs are a good

match for structured compute, but dependences cause terrible uti-

lization. By contrast, prior sparse linear algebra accelerators focus

on unstructured, memory-intensive problems [45, 67, 68] and lack

the compute throughput or design to handle structured operations.

To make these challenges concrete, Section 2 presents the neces-

sary background on sparsematrix factorization algorithms (Cholesky
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and LU), and Section 3 details why current architectures handle

them poorly, including a performance characterization of these

algorithms on CPUs and GPUs.

Based on these insights, we present Spatula, a novel architecture

designed to accelerate sparse matrix factorization. Spatula hard-

ware (Section 4) combines the features needed by these algorithms:

its processing elements (PEs) are systolic arrays that implement the

primitive tasks in factorization workloads e�ciently and at high

throughput; and a programmable scheduler orchestrates execution,

dispatching tasks to PEs and cheaply tracking frequent data de-

pendences among tasks. Spatula hardware features a cache-based

memory hierarchy that captures the irregular reuse in this work-

load and decoupled-execution mechanisms to fetch data ahead of

its use and avoid memory-induced stalls.

To leverage Spatula hardware, we present a novel scheduling

algorithm (Section 5) that e�ciently schedules sparse matrix fac-

torizations with a wide variety of sparsity patterns. Di�erent spar-

sity patterns result in fundamentally di�erent computation graphs,

presenting di�erent tradeo�s between parallelism and memory

footprint. Our approach leverages �ne-grained task scheduling,

multi-level tiling, and memory-aware scheduling to achieve high

utilization while minimizing data movement.

We evaluate Spatula on both sparse Cholesky factorization and

sparse LU factorization using a combination of simulation and RTL

synthesis (Section 6, Section 7). Spatula outperforms state-of-the-

art matrix factorization algorithms on a V100 GPU by gmean 61×

on Cholesky and 36× on LU, across a diverse set of matrices from

many application domains including circuit simulation, structural

analysis, �uid dynamics, and convex optimization. Speedups over

a 32-core server CPU are gmean 213× on Cholesky 33× on LU.

The evaluated con�guration of Spatula has an area of 108mm2

and consumes 146W on average when synthesized in 12-14 nm

technology, signi�cantly less than the GPU and CPU baselines.

In summary, we make the following contributions:

(1) We identify the key features of sparse matrix factorization

and its ine�ciencies on current architectures (Section 3).

(2) We propose the �rst hardware architecture that achieves

high performance on sparse matrix factorization (Section 4).

(3) We design a novel scheduling algorithm enabled by this

hardware that achieves high utilization (Section 5).

(4) We perform a detailed evaluation of our proposed architec-

ture, showing order-of-magnitude improvements in perfor-

mance and energy e�ciency (Section 6, Section 7).

2 BACKGROUND

Solving systems of linear equations �G = 1 is a key primitive in

many scienti�c computing applications [5, 7, 18, 31, 32, 59]. Solvers

can be direct, if they �nd G directly given � and 1, or iterative, if

they start from an approximate G and iterate until �nding an exact

solution. E�cient direct solvers rely on factoring matrix �, i.e.,

decomposing it into a set of matrices with a certain structure that

makes �G = 1 easy to solve.

In this paper, we focus on Cholesky and LU factorization, the

most e�cient and widely used techniques for square matrices [24]

(e.g., MATLAB adaptively chooses among these algorithms when

solving systems of linear equations [15]).

1 M = lower triangle of A
2 for i in range(n):
3 M[i,i] = sqrt(M[i,i])
4 # Factor ith col: M[i+1:,i] *= (1 / M[i,i])
5 for j in range(i+1,n):
6 M[j,i] *= (1 / M[i,i])
7 # Outer prod update: M[i+1:,i+1:]-=
8 # outer(M[i+1:,i],M[i+1:,i])
9 for j in range(i+1,n):
10 for k in range(i+1,j+1):
11 M[j,k] -= M[j,i] * M[k,i]

Listing 1: Cholesky factorization loop nest.

Cholesky factorization is simpler and more e�cient than LU,

but it requires the � matrix to have a particular structure: it needs

to be symmetric (i.e., � = �) ), and positive-de�nite (i.e., for all

non-zero column vectors I, I)�I must be positive). Cholesky �nds

a lower-triangular matrix ! such that� = !!) . This enables solving

�G = 1 via two triangular solves: !~ = 1 → !) G = ~. Triangular

matrices are simple to solve via substitution: when � is a dense

= × = matrix, triangular solves are $ (=2), whereas factorization is

$ (=3) and dominates performance. Factorization also dominates

performance when the matrix is sparse.

LU factorization instead �nds lower-triangular matrix ! and

upper-triangular matrix * such that � = !* . Like Cholesky, this

enables solving �G = 1 through triangular solves, but does not

require � to be symmetric positive-de�nite.

Real-world � matrices are often extremely sparse. These matri-

ces typically arise from discretizing equations, where each entry

represents an interaction between two variables. In circuit simula-

tions, each variable represents a circuit node [17], while for partial

di�erential equations on meshes, each variable represents a node on

the mesh [33, 58]. Each node has a small number of neighbors, irre-

spective of the overall system size. Consequently, matrices arising

from larger simulations become increasingly sparse.

Since Cholesky factorization is simpler, in this section we use

Cholesky to introduce the algorithmic techniques and optimizations

in sparse matrix factorization. Section 2.4 discusses the di�erences

between Cholesky and LU.

2.1 Basic Cholesky factorization

Listing 1 shows the code for a basic in-place implementation of

Cholesky." is a lower-triangular matrix, initialized with the lower

triangle of � (because � is symmetric, only its lower triangle is

needed). Each outer loop iteration in Listing 1 modi�es " and

produces a single column of the output ! in-place; after execution,

" contains the output !.

Speci�cally, the 8Cℎ outer loop iteration in Listing 1 consists of

two distinct activities. First, lines 2–5 overwrite the 8Cℎ column of

" , producing its �nal value. Second, lines 9–11 update columns

9 > 8 by computing the outer product of the 8Cℎ column of" with

itself, and subtracting this outer product from the rest of the matrix.

Figure 1 shows these steps in detail for a sparse matrix.

This basic loop nest shows two key features of Cholesky. First,

data dependences are frequent: each iteration updates the remainder

of matrix " , so each output element incorporates contributions

from many inputs. Second, outer products dominate performance: if

the 8Cℎ column of" has ==I nonzeros, updating the column takes

$ (==I) operations, whereas outer-product updates take $ (==I2).
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Figure 1: Performing a single step of Cholesky factorization to a sparse matrix: (a) initial

matrix" ; (b) result of executing lines 3–6 of Listing 1; (c) result of applying the �rst column’s

outer product update to the rest of the matrix (lines 8–10 of Listing 1).
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Figure 2: Example solver appli-

cation. Numeric factorization

dominates performance.

2.2 Challenges of sparse factorization

Sparse linear algebra algorithms must use compressed formats that

leverage sparsity by representing only nonzero values. While they

are space-e�cient, compressed formats limit the operations that can

be e�ciently performed [9, 60]. A key challenge in sparse matrix

factorization is using a compressed format that allows all necessary

operations.

Typical sparse matrix formats like compressed sparse row/col-

umn (CSR/CSC) work poorly in Listing 1. Consider using CSC,

which stores each column as a sorted list of nonzero coordinates

and their values. CSC makes sequential traversals of columns e�-

cient, so the updates to the 8Cℎ column (lines 5–6) are e�cient. But

the outer-product updates (lines 9–11) would be extremely di�cult,

because they require updating individual values scattered through-

out the matrix structure. These updates would require expensive

searches in CSC, and often introduce new nonzeros, which would

require rewriting the CSC structure.

The new nonzeros introduced by outer-product updates are

known as �ll-in. For example, in Figure 1c, (6, 5) and (8, 5) become

nonzero. It is common for the �nal matrix ! to have substantially

more nonzeros than �, e.g., 10–150× is typical in our experiments.

But since � is highly sparse (e.g., with a fraction 10−5 of nonzeros),

so is !, and storing" uncompressed would be very ine�cient.

Prior work makes the key observation that outer-product updates

have substantial structure. Figure 3 shows that the outer product

of a sparse vector E with itself produces nonzeros at all points in

=>=I4A>B (E) × =>=I4A>B (E). This structure can be captured with a

format that we call Compressed Cartesian Square (CSQ),1 shown in

Figure 3: a : × : CSQ consists of :2 values and only : coordinates,

which denote the row (and column) coordinates of the nonzeros.

When we compute the outer product of E with itself, the resulting

CSQ will be symmetric, so we only need to store its lower triangle.

E�cient sparse Cholesky implementations represent " using

multiple CSQ matrices, which are updated over time. Multiple ma-

trices are needed because di�erent outer-product updates have

di�erent sparsity patterns. Since nonzeros added by outer-product

1Prior work uses this format but does not give it a name. We give it a name for clarity.
The name comes from the fact that matrix’s nonzero coordinates are the Cartesian
square (i.e., the Cartesian product with itself) of the nonzero coordinates of E.
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Figure 3: Outer products can be stored in compressed format.

updates dominate the initial nonzeros of �, this representation con-

sists almost entirely of nonzero values, leveraging sparsity. More-

over, the CSQ format enables e�cient computation of outer prod-

ucts: since nonzeros are stored contiguously, this is equivalent to

computing the outer product of a small dense vector, and can be

performed e�ciently with a vector processor or a systolic array.

2.3 Multifrontal sparse factorization

The widely used multifrontal algorithm [19] organizes compu-

tation as a tree of operations on matrices in CSQ format. This

compressed format enables using dense linear algebra primitives,

and is used in many factorization packages such as MUMPS [2],

STRUMPACK [22], and UMFPACK [13].

Symbolic factorization: The multifrontal algorithm relies on a

preprocessing step called symbolic factorization that analyzes only

the matrix’s nonzero pattern and creates helper data structures. In

most applications, the nonzero pattern is static or changes very

infrequently. For example, when simulating a circuit, devices do not

gain new neighbors, and when simulating a car collision, most of

the mesh describing the car retains the same structure. As a result,

this step can be amortized across many numeric solves, making

its performance costs a secondary concern [14]. To illustrate the

bigger picture and where sparse matrix factorization �ts within it,

Figure 2 shows the general structure of many applications that use

sparse matrix factorization.
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1 for sn in postorder(etree):
2 F = Fs[sn]
3 # gather updates from all children
4 for child in children(sn):
5 gather_updates(F, Us[child])
6

7 # factor the current supernode
8 for i in range(N[sn]):
9 F[i,i] = sqrt(F[i,i])
10 F[i+1:,i] *= (1 / F[i,i])
11 F[i+1:,i+1:] -= outer(F[i+1:,i],
12 F[i+1:,i])
13

14 # store the rest as an update to the parent
15 Us[sn] = F[N[sn]:,N[sn]:]

Listing 2: Multifrontal Cholesky pseudocode.

Numeric factorization: After preprocessing, the sparse factoriza-

tion is described as an elimination tree [56] of supernodes �: , each

represented by a CSQmatrix. Figure 4 shows an elimination tree for

the matrix from Figure 1a. For a supernode �: , the �rst #: columns

of �: will contain a subset of "’s columns that is determined by

symbolic factorization. For example, in Figure 4, the nonzeros from

columns" [:, 0] and" [:, 5] are stored in the �rst two columns of

�0. �: ’s remaining*: columns are used to store the results of the

outer products of the �rst #: columns.

Concretely, in Figure 4, the outer product of" [:, 0] with itself

will produce nonzero values at (5, 6, 8) × (5, 6, 8). By construction,

these values can all be stored in �0 and represented e�ciently using

the CSQ format. For each supernode in Figure 4’s elimination tree,

the �rst #: columns are shaded and the remaining*: columns are

left blank.

During the actual numeric factorization, the algorithm traverses

the tree from leaves-to-root, executing the pseudocode in Listing 2.

At each supernode �: , the �rst step is gathering updates from child

CSQ matrices.2 Updates need to be accumulated by coordinate. For

example, in Figure 4, when B= = �6, �0 [6, 6] and �2 [6, 6] would

be added to �6 [6, 6], and �0 [8, 6] would be added into �6 [8, 6]. Im-

portantly, the same coordinate will almost always map to di�erent

positions (i.e., actual memory locations) in the parent and child CSQ

matrices.

After all updates have been gathered, the algorithm runs #:

outer-loop iterations of Cholesky factorization (Listing 1) on �: .

This step produces the �nal output columns. For example, after

running two Cholesky outer-loop iterations on �0, columns" [:, 0]

and" [:, 5] will be fully factored and will not be updated again.

The fact that the last*: columns of any supernode �: need to be

gathered into ?0A4=C (�: )’s CSQ imposes a data dependence. The al-

gorithm cannot begin factoring ?0A4=C (�: ) before �: has been fully

factored. As long as data dependences are respected, supernodes

can be factored in parallel. Listing 2 performs a postorder traversal

of the elimination tree, which ensures that all children are factored

before their parents. This ordering is correct, but in Section 5, we

will re�ne this ordering to improve performance.

This algorithm is e�cient because factoring each supernode,

which has cubic complexity, is e�cient on CSQ matrices. Gather-

updates have low arithmetic intensity, but there is only a quadratic

number of updates, so factoring dominates.

2Prior work sometimes calls this operation “extend add” [2, 39].
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Figure 4: Supernodal elimination tree for !. When Listing 2

runs on this tree, it performs 2 steps of factorization on �0, 1

step of factorization on �2, then adds �0 (6, 6), �0 (8, 6), �0 (8, 8),

and �2 (6, 6) into their respective entries in �6 before factoring

�6. Colored supernode cells represent where columns are

factored. Note that each column is factored exactly once.

2.4 LU factorization

This section has focused on Cholesky factorization, but almost all

of the explanations apply to LU factorization too.

LU factorization is similar to Cholesky factorization, but is not

limited to symmetric positive-de�nite (SPD) matrices. Whereas

Cholesky factorization �nds ! such that � = !!) , LU factorization

�nds a lower-triangular matrix ! as well as an upper-triangular

matrix* such that� = !* . This allows !* factorization to work on

non-symmetricmatrices, which alsomeans�’s upper triangle needs

to be stored and computed on. !* factorization requires ≈ 2×more

FLOPs than Cholesky factorization. To preserve numeric stability,

we use static pivoting as a preprocessing step [37]. Using static

pivoting, we are able to use a similar loop nest to Listing 1, but

change the loop bounds to materialize distinct values in the upper

triangle. This implementation of sparse !* shares the same types

of data dependences as sparse Cholesky.

3 SPARSE FACTORIZATION IS INEFFICIENT
ON PRIOR ARCHITECTURES

We now describe why existing architectures are ill-suited to sparse

factorization algorithms, motivating the need for a new accelerator.

Section 3.1 and Section 3.2 quantitatively analyze the performance

of state-of-the-art GPU and CPU implementations, showing that

despite extensive hardware-aware optimizations, utilization is often

dismal. Section 3.3 discusses other proposed accelerators, explaining

why they lack key ingredients to handle sparse factorization.

3.1 GPU implementations

Given their wide availability and high peak compute throughput,

GPUs have become the hardware of choice for accelerating lin-

ear algebra applications. There are many sparse matrix factoriza-

tion packages that leverage GPU acceleration; we will analyze

CHOLMOD (Cholesky) [54] and STRUMPACK (LU) [22], as we

found that they achieved the best performance across a wide range

of sparse matrices.

Figure 5 (left) reports the performance of STRUMPACK when

running on an NVIDIA V100 GPU, which provides a peak double-

4
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representative sparse matrices.
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for the two extreme matrices in Figure 5,

showing that matrices with lower utilization

have more FLOPs in smaller supernodes.
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precision �oating-point throughput of 7000GFLOP/s. Figure 5 re-

ports performance in GFLOP/s, showing how well the GPU is uti-

lized, on four representative matrices (our evaluation uses a larger

set; see Section 7.1 for methodology details).

Figure 5 shows a wide range of e�ciencies across matrices:

while atmosmoddd achieves 26% of the GPU’s peak throughput,

human_gene1 achieves only 2.8%, and FullChip achieves a dismal

0.004% of peak throughput—only 0.3 GFLOP/s!

This wide range of performance happens because GPUs are in-

e�cient when factoring small CSQ matrices. As we have seen in

Section 2.3, sparse factorization mainly consists of outer-product

updates on supernodes that are much smaller than the full matrix,

and are stored compactly in CSQ format.

Di�erent matrices have di�erent nonzero patterns, which induce

di�erent symbolic factorizations with a wide range of supernode

sizes. Figure 6 shows the cumulative distribution function (CDF) of

FLOPs across supernode sizes for the two matrices at the extremes

of e�ciency: atmosmoddd (top) and FullChip (bottom). In each

graph, the G-axis is supernode size as the number of rows and

columns (e.g., 4000 denotes a 4000×4000 supernode), and the line

reports the fraction of total FLOPs (i.e., work) that happens on

supernodes of size ≤ G . In atmosmoddd, 8% of the work happens on

supernodes of size ≤ 4000, i.e., 92% of work happens on supernodes

of size > 4000. By contrast, in FullChip, the largest supernode has

size 3047.

To a �rst order, we can approximate the work in each supernode

as the factorization of a dense matrix. Figure 7 shows the perfor-

mance of the V100 GPU on dense factorization as a function of

matrix size, in GFLOP/s. Performance �attens around size 20000,

and drops linearly below 10000, so small matrices su�er very low

throughput. This mostly explains the dismal performance of GPUs

on matrices like FullChip: small supernodes hamper utilization.

While the above analysis is a good �rst-order approximation, it is

not the full story, because it assumes that each supernode is factored

in series. This would result in even worse SM utilization. Instead,

recent work uses batching [1, 22, 54]: grouping small supernodes

at the same depth in the elimination tree into a single kernel, as

shown in Figure 8.

Batch 1

Batch 2

Batch 3

Figure 8: Batching groups supernode factorizations.

The GPU implementations we compare against use batching to

improve utilization by exploiting parallelism across supernodes and

amortizing kernel launch overheads. However, batching is a crude

way to handle data dependences that misses many opportunities

for parallelism. Batching also causes load imbalance because it

groups supernodes of di�erent sizes, as Figure 8 shows, causing poor

SM utilization. Finally, level-by-level traversal of the elimination

tree eliminates opportunities for data reuse, incurring additional

DRAM tra�c. It would be more e�cient for the parent supernode to

consume child updates immediately after they are produced, as we

will see in Section 5.2. As a result of these architectural limitations,

GPUs achieve poor utilization, as Figure 5 shows.

In summary, while GPUs have plentiful computational through-

put, they are ultimately limited by irregular shapes and data de-

pendences across supernodes, which destroy utilization. Spatula

solves this with a more �exible organization that (1) achieves much

higher performance on small matrices, and (2) gracefully handles

complex data dependences to unlock much more parallelism within

and across supernodes.

3.2 CPU implementations

Given the limited utilization of GPUs, it is important to consider

CPU implementations aswell. Figure 5 (right) shows STRUMPACK’s

performance across the same set of sparse matrices when running

on a 32-core/64-thread AMD Zen2 CPU at 3.5 GHz. While the CPU
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Figure 9: Spatula architecture overview.

implementation signi�cantly outperforms the GPU on FullChip

and slightly outperforms it on human_gene1, it still su�ers from low

compute utilization. CPUs overcome some of the limitations of their

lower peak throughput with more �exible scheduling hardware,

but they still su�er dismal utilization on many di�cult matrices.

Hybrid CPU-GPU: Prior work has also considered hybrid CPU-

GPU approaches [21, 40], However, the increasing gap in FLOP/s

between CPUs and GPUs combined with costly host-accelerator

communication has resulted in these approaches lagging behind

GPU-only techniques [54].

3.3 Other accelerators

ASIC accelerators for dense factorization: REVEL [65] and

TaskStream [10] are hardware accelerators that support Cholesky

factorization of small dense matrices. However, they do not support

the sparse case. The di�culty in sparse matrix factorization is

not primarily speeding up single-supernode kernels, but rather

e�ciently handling di�erently sized supernodes without major load

imbalance. Additionally, data movement is not a signi�cant concern

for a single small dense Cholesky, but becomes crucial when dealing

with a large tree of supernodes, where balancing parallelism and

data movement is key to achieving good performance.

FPGA accelerators for sparse factorization: Prior work has

proposed using FPGAs to accelerate sparse factorization. But the

limited arithmetic throughput of FPGAsmakes them ill-suited to fac-

torization. Nechma et al. [46] and Kapre et al. [30] describe designs

with peak throughput of <10GFLOP/s. Due to their low throughput,

they underperform state-of-the-art CPU implementations. Further-

more, these designs use the Gilbert-Peierls algorithm [23] which

does not e�ciently scale to higher compute throughputs.

4 SPATULA ARCHITECTURE

Figure 9 shows an overview of Spatula’s hardware architecture.

Spatula combines several unique features that enable high-perfor-

mance sparse factorization. First, Spatula features processing ele-

ments (PEs) that achieve high performance on small matrices. Each

PE features a 16×16 systolic array that executes factorization tasks

at high throughput. Supernodes are processed in 16×16 tiles. This

design enables high performance when factoring small supernodes,

which as we have seen in Section 3, are common and performance-

critical. Second, Spatula features �ne-grained hardware support for

scheduling needed to handle frequent data dependences. Each PE is

double-bu�ered to hide latency, and a global scheduler dispatches

tasks across PEs. Third, Spatula has a memory hierarchy tailored to

the needs of factorization workloads: a banked on-chip cache cap-

tures irregular reuse of tiles, and high-bandwidth memory provides

adequate throughput.

4.1 Tiles are Spatula’s primitive datatype

The multifrontal algorithm (Section 2.3) runs sparse factorization

as a tree of computations on CSQmatrices. The CSQ format enables

processing sparse data using dense linear algebra kernels. These

dense kernels can be tiled, which enables handling CSQ matrices

of varying sizes with a �xed hardware tile size.

c0

c1 T00

c2

c3

c4 T10 T11

c5

c6

c7 T20 T21 T22

c8

c9

c10 T30 T31 T32 T33

c11

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11

Figure 10: Dividing a su-

pernode CSQ into �xed-

size tiles.

Spatula’s primitive datatype are

) ×) dense tiles of double-precision

�oating-point numbers. A CSQ ma-

trix can be divided into tiles of a �xed

size using position-based tiling [60],

as shown in Figure 10.

Tile size is an important parameter.

Larger tiles allow Spatula to achieve

a particular throughput with fewer,

higher-throughput PEs, allowing for

a simpler on-chip network and amor-

tizing scheduling overheads. How-

ever, they increase the granularity

of computations, leading to possible

under-utilization.

Sweeping tile sizes, we �nd that ) = 16 achieves the highest

performance across a wide range of matrices. Each tile’s values are

stored contiguously in memory, along with the coordinates of each

row and column.

4.2 Task-based programming model

Spatula uses a task-based programming model. Each task takes a

set of tiles as inputs and accumulates the results into a single output

tile. Spatula supports several types of tasks, all shown in Table 1.

Each tasks runs on one PE, and each PE can run tasks of any type.

The multifrontal algorithm (Section 2.3) is decomposed into a

collection of tasks. We now present this decomposition; Section 4.3,

which describes the implementation of PEs, gives more details on

the internal structure of each task.

Figure 11 illustrates how the code on lines 8–12, which factors a

supernode, is mapped into Spatula tasks. First, the top-left corner

Task Type Computation Input Types

dgemm
D += gemm(hcat(A),

vcat(B))

A: list<Tile>

B: list<Tile>

tsolve D = tri_solve(D, A) A: Tile

dchol D = dense_chol(D)

dlu D = dense_lu(D)

gather_updates for T in A: D += T A: list<Tile>

Table 1: Spatula task types. Note that D is always a Tile, and

it is both an input to the task and its sole output.
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Figure 11: Data-dependence graph of tasks needed to per-

form 9 outer-loop iterations of factorization on a tiled CSQ

supernode.

tile is factored using a dchol (dense Cholesky) task. This task’s

output tile, �)000, is then consumed by a set of tsolve (triangular

solve) tasks that process the leftmost column of tiles. These tasks’

outputs, �)010, �)020, and �)030, are then consumed by a set of

dgemm tasks that process the second column of tiles. Once the

dgemm tasks in the second column complete, tasks �)111, �)121, and

�)131 are able to execute, and the algorithm continues like this.

Note that dgemm tasks in the third column take inputs from both

the �rst and second columns. For example, )022’s input )1[0:1] is

produced by �)121. These deep chains are due to the dependences

discussed in Section 2: each dgemm task computes and accumulates

all the outer-product updates for its tile.

Finally, the last task type, gather_updates, is used to gather

updates across supernodes (lines 4–5 of Listing 2).

4.3 Processing elements

As shown in Figure 9, Spatula has 32 processing elements (PEs).

Each PE features a systolic array that can execute all types of tasks.

Systolic arrays are ideally suited to dgemm, the most common task

type. The key design choice is whether to have homogeneous

PEs that can handle all tasks, or heterogeneous PEs specialized

to each task. We opt for a homogeneous approach for two rea-

sons. First, the mix of di�erent task types varies across matrices. For

example, Serena has 99.4% of its FLOPs in dgemm tasks, whereas

G3_Circuit has just 85% of its FLOPs in dgemm tasks. Second, other

types of tasks can also bene�t from systolic arrays, and these tasks

are often in the critical path (e.g. dchol in Figure 11), so running

them quickly helps overall performance.

Prior work has already proposed di�erent systolic arrays for

each task [6, 34]; we adapt and combine these ideas to produce a

single systolic array that can handle all. This design adds < 5% area

overhead vs. an array that can only run dgemm. Below, we explain

how we build up the array task by task.

= tsolve(  , )

T30 T31 T32

T30

T31

T32

T33 +=

Task Slot 0 
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Input Tile FIFO
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Figure 12: A snapshot of a PE’s state. �)033 is drawn from Fig-

ure 11, and �)G is a task from a di�erent supernode. Vertical

and horizontal links are part of the basic systolic array, and

diagonal links are added to support dchol and dlu.

Basic systolic array for dgemm: dgemm multiplies = pairs of input

tiles, interpreted as matrices � and � of sizes ) × =) and =) ×) ,

and accumulates the result into a) ×) tile � . Figure 12 (top) shows

task �)033 from Figure 11 as an example.

We start with a standard systolic array, shown in Figure 12, which

consists of a grid of ) ×) FMAC units with pipelined horizontal

and vertical connections. The destination tile � is �rst loaded into

the systolic array. Then, a column of � and row of � are fed to the

array each cycle, and the array computes and accumulates partial

products following an output-stationary (inner-product) data�ow.

Finally, the output tile� is read out row by row. The array is double-

bu�ered (detailed later) to hide startup latencies, so its throughput

is one dgemm per =) cycles.

Handling dense factorization (dchol/dlu) tasks: Tasks corre-

sponding to top-left tiles, such as �)000 in Figure 11, are small dense

Cholesky factorizations (dchol), and require additional hardware

support to execute on a systolic array.

We augment the systolic array to implement dchol using Brent

et al.’s algorithm [6]. We extend the ALU at one of the corners of the

array to support a division and square-root operation, as Figure 12

shows. We also add diagonal links between ALUs, and augment

the PE’s �nite state machine (FSM) to support a di�erent data�ow:

input tile� is streamed into the array row by row (as in dgemm), but

values cycle through the array so that all elements in the diagonal

pass through the inverse-square-root ALU. Outputs are streamed

into the PE’s accumulator, then written back to the cache.

Systolic dense Cholesky factorization tasks are latency-bound,

each having a critical path of ) inverse-square root operations.

These tasks under-utilize the array’s FMAC units, but they are

uncommon, as each supernode has a linear number of these tasks,

vs. a cubic amount of dgemm tasks. dlu tasks also leverage the same

hardware modi�cations.

Handling triangular solve (tsolve) tasks: tsolve tasks need

a much smaller set of extensions to implement Kung et al.’s algo-

rithm [34]. Values of the read-only� input are streamed downwards

through the array, while values in each row of the read-write �

input are cycled through a row of ALUs. These tasks do not re-

quire any additional ALU hardware or links between ALUs over

the above extensions, just additional control FSM logic to enable

this data�ow.
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Figure 13: Given the elimination tree with tiled CSQ su-

pernodes shown in (a), (b) illustrates the the many-to-many

gather_update dependence structure.

Handling gather-update tasks: gather_update tasks use the

PE just for addition. These tasks are responsible for adding values

with matching coordinates from a tile of a child’s CSQ matrix into

a tile of the parent’s CSQ matrix. Figure 13a shows a detailed exam-

ple, where updates (the unshaded region of the CSQ matrix) from

matrices �, �, and� need to be accumulated into to � . However, at

a tile level, the coordinates of each tile do not match. As shown in

Figure 13a, tile �2,1 requires updates from tiles �3,2, �3,3, �2,2, and

�1,1. Coordinates on both axes in each tile are guaranteed to be

strictly increasing, allowing addition to be implemented by shifting

input rows into the correct position.

Task and data orchestration: To achieve full PE utilization, PEs

employ two di�erent latency-hiding mechanisms. First, as shown

in Figure 9, each PE has multiple task slots (four in our implementa-

tion) to decouple data accesses from execution. Each slot can hold a

di�erent task, and the scheduler dispatches tasks to PE slots. When

a task arrives at a slot, the PE starts loading the task’s input tiles

while the PE is executing a task in another slot. This lets the PE

hide the latency of memory accesses (from cache hits or misses).

Second, the systolic array double-bu�ered: each array element

has two sets of input and accumulator registers. While one task is

executing, the PE can load the next task’s operands into the array’s

accumulator registers. This lets the PE hide any startup latency

when moving from one task to the next.

Tasks become runnable when all of their input operand loads are

completed and data is available. If none of the PE’s slots contains a

runnable task, the PE stalls. As the PE executes a task, it will draw

inputs from the input tile FIFO associated with the current task.

Upon �nishing a task, the PE writes the updated destination tile

back to Spatula’s cache.

4.4 Hardware scheduler

E�ciently executing sparse matrix factorizations requires dynamic

scheduling hardware. There are two sources of parallelism: �ne-

grained intra-supernode parallelism, where independent tasks from

a single supernode can run in parallel, and coarser-grained inter-

supernode parallelism, where tasks from independent supernodes

can run in parallel.

Emilia_923
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cuit
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Figure 14: Comparing

scheduler designs.

Due to the wide range of su-

pernode sizes, achieving good uti-

lization requires exploiting both

intra- and inter-supernode par-

allelism. Figure 14 shows this

by comparing Spatula’s perfor-

mance on several matrices under

three scheduling policies. Inter

dispatches each supernode to a dif-

ferent PE, exploiting only inter-

supernode parallelism. By exploit-

ing coarse-grain parallelism, In-

ter is very simple to implement

and needs minimal hardware sup-

port. Unfortunately, it achieves ter-

rible utilization. Recall from Fig-

ure 6 that most matrices have

large supernodes with ample intra-

supernode parallelism. Binding a

single supernode to each PE results in running these large supern-

odes serially and bottlenecking performance. For example, when

factoring the root supernode, there are no other available supern-

odes, so only one PE would be utilized.

By contrast, Intra runs one supernode at a time across all PEs,

exploiting only intra-supernode parallelism. Intra requires a hard-

ware scheduler, as with 32 PEs, it must dispatch a task every few

cycles, and must negotiate complex inter-task dependences. Intra

works well when large supernodes dominate, e.g., in Emilia_923,

but works poorly when small supernodes are frequent. For instance,

Intra su�ers from 4.0% compute utilization in G3_circuit, as its

small supernodes cannot use all the PEs. This is the same reason

why GPU implementations use batching (Section 3).

Intra+inter is Spatula’s scheduling policy, which exploits both

intra- and inter-supernode parallelism. This policy �rst exploits

�ne-grain parallelism within a single supernode to keep data foot-

print low, but overlaps multiple small supernodes when more par-

allelism is necessary. Figure 14 shows that Intra+inter achieves

high utilization.

We now discuss the hardware support that enables Spatula’s

scheduling policy; Section 5 presents the policy itself.

Figure 15 shows Spatula’s scheduler, which follows a two-level

design: a supernode scheduler feeds ready supernodes to a task

scheduler, which produces the �ne-grained tasks of each supernode

and dispatches them to PEs.

Supernode scheduler: The supernode scheduler determines the

coarse-grain schedule by controlling the processing order of su-

pernodes. This unit requires limited throughput, producing at most

one supernode per 100 cycles (and often much less). Thus, for �ex-

ibility, we implement this unit using a RISC-V control core. The

core feeds the task scheduler through a queue of ready supernodes,

and consumes supernode completion noti�cations from the task

scheduler.

Task scheduler: The task scheduler determines the �ne-grain

schedule of computation. This scheduler is implemented using dedi-

cated hardware, because it requires high throughput (producing one

task every 3 to 20 cycles) and it must handle tight data dependencies

with low latency.
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Figure 15: Spatula scheduler design, with 16 generators.

The task scheduler is built around a set of generator units (16 in

our implementation). A generator is a simple, con�gurable FSM that

produces all the tasks to process one supernode. Each generator is

�rst con�gured with the information of the supernode, including

its location in memory and dimensions. Then, the generator emits

a sequence of tasks that process the supernode. Once the generator

�nishes producing tasks for its current supernode, it can be reused

for a di�erent supernode. A task dispatcher consumes this sequence

of tasks and dispatches them to PEs, �lling their task slots greedily.

Each generator releases a task to the dispatcher only when the

task is ready, i.e., when all its inputs have been computed. To this

end, each generator keeps a completion scoreboard that tracks which

inputs are available. Due to the structure of the computation, this

information is easy to track, requiring : ;>62:-bit entries for a :×:-

tile supernode (this encodes the last available column tile for each

row tile). Because we use multi-level tiling (Section 5), : is limited

to 80, and this scoreboard takes about 500 bits of state, with simple

wakeup logic similar to that of a scalar scoreboarded core [61].

4.5 Memory hierarchy

In our design, we opt for a cache instead of scratchpad memory.

As discussed in Section 4.4, the scheduler dynamically interleaves

tasks from di�erent supernodes depending on the readiness of their

inputs. The resulting access pattern cannot be known at compile-

time, requiring the use of a cache.

We use an LRU cache with large cache lines. As dense 16 × 16

tiles are our primitive datatype, we can utilize large tile-sized cache

lines (2KB in our implementation). We have relatively few PEs

and relatively large data transfers, so a full crossbar is practical.

Every cycle, we have 32 PEs, each of which consumes 32 double-

words of data per cycle, resulting in a total of 8 TB/s bandwidth

needed to feed our PEs when they are all active. This network

con�guration consumes relatively little area and energy, as we will

see in Section 7. Our scheduler issues memory accesses ahead of

time, when a task group is �rst scheduled onto a PE, achieving a

high degree of decoupling and limiting memory stalls.

5 SCHEDULING

Section 4.4 showed that exploiting intra- and inter-supernode paral-

lelism is necessary, and presented the scheduling hardware needed

to do so. We now present our scheduling algorithm, showing how

we negotiate parallelism and footprint to achieve high utilization. To

reduce data footprint, our general strategy is to exploit �ner-grain

parallelism �rst. Section 5.1 describes how Spatula schedules within

a supernode, and Section 5.2 describes how Spatula dynamically

overlaps supernodes when intra-node parallelism is insu�cient.

5.1 Intra-supernode scheduling

E�ectively scheduling a single supernode is important. Though

Figure 14 shows that running a single supernode at a time is insu�-

cient, exploiting available intra-supernode parallelism lets Spatula

achieve the same degree of parallelism with fewer concurrent su-

pernodes, reducing cache footprint.

Breadth-�rst task order: Intra-supernode schedules are imple-

mented in hardware by the generator FSMs described in Section 4.4.

For simplicity, generators produce tasks in a �xed order, and dis-

patch tasks in this order to PEs (i.e., out-of-order completion is

possible, but not out-of-order dispatch).

Due to frequent dependences, di�erent task orders produce

vastly di�erent performance. However, we observe that due to

the structure of the computation, a breadth-�rst task order produces

a nearly optimal schedule. This is simply a loop nest that corre-

sponds to a breath-�rst traversal of the task dependence graph

shown in Figure 11.

Simpler orders, like following a �xed-dimension order, fail to ex-

ploit the available parallelism and aremultiple times slower on small

supernodes with frequent dependences. Conversely, we explored

an aggressive data�ow scheduler that issues tasks out-of-order, and

found negligible overall performance gains overall, and less than

10% in all cases. Thus, we opt for this simple breadth-�rst order.

Multi-level tiling: Some matrices have supernodes whose size

vastly exceeds on-chip storage. For instance, atmosmodd’s largest

supernode (Figure 6) is 12709×12709, over 1 GB!

Handling these large supernodes e�ciently requires additional

levels of tiling. In Section 4, we saw factorization is amenable to

tiling, and Spatula uses small ) ×) tiles (16×16 in our implemen-

tation) as its main primitive. This structure is fractal, and admits

further tiling. We introduce level-2 supertiles of con�gurable size,

(×( small tiles each. ( is con�gurable, and simply adds loop nest lev-

els to the generator FSM, which produces tasks to compute outputs

supertile by supertile.

We size each supertile to �t on-chip. For example, with ( = 70,

each supertile is 10MB, with �ts within Spatula’s 16MB cache.

Most reuse happens within a supertile, allowing us to adopt the

breadth-�rst task order without incurring additional data move-

ment. Generators also process supertiles in breadth-�rst order, but

this is to simplify logic: we have evaluated other supertile orders

and performance is insensitive to ordering.

5.2 Inter-supernode scheduling

As discussed in Section 4.4, achieving high compute utilization

requires running multiple supernodes concurrently. However, ex-

ploiting inter-supernode parallelism too aggressively risks blowing

up the algorithm’s cache footprint.

Spatula’s general-purpose scheduling core enables �exibility

when designing supernode ordering algorithms. To balance paral-

lelism with memory footprint, Spatula opts for an algorithm that is

based on a post-order traversal of the tree. A post-order traversal

9



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Axel Feldmann and Daniel Sanchez

Area (<<2)

PEs: 32, 16×16 double-bu�ered systolic PEs, 1 GHz 43.5

Scheduler: 16-generator and RISC-V control core 0.05

Cache: 16MB, 32 banks, 16-way, 2 KB lines, LRU, 17.6

write-allocate, up to 256 concurrent misses

NoC: 5 32×32 (4 TB/s) crossbars 16.7

Main memory: 2 HBM2E PHYs (1 TB/s) 29.8

Total 107.7

Table 2: Con�guration and area of Spatula as evaluated.

minimizes footprint by visiting a parent supernode immediately

after all its children.

However, Spatula’s algorithm allows dynamic reordering to un-

lock inter-supernode parallelism. Speci�cally, code running on the

scheduling core maintains a min-heap of ready supernodes keyed

by their position in the post-order traversal. Whenever a new su-

pernode is needed, the scheduler core yields the supernode at the

root of the min-heap.

To minimize footprint, Spatula’s task dispatcher follows a biased

order: it tries to �ll PEs with tasks from the generators with older

supernodes, and uses more recent ones only when older supernodes

have no ready tasks.

This policy automatically balances parallelism and footprint:

when processing a large supernode, internal parallelism is plentiful,

and thewhole system focuses on that supernode, processed in cache-

�tting supertiles. Other generators may have younger supernodes,

but their tasks are not issued because the large supernode �lls all

PEs. Conversely, when processing many small supernodes with

limited internal parallelism, the dispatcher overlaps the execution of

these supernodes to keep high utilization. But this is �ne footprint-

wise, as each supernode is much smaller than the on-chip cache.

6 IMPLEMENTATION

We implement Spatula’s components in RTL and synthesize it us-

ing Synopsys Design Compiler on commercial 12/14nm technology

processes. We target a 1 GHz frequency. We assume 512GB/s band-

width per PHY, similar to the NVIDIAA100 GPU, which has 2.4 TB/s

with 6 HBM2E PHYs [48]. We rely on prior work to estimate the

PHY’s area [11] and power [20].

Table 2 shows Spatula’s con�guration and its area breakdown

by component. Spatula’s design is balanced between computation

and communication, with functional units taking up 43.5mm2 out

of the total 108mm2 of area.

7 EVALUATION

7.1 Experimental methodology

Evaluated systems:We compare Spatula with two baselines: an

NVIDIA V100 GPU, and an AMD Ryzen Threadripper PRO 3975WX

CPU. Note these systems have higher area and TDP than Spatula at

similar or more advanced nodes (speci�cally, the V100 is 815mm2

in TSMC 12nm) [47].

Simulation:We evaluate Spatula using a cycle-level simulator. Our

simulator is based on a simulator for accelerators that has been used

in prior work, including Gamma [68] and ISOSceles [67], but with

customized timing models for PEs, scheduler, and memory system.

The simulator is cycle-driven [41]: every hardware component is

modeled as an object; every cycle, each object is ticked and its

activity is simulated appropriately.

Spatula’s simulator uses synthesis-derived detailed timing mod-

els for PEs, scheduler, caches, on-chip network, and main memory.

Caches are banked, pipelined, and implement lookups with serial

tag and data accesses, and we model bank access latency and con-

tention. Banks are shared across PEs. The NoC connecting PEs and

cache banks is modeled using bit-sliced crossbars as described by

Passas et al. [51]. Wemodel HBM2E’s structure usingMicron’s spec-

i�cations [43]. Each cache bank issues accesses to a single HBM2E

channel. Because each cache line is 2KB, the size of the row bu�er,

memory accesses achieve high utilization.

As an optimization, PEs are simulated at a task granularity, but

we do not model the cycle-by-cycle execution of each task (e.g., the

timing of each individual ALU). Since tasks are executed systolically,

once started, each task incurs a �xed latency that depends solely on

tile size parameters encoded in the task descriptor. This enables us

to fully simulate large matrices instead of depending on sampling-

based approaches. We model all dynamic timings of PEs, e.g., each

task does not start until all its operands have been fetched.

Finally, we check functional correctness against the baselines,

and we compute power by combining activity factors from simula-

tions with synthesis results.

Selected con�guration: Spatula’s default con�guration uses the

parameters in Table 2. We determined this con�guration by sweep-

ing the number of PEs, cache banks, HBM PHYs, and primitive tile

size. We select a Pareto-optimal con�guration with reasonable area

and power. We use RTL synthesis to �nd the area and power of com-

ponents other than main memory; we use prior work to estimate

HBM2E power [20, 52] and PHY area [12, 52]. Section 7.3 evaluates

larger and smaller Spatula designs, showing good scalability.

Factorization algorithms:We compare against state-of-the-art

implementations of sparse Cholesky and sparse LU.

For sparse LU, we compare against STRUMPACK [22], a widely

used sparse LU package optimized for both CPUs and GPUs. For

sparse Cholesky, we compare against CHOLMOD [8]. CHOLMOD

is widely used and is the standard sparse Cholesky implementa-

tion used in Matlab. We compare against the most recent versions

(STRUMPACK 6.3 and CHOLMOD 7), except for CHOLMOD on

GPU, where we use version 4.6.0-beta, which incorporates batching

[54] and outperforms more recent versions. These packages use

MKL on the CPU, and cuBLAS and cuSolver on the GPU.

Input matrices: We select a representative set of matrices from

SuiteSparse [16]. We select symmetric positive-de�nite matrices for

Cholesky, and leave the others for LU. For both Cholesky and LU, we

select the 20 relevant matrices with the longest GPU execution time.

Hardware acceleration is most needed for matrices that are time-

consuming to factor. We �nd that among these top matrices, some

have extremely similar structures, such as Long_Coup_dt0 and

Long_Coup_dt6. Additionally, some matrices are reduced versions

of others, such as bone010 and bone010_M. To achieve a more

diverse set, we select only one matrix from each of these groups.

The resulting matrix sets have diverse structures and display a

wide range of utilizations in CPU and GPU baselines. Our methodol-

ogy produced a set of matrices that contains almost all the matrices

evaluated by our baselines [22, 54].
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Matrix Spatula

TFLOP/s

vs.

GPU

vs.

CPU

Serena 14.5 12.4 46.8

Geo_1438 14.0 14.4 60.7

Emilia_923 13.9 15.2 61.4

Fault_639 13.8 18.3 67.0

Hook_1498 13.5 20.4 141.2

nd24k 13.2 14.4 57.6

audikw_1 13.2 25.9 90.8

PFlow_742 12.9 200.4 93.9

bone010 12.7 31.5 129.1

StocF-1465 12.6 96.4 181.4

Flan_1565 12.1 29.2 155.0

consph 10.6 239.2 179.0

boneS10 9.8 121.0 664.1

apache2 9.6 156.3 837.6

o�shore 9.5 147.8 710.6

inline_1 9.2 121.0 464.0

bmwcra_1 8.9 120.2 399.9

BenElechi1 8.3 242.7 628.4

af_0_k101 8.1 169.5 651.6

G3_circuit 5.3 206.1 2273

gmean 11.0 61.3 212.7

Table 3: Spatula performance on

sparse Cholesky and speedups

over GPU and CPU.

Matrix Spatula

TFLOP/s

vs.

GPU

vs.

CPU

cage13 14.4 11.4 17.7

Long_Coup0 14.1 9.4 18.3

nlpkkt80 13.7 8.2 16.5

Ge87H76 13.5 6.9 19.0

atmosmodd 13.4 7.7 17.6

Transport 12.8 10.5 17.5

language 12.4 18.9 25.5

ML_Geer 11.6 21.6 23.6

appu 11.2 38.2 36.4

dielFilterV3real 11.2 32.9 25.1

CoupCons3D 11.1 26.4 29.1

kkt_power 11.0 29.7 24.0

ASIC_680k 10.6 294.9 45.6

torso3 10.3 29.1 40.4

ohne2 9.9 30.5 32.1

F1 9.6 32.8 33.4

human_gene1 8.7 37.8 31.5

FullChip 6.5 22030 1645

TSOPF_b2383 4.9 105.8 30.3

rajat31 4.8 99.2 45.8

gmean 10.4 36.2 32.5

Table 4: Spatula performance on

sparse LU and speedups over

GPU and CPU.
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Figure 16: Spatula cycle breakdown.

7.2 Performance

Table 3 and Table 4 compare Spatula’s performance to the CPU and

GPU baselines. Speedups are measured in terms of end-to-end exe-

cution time, and Spatula’s performance is given in TFLOP/s, which

also conveys overall utilization (Spatula has a peak throughput of

16.384 TFLOP/s).

Overall, Spatula achieves large speedups: on Cholesky, it is

gmean 61.3×/213.7× faster than the GPU/CPU; on LU, it is gmean

36.2×/32.5× faster. Spatula’s gmean speedups over Cholesky and

LU are 47.1× over the GPU and 83.1× over the CPU. Spatula’s

large speedups stem from its uniformly high utilization, gmean

10.7 TFLOP/s, 65% of peak throughput.

Performance for Spatula and the baselines depends on matrix

structure. In matrices dominated by large supernodes, such as

atmosmodd, all systems achieve high utilization, and Spatula’s

speedups over the GPU and CPU are more muted (e.g., 7.7× over

the GPU on atmosmodd). But in matrices with a more diverse mix

of supernodes, GPUs and CPUs falter, whereas Spatula still achieves

good utilization. This causes large speedups. For example, Spatula

is 22,000× faster than the GPU and 1,600× faster than the CPU on

FullChip, because Spatula achieves 6.5 TFLOP/s on this matrix

while the baselines have terrible utilization (Section 3).

7.3 Architectural analysis

Utilization: Spatula achieves high PE utilization across matrices.

Figure 16 shows a breakdown of activity in PEs, showing the cycles

that they spend on tasks of each type and stalled (due to limited

parallelism or memory access stalls). Stalls are rare (typically 5-15%

of cycles), showing that Spatula’s latency-hiding mechanisms and

memory-aware scheduling are e�ective. As discussed in Section 4.3,

most cycles are spent in dgemm tasks, where Spatula achieves full

utilization of ALUs. gather_update tasks are the second most-

common type, and the other types are rare overall, but can consume

signi�cant cycles in some matrices (like G3_circuit or rajat31).

Data movement: Figure 17 reports Spatula’s main-memory tra�c

per matrix. The left of each bar shows the total data transferred

(bottom) and average memory bandwidth (top); each bar is broken

down by type of tra�c. Loads are broken down into three categories:

compulsory loads needed to read inputs, noncompulsory loads

initiated by gather_update tasks, and noncompulsory loads

initiated by other task types. Store tra�c is split between writing

results back to main memory and spilling intermediates.

Figure 17 shows that Spatula achieves high bandwidth utilization:

the average is 40% of the maximum 1TB/s, with remarkably little

deviation across matrices (27% to 87%) given their diversity. This

is because Spatula’s memory-aware scheduling achieves similar

operational intensity across matrices.

Figure 17 also shows that Spatula avoids needless data movement.

This can be seen from the ratio of non-compulsory loads to store

spills, which is close to 1:1 across all matrices. This means that

each spilled value is read back only once most of the time, avoiding

thrashing.

Power consumption: Figure 18 shows a breakdown of Spatula’s

power consumption. On almost all matrices, more than half of

total power (including main memory) goes to PEs, showing that

thanks to Spatula’s memory-aware scheduling, these algorithms

are compute-bound.
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Figure 17: Spatula data movement.
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Figure 18: Spatula power breakdown.
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Figure 19: CDFs of concurrently executing supernodes.

Scheduling: Figure 19 shows CDFs for the distributions of concur-

rently executing supernodes for Cholesky (top) and LU (bottom).

Each line reports results for a single matrix, and each point shows

the fraction of time (~-axis) that Spatula spends executing at most

the given number of supernodes (G-axis) concurrently.

Figure 19 shows two important points. First, di�erent matrices

need di�erent levels of concurrency, requiring a �exible scheduler.

Second, for many matrices, a lot of the time is spent processing

a single large supernode. This is because unlike GPU implemen-

tations, Spatula can factor small supernodes at high throughput,

removing them as bottlenecks.

Scalability:We explore the design space of Spatula implementa-

tions by sweeping the number of PEs, the primitive tile size, the

number of HBM PHYs, and the cache size.
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Figure 20: Scalability

Figure 20 shows the per-

formance of each design (~-

axis) as a function of area (G-

axis). Spatula’s design scales

gracefully to both larger and

smaller con�gurations, with

linear performance along

the Pareto frontier.

Comparison across GPU

generations: We have com-

pared with the V100 GPU

because it is built on the

same technology we synthe-

size Spatula on, but more re-

cent GPUs exist.

Table 7.3 shows the gmean performance of STRUMPACK on the

NVIDIA V100, A100, and H100 GPUs, and their utilization as per-

centage of peak throughput (7/19.5/51 FP64 TFLOP/s, respectively).

Newer GPUs improve throughput but utilization is low across the

board: the A100 improves V100’s utilization, reaching 4.8% (likely

due to its larger cache and FP64 tensor cores); meanwhile, the H100

barely outperforms the A100 and su�ers the lowest utilization, 2.0%.

These results show that the latest GPUs still su�er from poor

utilization, and Spatula still outperforms them by a wide margin.

Moreover, if built on newer technologies, Spatula can also be scaled

to provide higher throughputs. For example, Spatula as con�gured

achieves a 11× speedup over the A100 (just on LU), but the A100 has

2.6× more transistors than the V100. As Figure 20 shows, Spatula

scales e�ectively with area.

V100 PCIe A100 PCIe H100 PCIe

gmean GFLOP/s 272 962 1024

gmean util % 3.9% 4.8% 2.0%

Table 5: Performance of STRUMPACK on other GPUs.
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8 ADDITIONAL RELATEDWORK

Section 3 described prior work that seeks to accelerate matrix factor-

ization. In this section, we discuss sparse linear algebra accelerators

designed for other workloads.

Accelerators for memory-intensive sparse kernels:Many ac-

celerators target speci�c vector, matrix, or tensor products, such

as sparse matrix-sparse matrix multiplication (SpMSpM) or sparse-

matrix vector multiplication (SpMV) [3, 38, 45, 49, 50, 53, 55, 66, 68,

69]. These computations di�er greatly from matrix factorization:

they have low arithmetic intensity, and require signi�cant work

to traverse and manipulate (e.g., intersect or merge) sparse data.

These accelerators focus on these aspects, which are not problems

for sparse factorization.

Sparse systolic arrays: Some accelerators extend systolic arrays

to perform sparse matrix multiplication [28, 63]. The systems are

orthogonal to Spatula’s PEs, which mulitiply dense matrices, but

extend systolic arrays to other kernels.

Sparse-dense accelerators: ExTensor [29] and Tensaurus [57] are

programmable accelerators that support a wide range of tensor

products, including kernels with one sparse and one dense input.

These operations often have higher compute intensity, but tensor

products lack the challenging data dependences that arise in sparse

matrix factorization. These accelerators are not designed to handle

these dependences and have a substantially di�erent structure from

Spatula.

CPU-CGRA systems: Systems like Tartan [44], DySER [25], BE-

RET [26], and C-Cores [62] integrate spatial recon�gurable ar-

rays into general-purpose cores. In principle, some of these ar-

rays could be con�gured to execute Spatula tasks. However, the

general-purpose core adds large area costs and limits task dispatch

throughput. In Section 3.2 and Figure 5, we show that existing CPU

implementations already have low utilization. Giving CPUs DySER-

style execution units would not �x the dispatch problems, leaving

these extremely underutilized.

9 CONCLUSION

Sparse matrix factorization dominates performance in many scien-

ti�c computing applications. Existing architectures are ill-equipped

to handle the challenging data dependences and load imbalance in-

duced by di�erent sparse matrix structures.We have presented Spat-

ula, an architecture designed to accelerate sparse LU and Cholesky

factorization, achieving gmean 47× speedup over state-of-the-art

GPU implementations. By working across the hardware-software

interface, Spatula’s e�ciency gains make a large class of numeric

algorithms practical.

Spatula relies on several novel techniques that are applicable

beyond our speci�c implementation. Spatula avoids the parallelism,

load imbalance, and data movement bottlenecks of GPUs by (1) us-

ing short tasks that process small tiles as the basic unit of work;

(2) adopting �exible scheduling hardware that handles data depen-

dences and dispatches these short tasks at high throughput; and

(3) leveraging a novel scheduling algorithm that balances paral-

lelism and memory footprint. GPUs or other domain-speci�c accel-

erators could also adopt these techniques to achieve high through-

put on sparse factorization as well as on applications with similar

features.
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