A device for human ultrasonic echolocation

Jascha Sohl-Dickstein*, Santani Teng*, Benjamin M. Gaub, Chris C. Rodgers, Crystal Li, Michael R. DeWeese and Nicol S. Harper

Abstract—Objective: We present a device that combines principles of ultrasonic echolocation and spatial hearing to provide human users with environmental cues that are i) not otherwise available to the human auditory system and ii) richer in object and spatial information than the more heavily processed sonar cues of other assistive devices. The device consists of a wearable headset with an ultrasonic emitter and stereo microphones with affixed artificial pinnae. The goal of this study is to describe the device and evaluate the utility of the echoic information it provides. Methods: The echoes of ultrasonic pulses were recorded and time-stretched to lower their frequencies into the human auditory range, then played back to the user. We tested performance among naive and experienced sighted volunteers using a set of localization experiments in which the locations of echo-reflective surfaces were judged using these time-stretched echoes. Results: Naive subjects were able to make laterality and distance judgments, suggesting that the echoes provide innately useful information without prior training. Naive subjects were generally unable to make elevation judgments from recorded echoes. However trained subjects demonstrated an ability to judge elevation as well. Conclusion: This suggests that the device can be used effectively to examine the environment and that the human auditory system can rapidly adapt to these artificial echolocation cues. Significance: Interpreting and interacting with the external world constitutes a major challenge for persons who are blind or visually impaired. This device has the potential to aid blind people in interacting with their environment.

Index Terms—Echolocation, ultrasonic, blind, assistive device

I. INTRODUCTION

A. Echolocation in Animals

In environments where vision is ineffective, some animals have evolved echolocation — perception using reflections of self-made sounds. Remarkably, some blind humans are also able to echolocate to an extent, frequently with vocal clicks. However, animals specialized for echolocation typically use much higher sound frequencies for their echolocation, and have specialized capabilities to detect time delays in sounds.

The most sophisticated echolocation abilities are found in microchiropteran bats (microbats) and odontocetes (dolphins and toothed whales). For example, microbats catch insects on the wing in total darkness, and dolphins hunt fish in opaque water. Arguably simpler echolocation is also found in oilbirds, swiftlets, Rousettas megabats, some shrews and tenrecs, and even rats [2]. Evidence suggests microbats form a spatially structured representation of objects in their environment using their echolocation [3].

Microbats use sound frequencies ranging from 25-150 kHz in echolocation, and use several different kinds of echolocation calls [4]. One call — the broadband call or chirp, consisting of a brief tone (< 5 ms) sweeping downward over a wide frequency range — is used for localization at close range. A longer duration call — the narrowband call, named for its narrower frequency range — is used for detection and classification of objects, typically at longer range.

In contrast to microbats, odontocetes use clicks; shorter in duration than bat calls and with sound frequencies up to 200 kHz [5]. Odontocetes may use shorter calls as sound travels ~ 4 times faster in water, whereas bat calls may be longer to have sufficient energy for echolocation in air. Dolphins can even use echolocation to detect features that are unavailable via vision: for example, dolphins can tell visually identical hollow objects apart based on differences in thickness [6].

B. Echolocation in Humans

Humans are not typically considered among the echolocating species. However, some blind persons have demonstrated the use of active echolocation, interpreting reflections from self-generated tongue clicks for such tasks as obstacle detection [7], distance discrimination [8], and object localization [9], [10]. The underpinnings of human echolocation in blind (and sighted) people remain poorly characterized, though some informative cues [11], neural correlates [12], [13], [14], and models [15] have been proposed. While the practice of active echolocation via tongue clicks is not commonly taught, it is recognized as an orientation and mobility method [16], [17]. However, most evidence in the existing literature suggests that human echolocation ability, even in blind, trained experts, does not approach the precision and versatility found in organisms with highly specialized echolocation mechanisms. For instance, due to their shorter wavelengths the ultrasonic pulses employed by echolocating animals yield higher spatial resolution, stronger directionality, and higher bandwidth than pulses at human-audible frequencies [18].

An understanding of the cues underpinning human auditory spatial perception is crucial to the design of an artifi-
cial echolocation device. Left-right (laterality) localization of sound sources depends heavily on binaural cues in the form of timing and intensity differences between sounds arriving at the two ears. For elevation and front/back localization, the major cues are direction-dependent spectral transformations of the incoming sound induced by the convoluted shape of the pinna, the visible outer portion of the ear [19]. Auditory distance perception is less well characterized than the other dimensions, though evidence suggests that intensity and the ratio of direct-to-reverberant energy play major roles in distance judgments [20]. Notably, the ability of humans to gauge distance using pulse-echo delays has not been well characterized, though these serve as the primary distance cues for actively echolocating animals [21].

Studies of human hearing suggest that it is very adaptable to altered auditory cues, such as those provided by remapped laterality cues [22] or altered pinna shapes [23], [24]. Additionally, in blind subjects the visual cortex can be recruited to also represent auditory cues [12], [25], further illustrating the plasticity of human auditory processing.

C. The Sonic Eye Device

Here we present a device, referred to as the Sonic Eye, that uses a forehead-mounted speaker to emit ultrasonic “chirps” (FM sweeps) modeled after bat echolocation calls. The echoes are recorded by bilaterally mounted ultrasonic microphones, each mounted inside an artificial pinna, also modeled after bat pinnae to produce direction-dependent spectral cues. After each chirp, the recorded chirp and reflections are played back to the user at $\frac{1}{m}$ of normal speed, where m is an adjustable magnification factor. This magnifies all temporally based cues linearly by a factor of m and lowers frequencies into the human audible range. For empirical results reported here, m is 20 or 25 as indicated. That is, cues that are normally too high or too fast for the listener to use are brought into the usable range simply by replaying them more slowly.

Although a number of electronic travel aids that utilize sonar have been developed (e.g., [26], [27], [28], [29]), none appear to be in common use, and very few provide information other than range-finding or a processed localization cue. For example in [27], distance to a single object is calculated and then mapped to a sound frequency, providing only extremely limited information about the world. The device presented in [26] is the most similar to the Sonic Eye. In [26] ultrasonic downward frequency sweeps are emitted, and then time stretched before presentation to the user. However the signals are time stretched in $2 \mu s$ chunks sampled every 100 μs, the overall playback of the echoes is not time stretched, no pinnae are used, the binaural microphones are placed only 2 cm apart, and microphone and transducer fidelity is unknown.

In contrast, the Sonic Eye provides a minimally processed input which, while initially challenging to use, has the capacity to be much more informative and integrate better with the innate human spatial hearing system. The relatively raw echoes contain not just distance information but horizontal location information and also vertical location information (from the pinnae), as well as texture, geometric, and material cues.

![Device layout](image)

Fig. 1. (a) Diagram of components and information flow. (b) Photograph of the current hardware. (c) Photograph of one of the artificial pinnae used, modeled after a bat ear.

![Waveforms](image)

Fig. 2. Schematic of waveforms at several processing stages, from ultrasonic speaker output to stretched pulse-echo signal headphone output presented to user. Red traces correspond to the left ear signal, and blue traces to right ear signal. Note that the relative temporal scales are chosen for ease of visualization, and do not correspond to the temporal scaling used experimentally.

Behavioral testing suggests that novice users can quickly judge the laterality and distance of objects, and with experience can also judge elevation, and that the Sonic Eye thus demonstrates potential as an assistive mobility device.

A sample of audio and video from the Sonic Eye from the user’s perspective is provided in the supplemental video to this manuscript, and is also available at http://youtu.be/md-VkLDw7zc.

II. SPECIFICATIONS AND SIGNAL PROCESSING

The flow of information through the Sonic Eye is illustrated in Figure 1a, and the device is pictured in Figure 1b. Recordings of a sound waveform moving through the system are presented in Figure 2. A video including helmet-cam video of the device experience is included in Supplemental Material.
The signal processing steps performed by the Sonic Eye, and the hardware used in each step, are as follows:

Step 1: The computer generates a chirp waveform, consisting of a 3 ms sweep from 25 kHz to 50 kHz with a constant sweep rate in log frequency. The initial and final 0.3 ms are tapered using a cosine ramp function. The computer, in a small enclosure mini-ITX case, runs Windows 7 and performs all signal processing using a custom Matlab program.

Step 2: The chirp is played through the head-mounted tweeter speaker. In order to play the chirp, it is output through an ESI Juli® soundcard with stereo 192 kHz input and output, amplified using a Lepai TRIPATH TA2020 12 Volt stereo amplifier, and finally emitted by a Fostex FT17H Realistic SuperTweeter speaker.

Step 3: The computer records audio through the helmet mounted B&K Type 4939 microphones. For all experiments, the recording duration was 30 ms, capturing the initial chirp and the resulting echoes from objects up to 5 m away. The signal from the microphones passes through a B&K 2670 preamp followed by a B&K Nexus conditioning Amplifier before being digitized by the ESI Juli® soundcard.

Step 4: The recorded signal is bandpass-filtered using Butterworth filters from 50 to 25 kHz, and time-dilated by a factor of m. For m = 25, the recorded ultrasonic chirp and echoes now lie between 1 and 2 kHz.

Step 5: The processed signal is played to the user through AirDrives open-ear headphones, driven by a Gigaport HD USB sound card. Critically, the open-ear design leaves the ear canal unobstructed, ensuring safety in applied situations. (Note that in Experiments 1 and 2 described below, conventional headphones were used for stimulus delivery.)

The chirps are played at a steady rate with a period of approximately 1.5 s. This is a sufficient delay that in all experiments the echoes from the previous chirp have attenuated before the next chirp is played. In the current version of the device, the speaker and two ultrasonic microphones in artificial pinnae are mounted on a bicycle helmet. The pinnae are hand-molded from clay to resemble bat ears. The rest of the components are mounted within a baby carrier backpack, which provides portability, ventilation, and a sturdy frame. A lithium-ion wheelchair battery is used to power the equipment.

We note that in its current form, the Sonic Eye prototype is a proof-of-principle device whose weight and size make it unsuited to everyday use by blind subjects and extensive open-field navigation testing. To overcome these limitations we are developing a low-cost miniaturized version that retains all the functionality, with a user interface specifically for the blind. However, user testing with the current version has provided a proof of principle of the device’s capabilities, as we describe below.

A. Measurement of Transfer Functions

We measured angular transfer functions for the ultrasonic speaker and microphone in an anechoic chamber (Figure 3). The full-width half-max (FWHM) angle for speaker power was ~ 50°, and for the microphone was ~ 160°. Power was measured using bandpass Gaussian noise between 25 kHz and 50 kHz. We expect the FWHM of the speaker and microphone to determine the effective field of view of The Sonic Eye.

III. Experimental Methods

To explore the perceptual acuity afforded by the artificial echoes, we conducted three behavioral experiments: two in which we presented pulse-echo recordings (from the Sonic Eye) via headphones to naive sighted participants, and a practical localization task with three trained users wearing the device. In both Experiments 1 and 2, we tested spatial discrimination performance in separate two-alternative forced-choice (2AFC) tasks along three dimensions: i) laterality (left-right), ii) depth (near-far), and iii) elevation (high-low). The difference between Experiments 1 and 2 is that we provided trial-by-trial feedback in Experiment 2, but not Experiment 1. This allowed us to assess both the intuitive discriminability of the stimuli (Experiment 1) as well as the benefit provided by feedback (Experiment 2).

In Experiment 3 we tested laterality and elevation localization performance in a separate task on three users each of whom had between four and six hours of total experience wearing the Sonic Eye.

A. Methods, Experiment 1

1) **Stimuli**: For each of the three spatial discrimination tasks (laterality, depth and elevation), echoes were recorded from
an 18-cm-diameter plastic disc placed in positions appropriate to the stimulus condition, and with the plate face normal to the emitter’s line of sight, as illustrated in Figure 4a. For laterality judgments, the disc was suspended from the testing room ceiling via a thin (<1 cm thick) wooden rod 148 cm in front of the emitter and 23.5 cm to the left or right of the midline. The “left” and “right” conditions were thus each ∼9° from the midline relative to the emitter, with a center-to-center separation of ∼18°. For depth judgments, the disc was suspended on the midline directly facing the emitter at a distance of 117 or 164 cm, separating the “near” and “far” conditions by 47 cm. Finally, for elevation judgments, the disc was suspended on the midline from the testing top PC using closed-back circumaural headphones (Sennheiser HD202) at a comfortable volume, microphone noise floor) at one ear when a 70dB SPL 1-2kHz frequency sweeps, time dilation factor $m = 25$, truncated to 1 s length) and the corresponding echoes from the disc for each stimulus position (pulse-echo exemplars). Additionally, pulse-echo exemplars from each stimulus position were recorded with and without the artificial pinnae attached to the microphones. Thus, for each of the six stimulus positions, we had 10 recorded pulse-echo exemplars, for a total of 60 stimuli.

2) Procedure: Sighted participants ($N = 13, 4$ female, mean age 25.5 y) underwent 20 trials for each of the three spatial discrimination tasks, for a total of 60 trials per session. The trials were shuffled such that the tasks were randomly interleaved. Sound stimuli were presented on a desktop or laptop PC using closed-back circumaural headphones (Sennheiser HD202) at a comfortable volume, ~70 dB SPL. Assessment of these headphones using modified Sennheiser KE4-211-2 microphones (from AuSIM) in the ear canal showed at least ~30dB attenuation (no distinguishable sound above the microphone noise floor) at one ear when a 70dB SPL 1-2KHz passband noise was played through the headphone speaker at the other ear. Thus there was negligible sound transfer between the ears. No visual stimuli were presented; the screen remained a neutral gray during auditory stimulus presentation. On each trial, the participant listened to a set of three randomly selected 1-s exemplars (pulse-echo recordings) for each of two stimulus conditions. Depending on the spatial task, the participant then followed on-screen instructions to select from two options; whether the second exemplar represented an object to the left or right; nearer or farther; or above or below relative to the echoic object from the first exemplar. Upon the participant’s response, a new trial began immediately, without feedback.

B. Methods, Experiment 2

1) Stimuli: Stimuli in Experiment 2 were nearly identical to those in Experiment 1, except that we now provided trial-by-trial feedback. To prevent participants from improving their performance based on artifactual noise that might be present in our specific stimulus set, we filtered background noise from the original recordings using the spectral noise gating function in the program Audacity (Audacity Team, http://audacity.sourceforge.net/). All other stimulus characteristics remained as in Experiment 1.

2) Procedure: Sighted volunteers ($N = 12, 5$ female, mean age 23.3 y) were tested on the same spatial discrimination tasks as in Experiment 1. After each response, participants were informed whether they had answered correctly or incorrectly. All other attributes of the testing remained the same as in Experiment 1.

C. Methods, Experiment 3

We conducted a psychophysical localization experiment with three sighted users (all male, mean age 33.7 y), who had between four and six hours of self-guided practice in using the device, largely to navigate the corridors near the laboratory. The participants were blindfolded throughout the experiment, and they wore the Sonic Eye device. The task was to localize a plate, ~30 cm (17°) in diameter, held at one of 9 positions relative to the user (see Figure 5), with the face of the plate oriented to be approximately normal to the emitter’s line of sight. In each of 100 trials, the plate (on a long thin pole) was held at a randomly selected position at a distance of 1 m, or removed for a 10th “absent” condition. Each of the 10 conditions was selected with equal probability. The grid of positions spanned 1 m on a side, such that the horizontal and vertical offsets from the center position subtended ~18°. The subjects stood still and initially fixated centrally, but were able to move their head during the task (although Subject 1 kept their head motionless). Responses consisted of a verbal report of grid position. After each response the participant was given feedback on the true position. The experiment took place in a furnished seminar room, a cluttered echoic space.

The hardware configuration for Subjects 2 and 3 was identical to that in Experiments 1 and 2. Subject 1 used an earlier hardware configuration, which differed as follows. The output of the B&K Nexus conditioning amplifier was fed into a NIDAQ USB-9201 acquisition device for digitization. Ultrasonic audio was output using an ESI GIGAPORT HD sound card. The temporal magnification factor m was set to 20. The backpack used was different, and power was provided by extension cord. Subject 1 did not participate in Experiments 1 or 2, although Subjects 2 and 3 did.

IV. EXPERIMENTAL RESULTS

A. Results, Experiment 1

Laterality judgments were robustly above chance for pinna (mean 75.4% correct, $p < 0.001, n = 130$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over 6 tests) and no-pinna conditions (mean 86.2% correct, $p < 0.001, n = 130$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over 6 tests), indicating that the binaural echo input produced reliable, intuitive cues for left-right judgments. Depth and elevation judgments, however, proved more difficult; performance on both tasks was not different from chance for the group. The presence or absence of the artificial pinnae did not significantly affect performance in any of the three tasks: logistic regression results were
nonsignificant for the effect of pinnae ($p = 0.193$) and the pinna/task interaction ($p = 0.125$). Population and single-subject results are shown in Figure 4b-c.

B. Results, Experiment 2

Results for laterality and elevation judgments replicated those from Experiment 1: strong above-chance performance for laterality in both pinna (76.7% correct, $p < 0.001$, $n = 120$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over 6 tests) and no-pinna (83.3% correct, $p < 0.001$, $n = 120$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over 6 tests) conditions. Because there appeared to be little benefit from feedback for these judgments, we conclude that it may be unnecessary for laterality judgments. Performance was still at chance for elevation, indicating that feedback over the course of a single experimental session was insufficient for this task.

However, performance on depth judgments improved markedly over Experiment 1, with group performance above chance for both pinna (70% correct, $p < 0.001$, $n = 120$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over 6 tests) and no-pinna (68.3% correct, $p < 0.001$, $n = 120$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over 6 tests) conditions. Performance ranges were also lower (smaller variance) for depth judgments compared to Experiment 1, suggesting that feedback aided a more consistent interpretation of depth cues.

As in Experiment 1, the presence or absence of the artificial pinnae did not significantly affect performance in any of the three tasks: logistic regression results were nonsignificant for the effect of pinnae ($p = 0.538$) and the pinna/task interaction ($p = 0.303$). Population and single subject results are shown in Figure 4d-e.

C. Results, Experiment 3

The subjects typically performed well above chance in determining the exact position of the plate from 10 positions, the plate’s absence/presence, its horizontal position (laterality), and its vertical position (elevation). This is illustrated in Figure 5b, the dotted line indicating chance performance, and a ringed gray dot indicating the subject performed significantly better than chance by the binomial test.

For Subject 1, the spatially arranged confusion matrix of Figure 5c indicates that the subject reported the exact correct position from the 10 positions with high probability. Overall performance was 48% correct, significantly greater than a chance performance of 10% ($p \ll 0.001$, $n = 100$, two-tailed binomial test, Bonferroni-Holm multiple comparison correction over all tests and subjects of Experiment 3). For all non-absent trials, 72% of localization judgments were within one horizontal or one vertical position of the true target position. Figure 5d shows the confusion matrix collapsed over spatial position to show only the absence or presence of the plate. The present/absent state was reported with 98% accuracy, significantly better than chance ($p < 0.001$, $n = 100$, two-tailed binomial test, Bonferroni-Holm corrected). Figure 5e shows the confusion matrix collapsed over the vertical dimension (for the 93 cases where the plate was present), thus showing how well the subject estimated horizontal position in the horizontal dimension. The horizontal position of the plate was correctly reported 56% of the time, significantly above chance performance ($p \ll 0.001$, $n = 93$, two-tailed binomial test, Bonferroni-Holm corrected). Figure 5f shows the confusion matrix collapsed over the horizontal dimension, thus showing how well the subject estimated position in the vertical dimension. The vertical position of the plate was correctly reported 68% of the time, significantly above chance performance ($p \ll 0.001$, $n = 93$, two-tailed binomial test, Bonferroni-Holm corrected).

The remaining two subjects showed similar results to Subject 1. Subject 2 was significantly above chance for exact position, for absent vs. present, for horizontal localization, and for vertical localization (respectively 44%, $p \ll 0.001$, $n = 100$; 94%, $p = 0.0084$, $n = 100$; 69%, $p \ll 0.001$, $n = 100$).
our signal recordings included complex reverberations inherent in an ecological, naturalistic environment. Thus the discrimination task was more complex than a simple delay between two isolated sounds. The cues indexing auditory depth include not only variation in pulse-echo timing delays, but also differences in overall reflected energy and reverberance which are strongly distance-dependent. In fact, as cues produced by active echoes, discrete pulse-echo delays are not typically encountered by the human auditory system. Single-subject echoic distance discrimination thresholds as low as \(\sim 11 \text{ cm} \) \((\sim 30 \text{ cm in extensively trained sighted subjects [32]) have been reported for natural human echolocation. Thus, it is likely that training would improve depth discrimination considerably, especially with time-dilated echo information, in theory down to \(\sim 0.5 \text{ cm} \) with 25-fold dilation.

Performance was low on the elevation task in both pinna and no-pinna conditions. It is possible that the echo recordings do not contain the elevation information necessary for judgments of 16° precision. However, our tasks were expressly designed to assess rapid, intuitive use of the echo cues provided, while the spectral cues from new pinnae take time to learn; elevation judgments in humans depend strongly on pinna shape [19], [33], and recovering performance after modifying the pinna can take weeks [23]. Vertical localization behavior in bats depends on direction dependent filtering due details of pinna and tragus shape and position [34], [35], and also on active outer ear position adjustments [36]. Thus, the design and construction of the artificial pinnae used in the present experiment may not provide the full benefits of their bat counterparts, and would likely benefit from refinement to optimize their filtering properties. For instance, pinnae could be optimized to maximize the learnability of the new pinna by transforming humans. Considering left-right localization, the time dilation employed by the Sonic Eye, by expanding the interaural time differences, may improve interaural time discrimination in some cases, possibly allowing for supernormal lateralization localization with practice, especially near the midline. For peripheral sound sources the time dilation will cause ecologically large interaural time differences which although discriminable, tend to be harder to discriminate by a degree that approximately counteracts the advantage of the time-dilation [37]. We do not expect time-dilation to strongly influence vertical localization capacities in our setup.

In line with these observations, Experiment 3 suggests that both laterality and elevation localization cues were available to a user with a moderate amount of training. This is qualitatively consistent with previous measures of spatial resolution in blind and sighted subjects performing unaided spatial echolocation tasks [9], [38]. While further research is needed to validate such comparisons and, more generally, characterize the behavioral envelope of Sonic Eye-aided echolocation, we consider the results presented here as encouraging. Specifically, they suggest that performance on behaviorally relevant tasks is amenable to training. Informal observations with two further participants suggest an ability to navigate through hallways, detecting walls and stairs, while using the Sonic Eye blindfolded. A degree of shape discrimination may also be present (for example an open vs. closed hand), consistent with
[39], who demonstrated human object discrimination using downsampled ultrasonic recordings of dolphins’ reflected click trains, and with [12], in which blind humans discriminated echolocally between 3-D shapes.

Any practical configuration such as that tested in Experiment 3 should minimize interference between echolocation signals and environmental sounds (e.g., speech or approaching vehicles). To this end, open-ear headphones ensure that the ear remains unobstructed, as described in Section 2. However, future testing should include evaluations of auditory performance with and without the device, and training designed to assess and improve artificial echolocation in a naturalistic, acoustically noisy environment.

We note that performance on the experiments reported here likely underestimates the sensitivity achievable by using the device for several reasons. First, in Experiments 1 and 2, the head was virtually fixed relative to the target object (due to the headphone presentation of recorded echoes). This would not apply to a user in a more naturalistic context. Second, we assessed the intuitive and immediately usable perceptual information in the echoes, while extensive training would only build on that baseline. Third, the participants tested were not just untrained, but normally sighted. Blind and visually impaired users may differ in performance from sighted users due to some combination of superior auditory capabilities [40], [41], [42] and reported deficits, e.g., [43]. Testing this device with blind subjects will be an important direction for future work. Finally, ongoing development of the prototype continues to improve the quality of the emitted, received, and processed signal and its interface.

VI. SUMMARY AND CONCLUSION

Here we present a prototype assistive device to aid in navigation and object perception via ultrasonic echolocation. The ultrasonic signals exploit the advantages of high-frequency sonar signals and time-stretch them into human-audible frequencies. Depth information is encoded in pulse-echo time delays, made available through the time-stretching process. Azimuthal location information is encoded as interaural time and intensity differences between echoes recorded by the stereo microphones. Finally, elevation information is captured by artificial pinnae mounted to the microphones as direction-dependent spectral filters. Thus, the device presents a three-dimensional auditory scene to the user with high theoretical spatial resolution, in a form consistent with natural spatial hearing. Behavioral results from two experiments with naive sighted volunteers demonstrated that two of three spatial dimensions (depth and laterality) were readily available with no more than one session of feedback/training. Elevation information proved more difficult to judge, but a third experiment with moderately trained users indicated successful use of elevation information as well. Taken together, we interpret these results to suggest that while some echoic cues provided by the device are immediately and intuitively available to users, perceptual acuity is potentially highly amenable to training. Thus, the Sonic Eye may prove to be a useful assistive device for persons who are blind or visually impaired.

REFERENCES

Fig. 5. Ten-position localization in three trained participants. A subject was asked to identify the position of an \(\sim 30 \) cm plastic plate held at 1 m distance. (a) Schematic illustration of the 10 possible configurations of the plate, including nine spatial locations and a tenth ‘absent’ condition. (b) Summary of fraction correct for the 3 subjects, for exact identification, and for identification of absent/present, horizontal position, and vertical position. (c) Spatially arranged confusion matrix of behavioral results for Subject 1. Each sub-figure corresponds to a location of the plate, and the intensity map within each sub-figure indicates the fraction of trials the subject reported each position for each plate location. Black corresponds to a subject never indicating a location, and white corresponds to a location always being indicated. Each sub-figure sums to 1. (d) Confusion matrix grouped into plate absent and present conditions for Subject 1. (e) Confusion matrix grouped by horizontal position of the plate for Subject 1. (f) Confusion matrix grouped by vertical position of the plate for Subject 1. (g-j) Same as in c-f, but for Subject 2. (k-n) Same as in c-f, but for Subject 3.