
Filters, Wrappers and a Boosting-Based Hybrid for Feature

Selection

Sanmay Das sanmay@eecs.harvard.edu

Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Abstract

In this paper, we examine the advantages and
disadvantages of filter and wrapper methods
for feature selection and propose a new hy-
brid algorithm that uses boosting and in-
corporates some of the features of wrapper
methods into a fast filter method for feature
selection. Empirical results are reported on
six real-world datasets from the UCI repos-
itory, showing that our hybrid algorithm is
competitive with wrapper methods while be-
ing much faster, and scales well to datasets
with thousands of features.

1. Introduction

A supervised learning algorithm receives a set of la-
beled training examples, each with a feature vector
and a class. The presence of irrelevant or redundant
features in the feature set can often hurt the accu-
racy of the induced classifier (John et al., 1994). Fea-

ture selection, the process of selecting a feature sub-
set from the training examples and ignoring features
not in this set during induction and classification, is
an effective way to improve the performance and de-
crease the training time of a supervised learning algo-
rithm. Feature selection typically improves classifier
performance when the training set is small without
significantly degrading performance on large training
sets (Hall, 1999). It is also useful in making the in-
duced concept more comprehensible to humans, since
concepts that make use of many features are hard to
understand. Feature selection is sometimes essential
to the success of a learning algorithm. For example,
Kushmerick (1999) points out that it is not feasible to
use a nearest-neighbors algorithm on the Internet Ad-
vertisements dataset (described later) because of the
overabundance of features. Feature selection can re-
duce the number of features to the extent that such
an algorithm can be applied.

Algorithms used for selecting features prior to concept

induction fall into two categories. Wrapper methods

wrap the feature selection around the induction algo-
rithm to be used, using cross-validation to predict the
benefits of adding or removing a feature from the fea-
ture subset used. Filter methods are general prepro-
cessing algorithms that do not rely on any knowledge
of the algorithm to be used. There are strong argu-
ments in favor of both methods.

This paper presents a careful analysis of arguments
for both methods. It also introduces a new method of
feature selection that is based on the concept of boost-
ing from computational learning theory and combines
the advantages of filter and wrapper methods. Like
filters, it is very fast and general, while at the same
time using knowledge of the learning algorithm to in-
form the search and provide a natural stopping crite-
rion. We present empirical results using two different
wrappers and three variants of our algorithm. The ex-
periments use six datasets and three different learning
algorithms, namely Naive Bayes (NB), ID3 with χ2

pruning (ID3), and k-Nearest Neighbors (k-NN).

2. Issues in Feature Selection

A feature that is part of the feature subset used by
a learning algorithm is a good feature to use if it is
either a good predictor of the class by itself, or a good
predictor of the class when taken together with some
other subset of features in the set. At the same time,
it should not be redundant given the other features in
the selected feature set. Langley (1994) notes that fea-
ture selection algorithms that search through the space
of feature subsets must address four main issues: the
starting point of the search, the organization of the
search, the evaluation of feature subsets and the crite-
rion used to terminate the search. Different algorithms
address these issues differently.

It is intractable to look at all possible feature subsets,
even if the size is specified. Feature selection algo-
rithms usually proceed greedily. They can be classi-
fied into those that add features to an initially empty



set (forward selection) and those that remove features
from an initially complete set (backward elimination).
Hybrids both add and remove features as the algo-
rithm progresses. A major problem of forward selec-
tion methods is that it is difficult for them to select
sets of features that are good copredictors of the class
if none of these predictors is a good predictor of the
class by itself. On the other hand, forward selection is
much faster than backward elimination and therefore
scales better to large datasets. The major approaches
to the problem of when the greedy search should ter-
minate are specifying the size of the feature set to be
selected, e.g (Koller & Sahami, 1996), or evaluating
the goodness of each feature set in some manner and
stopping when further search results in a decrease in
goodness.

3. Filters vs. Wrappers

Wrapper methods, e.g (John et al., 1994; Langley
& Sage, 1994; Caruana & Freitag, 1994, inter alia),
search through the space of feature subsets using a
learning algorithm to inform the search. They calcu-
late the estimated accuracy of the learning algorithm
for each feature that can be added to or removed from
the feature subset. Accuracy is estimated using cross-
validation on the training set. In forward selection, a
wrapper estimates the accuracy of adding each uns-
elected feature to the feature subset and chooses the
best feature to add according to this criterion. These
methods typically terminate when the estimated accu-
racy of adding any feature is less than the estimated
accuracy of the feature set already selected. Filter
methods, e.g (Hall, 1999; Koller & Sahami, 1996, in-
ter alia), on the other hand, select a feature set for any
learning algorithm to use when learning a concept from
that training set. The biases of the feature selection
algorithm and the learning algorithm do not interact.
The search proceeds until a pre-specified number of
features is selected or some thresholding criterion is
met.

A strong argument for wrapper methods is that the es-
timated accuracy of the learning algorithm is the best
available heuristic for measuring the values of features.
Different learning algorithms may perform better with
different feature sets, even if they are using the same
training set. This argument is supported by experi-
ments on the CorrAL dataset (Kohavi, 1995), which
consists of 6 Boolean features, labeled A0, A1, B0, B1,
C and I. The correct concept is (A0∧A1)∨ (B0∧B1).
I is a feature irrelevant to the class, and C a feature
75% correlated with the class label. The decision-tree
learning algorithm ID3 (Quinlan, 1986) will typically

split on C initially, and may not be able to recover the
original concept in the subtrees (Kohavi, 1995). This
results in poor performance on the test set. On the
other hand, the Naive Bayes classifier performs better
when the correlated feature is included because NB is
a linear separator unable to represent disjunctions of
conjunctions.

The difference in the behavior of the two algorithms
suggests that there cannot be a single concept of useful
features across different learning algorithms, and the
use of the algorithm itself to decide which features to
select is important to the success of wrapper methods.
However, since cross-validation using the induction al-
gorithm must be performed for each unselected feature
every time a feature is added, wrappers are computa-
tionally very expensive and do not scale well to large
datasets. Further, Hall (1999) cites Kohavi’s (1995)
finding that cross-validation accuracies have high vari-
ance on small training sets as evidence that wrapper
methods tend to overfit on small training sets.

The primary advantage of filter methods is their speed
and ability to scale to large datasets. The process of
feature selection is often most useful in situations in
which wrappers may overfit, i.e with small training
sets. Given these advantages, we decided to examine
four real-world datasets to see how consistently fea-
ture sets selected by different wrappers (Naive Bayes
and ID3) performed with three different learning al-
gorithms. We hypothesized that the feature sets se-
lected by NB and ID3 wrappers would perform sim-
ilarly to each other on these datasets for each of the
learning algorithms because most real-world datasets
are not similar to the CorrAL dataset, which is essen-
tially a thought experiment in finding a dataset for
which inducing the simplest correct concept is diffi-
cult. Many learning algorithms have trouble with co-
predictors, disjunctive concepts and redundant and ir-
relevant features, all of which are features of CorrAL.
At the same time, different learning algorithms per-
form better with different feature sets. Our theory
was that, for most real-world datasets, a feature set
that allows one algorithm to induce a high-accuracy
concept should also allow a different algorithm to in-
duce a high-accuracy concept, even if the feature set
selected is not optimal for that algorithm. Further,
the accuracy of an algorithm on the dataset should be
relatively similar across feature sets selected in differ-
ent manners. The experimental results presented in
section 6 support our hypothesis.



4. Bridging the Gap: A More Informed

Filter Method

Because of the speed and success of filter methods on
many datasets (Koller & Sahami, 1996; Hall, 1999)
and our focus on real-world datasets with potentially
large numbers of features and small training sets, we
decided to develop a filter-based forward selection al-
gorithm that takes a first step towards bridging the
gap between filter and wrapper methods for feature
selection by incorporating some of the advantages of
wrapper methods. Forward selection is appropriate
because on most real-world datasets the number of fea-
tures that is optimal for an induction algorithm to use
is a small proportion of the total number of available
features. In such situations, forward selection is far
less time-consuming than backward elimination.

However, it is difficult for forward selection methods
to consistently select copredictors as parts of the fea-
ture set. Wrappers using backward search (John et al.,
1994) as well as Koller and Sahami’s (1996) informa-
tion theoretic algorithm should succeed in this because
they work by eliminating features rather than select-
ing them. Hall points out that correlation-based fea-
ture selection often performs worse than wrappers in
situations where there are features that are highly pre-
dictive of a small part of the feature set (Hall, 1999).
There are clearly cases where some algorithms do bet-
ter with more features than other algorithms. For ex-
ample, Naive Bayes performs better on the CorrAL
dataset when it uses the redundant but correlated fea-
ture. It would be useful for a feature selector to use
some knowledge of the learning algorithm to inform
the search for the feature subset without exposing
one to the problems associated with wrapper meth-
ods, namely their massive computational expense, and
their tendency to overfit with small training sets.

We begin by describing a pure filter method designed
to overcome the second problem stated above — select-
ing features that are highly predictive of a small part
of the instance space. A drawback of our algorithm is
that the size of the feature set to select needs to be pre-
specified. Since different learning algorithms perform
better with different-sized feature sets, it would be bet-
ter to automatically determine the number of features
to use. As an improvement, we allow the algorithm
to keep adding features as long as the training accu-
racy of the induction algorithm to be used increases on
the training set. Finally, we change the feature selec-
tion algorithm to use the actual learning algorithm to
guide the search. The algorithm and its variants are
described in detail below, and experimental results are
presented in Section 6.

4.1 Boosted Decision Stumps for Feature

Selection

Boosting is a general method for improving the accu-
racy of a weak learning algorithm. We use the Ad-
aBoost algorithm1. The algorithm is run for a num-
ber of rounds, say T . The set of training examples is
treated as a weighted distribution Di on the ith round,
with each example initially given a weight of 1

n
where n

is the number of training examples. The weak learner
is trained using the distribution Di. Suppose the er-
ror of the hypothesis is ǫi. Then let αi = 1

2 ln(1−ǫi

ǫi

)

and set Di+1(j) = Di(j)
Zi

e−αi if the hypothesis pre-

dicted the class of the jth example correctly, and

Di+1(j) = Di(j)
Zi

eαi otherwise. Here Zi is a normal-
ization factor chosen so that Di+1 is a distribution.
The final hypothesis is the weighted sum of the hy-
potheses at each round i with the weight given to each
of the hypotheses being αi.

We disregard the problem of classifying examples us-
ing boosting by using boosting only for feature selec-
tion. Our algorithm uses boosted decision stumps as
the weak learners. It uses the information gain crite-
rion for deciding which feature to choose. The number
of features to be selected is a parameter, say k, to the
feature selection algorithm. The boosting algorithm is
run for k rounds, and at each round all features that
have previously been selected are ignored. Hence at
each round it looks for the previously unselected fea-
ture with the highest information gain on the weighted
distribution of training examples. The search for fea-
tures is greedy. If a feature is selected in any round, it
becomes part of the set that will be returned. We refer
to this algorithm as BDSFS (Boosted Decision Stump
Feature Selection).

Boosted decision stumps have many desirable proper-
ties as a method of feature selection. If k features are
to be selected, we do not want to select k features that
are all meaningful in themselves, but redundant given
the presence of a subset of the others. Boosting as-
signs higher weights to examples that have often been
misclassified in the previous rounds. A feature that
correctly predicts the class label of examples that the
previously selected features often classify wrongly will
have a higher information gain. This should eventu-
ally help guide the search for features in finding fea-
tures that are highly predictive of a small region of
the instance space get selected, because if that part of
the space is often misclassified by other features, those
examples will keep increasing in weight. The features

1This brief overview of AdaBoost is based entirely on
the presentation of Freund and Schapire (1999).



selected by this algorithm are likely to perform well
together on the dataset. While this heuristic is not
theoretically optimal, it performs well (see Section 6
for experimental results).

4.2 Extending BDSFS

The necessity for pre-specification of the number of
features to be selected is an undesirable property of
BDSFS. As a first step, we extended the feature selec-
tion algorithm to use the learning algorithm to provide
a stopping criterion. Features are added to the feature
set as before, by selecting the feature with maximum
weighted information gain. The learning algorithm is
trained using this feature in addition to the existing
feature set. If training accuracy does not increase, the
search stops without adding the last feature to the fea-
ture set. This variant of BDSFS, which we shall refer
to as BDSFS-2, turns out to be a very good feature
selector on the datasets we examined (see Section 6).

We decided to use training accuracy instead of cross-
validation in the interests of efficiency. This is justi-
fiable because we are only using it as a stopping cri-
terion, not as a means of evaluating the worth of fea-
tures. Also, training accuracy is a good measure of
whether the set of features selected provides sufficient
discriminatory power for the learning algorithm2.

The second major change we made was to modify the
feature selection algorithm to use the learning algo-
rithm in a stronger way to guide the search. We
changed the reweighting process so that the weak hy-
potheses used in each round of the boosting process
were the concepts that the learning algorithm would
learn from the unweighted training set when using just
the features in the feature set thus far. Selection of the
next feature to be added is still performed on the ba-
sis of weighted information gain, so the algorithm is
not subject to the inefficiency of wrappers. Using the
learning algorithm itself to identify examples that need
to be given more weight is helpful in guiding the search
for features to add to the set. The stopping criterion is
the same as in BDSFS-2. We call this method Boost-
ing Based Hybrid Feature Selection (BBHFS) because
it incorporates many of the desirable features of filters
and wrappers discussed in Section 3. Again, the algo-
rithm is very fast and its performance is good in terms
of classification accuracy on test data.

2Preliminary experiments using cross-validation instead
of training accuracy as the stopping criterion did not reveal
a significant difference in performance.

Table 1. Summary of Datasets Used

Dataset Features Trials Train Test
Vote 16 100 218 217
Chess 32 50 2131 1065
Mushroom 21 50 1015 7109
DNA 57 100 69 37
Lymphography 18 100 92 50
Ads 1558 50 500 2500

5. Datasets and Experimental

Methodology

5.1 Datasets

In this paper we report experiments only on two class
problems. Extending boosted decision stumps to han-
dle multi-class datasets is problematic (Drucker, 1997)
and this is a potential limitation of our algorithm.
We used the Chess Endgames, Congressional Voting,
Mushroom, DNA, Lymphography and Internet Ad-
vertisement databases from the UCI machine learn-
ing repository (Murphy & Aha, 2000). Both the Con-
gressional Voting Records and Mushroom databases
have a single highly predictive feature. The Mush-
room dataset is large in that it has more than 8000
examples, while the Voting dataset has only 435. On
the Chess Endgames dataset, ID3 learns a very accu-
rate concept that uses many of the features. The DNA
dataset has 57 features and only 106 examples. The
Lymphography dataset, originally a four class prob-
lem, was converted to a two class problem by elim-
inating all 6 examples from two of the classes. The
Internet Advertisements (Ads) dataset has 3279 ex-
amples and 1558 features, 3 of which are continuous.
We discretized these features into 10 bins naively by
choosing 10 splits of equal length between the min-
imum and the maximum values so that the boosted
decision stumps algorithm could use discrete features.

One attribute was eliminated from the Mushroom
database because of missing values. Table 1 summa-
rizes the number of features in each dataset and the
number of trials, training examples and test examples
used in most experiments. Any deviations from this
are noted with the description of the experiments.

5.2 Algorithms, Software and Experimental

Methodology

We used Ray Mooney’s publicly available library of
ML software written in Common Lisp (Mooney, 2000).
Modifications were made to enable optional feature se-
lection. The k-Nearest Neighbors algorithm was set to



run with k = 1. Naive Bayes uses the Laplace correc-
tion instead of 0 for conditionals. ID3 uses χ2 pruning
of the induced decision tree. These three learning al-
gorithms work very differently from each other, and
are thus an ideal cross-section of learning algorithms
to use for comparison of feature selection techniques.

Each trial was run by independent, random selection of
disjoint training and test sets from the entire dataset.
We ran 50 trials each for the larger datasets (Mush-
room, Chess and Ads) and 100 trials for the smaller
ones (DNA, Vote and Lymphography). Wrappers used
forward selection, which Hall reports is as good as
backward elimination on most datasets (Hall, 1999).
Ten-fold cross validation was used in the wrappers for
accuracy estimation. Classification accuracy on the
test set is reported. Plus-minus figures and error bars
reflect the standard deviation of the entire set of trials.

6. Experimental Results

In order to empirically test many of the hypothe-
ses about the benefits and disadvantages of filter and
wrapper methods, we performed several experiments
on real-world datasets. We wanted to compare the
performance of filters and wrappers on large and small
training sets and evaluate the benefits of using a hy-
brid algorithm. We begin by describing the results
obtained by NB and ID3 wrappers, then discuss the
performance of BDSFS and its variants.

6.1 Comparing Wrappers

To verify our hypothesis that feature sets that are use-
ful for one algorithm are also useful for others, we de-
cided to examine the performance of the three learning
algorithms using the feature sets induced by a Naive
Bayes wrapper and an ID3 wrapper. Tables 2, 3 and
4 report on the accuracies achieved by NB, ID3 and
k-NN using no feature selection, the NB wrapper and
the ID3 wrapper. The results confirm our hypothe-
sis. There is little difference between the accuracies
induced by NB and ID3 using feature sets selected by
NB and ID3 wrappers. Both NB and ID3 wrappers
also perform well as feature selectors for k-NN. While
the feature sets selected may not be optimal for the
learning algorithm to be used, there is clearly a strong
similarity across the feature sets selected by the differ-
ent algorithms. If filter methods select similar subsets,
they could be a feasible alternative to wrapper meth-
ods on most real-world datasets.

6.2 BDSFS, BDSFS-2 and BBHFS

BDSFS produces feature sets that yield results compa-
rable to, and in some case better than those yielded by
wrapper-selected sets for Nearest Neighbor and Naive
Bayes classifiers. Table 5 presents results for NB, k-
NN and ID3 after feature selection is performed using
BDSFS. The second column in the table shows the
number of features specified for BDSFS to select. In-
terestingly, the results show that different algorithms
perform better when given different numbers of fea-
tures. For example, k-NN performs better on the
Chess dataset with 6 features than it does with 4,
while the reverse is true for Naive Bayes. This sug-
gests that the addition of a learning algorithm-based
stopping criterion is important.

Tables 6 and 7 present the better of the two accura-
cies achieved by BDSFS on the Chess and Mushroom
datasets, along with wrapper performance and the per-
formance of BDSFS-2 and BBHFS. Obviously, BDSFS
is a competitive alternative to wrappers in terms of
performance on these training sets. It is also worth
noting that while our results are not directly compara-
ble to those obtained by Hall (1999) and by Koller and
Sahami (1996) because of differences in the algorithms
and datasets used, the improvements in accuracy we
obtain seem comparable to those they obtain with the
same family of algorithm (for example, Hall uses IB1
as an instance-based classifier while we use 1-NN).

In general the performance of BDSFS-2 and BBHFS is
equivalent and the accuracies they obtain are compara-
ble to the accuracies obtained with simple BDSFS. The
one case where there is a significant difference is the
performance of ID3 on the Chess dataset. BDSFS-2
and BBHFS significantly outperform BDSFS and for-
ward selection wrappers. This is because the stopping
criterion used makes the algorithm select many more
features that are useful in discriminating among ex-
amples in small portions of the instance space. We
see from Table 9 that this is the one case where BB-
HFS selects a significantly larger set of features than
the wrapper. The stopping criterion we use seems to
be a good way of deciding when to stop adding fea-
tures in forward selection. On the other hand, it is
unclear whether using the learning algorithm itself for
reweighting in boosting is useful. The speedup ob-
tained using BBHFS is also huge (see Table 8)3.

3It is worth noting that the timing results are from very
simple implementations, and algorithms like Naive Bayes
are suitable for incremental cross-validation, which can be
implemented efficiently (Kohavi, 1995).



Table 2. Naive Bayes Accuracies

Dataset No FS NB Wrapper ID3 Wrapper
Vote 90.68 ± 1.65 94.93 ± 0.88 95.12 ± 1.44
Chess 87.32 ± 1.15 94.53 ± 0.65 94.30 ± 0.51
Mushroom 98.99 ± 0.20 99.61 ± 0.30 98.79 ± 0.85
DNA 86.73 ± 5.46 79.84 ± 7.11 79.73 ± 7.40

Table 3. ID3 Accuracies

Dataset No FS NB Wrapper ID3 Wrapper
Vote 93.96 ± 1.49 95.58 ± 1.01 94.82 ± 1.74
Chess 99.29 ± 0.38 93.92 ± 0.63 94.34 ± 0.59
Mushroom 99.77 ± 0.10 99.60 ± 0.26 99.60 ± 0.35
DNA 73.30 ± 8.17 79.78 ± 8.67 78.70 ± 8.64

Table 4. k-NN Accuracies

Dataset No FS NB Wrapper ID3 Wrapper
Vote 92.03 ± 1.66 91.06 ± 11.21 92.83 ± 7.84
Chess 89.73 ± 0.57 94.43 ± 0.49 92.77 ± 4.41
Mushroom 99.96 ± 0.05 99.67 ± 0.22 99.70 ± 0.13
DNA 78.81 ± 6.08 72.22 ± 9.73 74.27 ± 9.43

Table 5. Accuracies of Induction Algorithms using BDSFS

Dataset No.
Feats

NB k-NN ID3

Vote 3 94.76 ± 2.60 93.10 ± 3.39 93.88 ± 3.20
DNA 7 85.54 ± 6.52 78.81 ± 6.82 79.38 ± 7.62
Chess 4 94.14 ± 0.63 89.25 ± 9.40 94.05 ± 0.49
Chess 6 92.69 ± 1.63 91.68 ± 5.12 93.97 ± 0.68
Mushroom 2 98.91 ± 0.24 98.89 ± 1.76 99.38 ± 0.16
Mushroom 3 97.82 ± 0.24 98.94 ± 0.98 99.43 ± 0.12

Table 6. Comparison of Naive Bayes Accuracies

Dataset No FS Wrapper BDSFS BDSFS-2 BBHFS
Vote 90.68 94.93 94.76 94.87 ± 2.25 94.63 ± 2.50
DNA 86.73 79.84 85.54 84.70 ± 6.60 83.32 ± 7.82
Chess 87.32 94.53 94.14 94.14 ± 0.60 94.06 ± 1.83
Mushroom 98.99 99.61 98.91 99.05 ± 0.29 99.06 ± 0.29

Table 7. Comparison of ID3 Accuracies

Dataset No FS Wrapper BDSFS BDSFS-2 BBHFS
Vote 93.96 94.82 93.88 93.93 ± 2.04 93.53 ± 2.57
DNA 73.30 78.70 79.38 77.78 ± 8.75 79.54 ± 8.73
Chess 99.29 94.34 94.05 99.02 ± 0.69 98.56 ± 0.91
Mushroom 99.77 99.60 99.43 99.68 ± 0.22 99.54 ± 0.20



Table 8. Average Times (in seconds) for a Single Trial

Dataset NB NB-Wrap BBHFS-NB ID3 ID3-Wrap ID3-BBHFS
Chess 0.863 70.868 2.630 0.650 50.933 17.050
Mushroom 1.366 13.963 1.153 0.431 8.713 1.401

Table 9. Median Sizes of Selected Feature Sets

Dataset NB-Wrap BBHFS-NB ID3-Wrap ID3-BBHFS
Chess 5 3 5 23
Mushroom 4 2 3 5
Vote 1 2 2 8
DNA 4 3 4 4

6.3 Small Training Sets

We have established that filters, BDSFS2 and BBHFS
are competitive with wrappers on large training sets
like the ones we used on the Mushroom and Chess do-
mains. Filter methods and the hybrids also seem to
perform better on the one training set that is particu-
larly small, the DNA dataset. To compare the perfor-
mance of wrappers and BBHFS on small training sets,
we used training sets of 100 examples on each of the
Chess, Mushroom and Vote domains. We also used
another dataset, the Lymphography dataset with 92
training examples, to help clarify the results. 100 tri-
als were run for each experiment. On the chess dataset
we used 2000 test examples, on the Mushroom dataset
we used 5000 and on the Vote dataset we used 300. Re-
sults for Naive Bayes are reported in Table 10 . This
table also includes the previous results for the DNA
dataset, with 69 training examples.

Surprisingly, BBHFS performs worse than wrappers
on the Mushroom and Vote datasets. So of the five
small training set cases we have looked at, BBHFS
performs better than the wrapper on the DNA dataset
(which has the largest number of features), worse on
the Mushroom and Vote datasets, and almost the same
on the Chess and Lymphography datasets. These ex-
periments suggest that overfitting may not be a serious
problem for wrappers on datasets with single highly
predictive features like Vote and Mushroom.

6.4 The Internet Advertisements Dataset

The Internet Ads dataset (Kushmerick, 1999) presents
a challenge for feature selection algorithms because of
its size. It contains 1558 features, 1555 of which are
Boolean features indicating the presence or absence of
a word. 86% of the examples are negative. We ran ex-
periments with plain Naive Bayes and Naive Bayes us-
ing BBHFS as the feature selector (wrapper methods

Table 10. Naive Bayes Accuracies With Small
Training Sets

Data-
set

No FS BBHFS Wrapper

Vote 90.57 ± 1.16 92.25 ± 4.32 94.57 ± 1.74
DNA 86.73 ± 5.46 83.32 ± 7.82 79.84 ± 7.11
Chess 80.56 ± 3.41 86.74 ± 9.10 86.93 ± 11.19
Mush-
room

94.28 ± 1.70 95.87 ± 6.58 98.01 ± 2.50

Lymph 82.88 ± 4.76 83.22 ± 4.67 83.8 ± 4.85

failed completely because of their prohibitive expense)
on this dataset using 2500 test examples and between
100 and 500 training examples. Figure 1 shows the
results. Feature selection is very useful initially in im-
proving the accuracy of the classifier, but its usefulness
in terms of improving accuracy tapers off as the num-
ber of examples available to the learning algorithm in-
crease. This result is probably specific to the Naive
Bayes algorithm, which is remarkably insensitive with
respect to irrelevant features.

7. Conclusions and Future Work

There is a debate between supporters of filter and
wrapper methods for feature selection. Wrapper meth-
ods use the bias of the induction algorithm to se-
lect features and generally perform better, especially
on datasets in which optimal feature sets are learn-
ing algorithm-specific. However, the computational
expense of wrapper methods is prohibitive on large
datasets. We hypothesized that on most real-world
datasets, the advantage of using wrappers is not sig-
nificant, and feature sets that are good for one learning
algorithm will also perform well with different learning
algorithms. Experiments using feature sets selected by



80

82

84

86

88

90

92

94

96

100 150 200 250 300 350 400 450 500

%
 A

cc
ur

ac
y 

on
 T

es
t S

et

Number of Training Examples

Naive Bayes
NB using BBHFS

Figure 1. Accuracies of NB and NB using BBHFS on the
Internet Advertisements dataset

NB and ID3 wrappers for three different learning algo-
rithms verified our hypothesis. Filter methods should
perform well on real-world datasets, since they are also
capable of identifying good feature sets.

This paper presents an algorithm that uses boost-
ing and incorporates some of the advantages of wrap-
pers, such as a natural stopping criterion, into a
filter method, without incurring the computational
cost of wrappers. This hybrid algorithm (BBHFS)
improves the performance of the learning algorithm
significantly in most cases and is competitive with
wrapper methods while selecting feature subsets much
faster. BBHFS performs better than wrapper meth-
ods on the DNA dataset using Naive Bayes and on
the Chess dataset using ID3. The Chess dataset
results are particularly impressive because the algo-
rithm selects many features which ID3 uses to induce
a high-accuracy concept. The search does not select
as many features for Naive Bayes, using knowledge of
the learning algorithm effectively. BBHFS performs
a little worse than wrappers on the small training-
set Vote and Mushroom datasets. Results on other
small datasets suggest that this surprising result may
be related to the presence of a single highly predictive
feature in both the Vote and Mushroom datasets. BB-
HFS scales well to datasets with large numbers of fea-
tures, as evidenced by experiments with the Internet
Advertisements dataset. Using a wrapper method on
this dataset, which has 1558 features, is not feasible.
BBHFS improves the accuracy of Naive Bayes signifi-
cantly for small training sets and does not degrade it
significantly as the size of the dataset increases.

Filter methods have a great advantage over wrappers
because they scale much better to large datasets. How-
ever, knowledge of the learning algorithm can be put
to good use as in the algorithms presented in this pa-

per. The incorporation of some form of lookahead in
forward selection methods like BBHFS would be an
important step in overcoming their major shortcom-
ing. One possibility is to learn k-level decision trees
instead of decision stumps, although considering all
possible combinations of k features would increase the
running time of the algorithm significantly. A poten-
tial limitation of the algorithms presented here in their
present form is that boosted decision stumps are prob-
lematic in multi-class datasets. Extensions of the algo-
rithms presented here to multi-class problems are an
important direction for future research.

Acknowledgments

I am grateful to Avi Pfeffer, who has been closely in-
volved with this work, and to Charles Elkan and the
reviewers for useful comments.

References

Caruana, R., & Freitag, D. (1994). Greedy attribute
selection. Proceedings of ICML-94.

Drucker, H. (1997). Fast committee machines for re-
gression and classification. Proceedings of KDD-97.

Freund, Y., & Schapire, R. (1999). A short introduc-
tion to boosting. Journal of the Jap. Soc. for AI.

Hall, M. A. (1999). Correlation based feature selec-

tion for machine learning. Doctoral dissertation, The
University of Waikato, Dept of Comp. Sci.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Ir-
relevant features and the subset selection problem.
Proceedings of ICML-94.

Kohavi, R. (1995). Wrappers for performance en-

hancement and oblivious decision graphs. Doctoral
dissertation, Stanford University, Comp. Sci. Dept.

Koller, D., & Sahami, M. (1996). Toward optimal
feature selection. Proceedings of ICML-96.

Kushmerick, N. (1999). Learning to remove internet
advertisements. Proceedings of AGENTS-99.

Langley, P., & Sage, S. (1994). Induction of selective
bayesian classifiers. Proceedings of UAI-94.

Mooney, R. (2000). ML software.
http://www.cs.utexas.edu/users/ml/mlprogs.html.

Murphy, P., & Aha, D. (2000). UCI ML Repository.
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

Quinlan, J. R. (1986). Induction of decision trees.
Machine Learning, 1, 81–106.


