
SIMULATING ARTISTIC BRUSHSTROKES USING INTERVAL SPLINES

Sara L. Su 1, 2
sarasu@cs.washington.edu

Ying-Qing Xu 1
yqxu@microsoft.com

Heung-Yeung Shum 1
hshum@microsoft.com

Falai Chen 3
chenfl@ustc.edu.cn

1 Visual Computing Group
Microsoft Research Asia
Microsoft Corporation

Beijing, China

2 Department of Computer
Science and Engineering
University of Washington

Seattle, WA, USA

3 Department of Mathematics
University of Science and

Technology of China
Hefei, China

ABSTRACT

In this paper we present a novel method of simulating the
elegant brushstrokes found in calligraphic lettering and
painting. Such simulations have earlier been attempted
with physically based or texture-mapped approaches,
methods that succeeded in producing aesthetic, but also
computationally intensive, results. We introduce a
brushstroke model based on a parametric curve, the
interval spline. By defining brush effects as mathematical
constraints between knots, we generate artistic strokes
that render faster than earlier methods and are also
resistant to scaling. More significantly, because the
construction of the interval spline curve is based on
changes in the shape of the brush as it moves along a path,
variations within a single stroke not fully modeled with
earlier attempts are inherently captured by this
representation. We present a system for painting with
interval spline strokes and discuss a number of examples
created with this method.

KEYWORDS

Non-photorealistic rendering, Stroke generation, Interval
spline, Digital painting.

1 INTRODUCTION

Much NPR research effort has been devoted to simulation
of traditional graphic media. We focus our attention on
the elegant brushstrokes of calligraphic (or brush-pen)
painting.

Classical calligraphy has long been one of the most
respected of brush arts. In addition to describing a
particular style of painting, calligraphy refers to the
artistic form of lettering practiced by Asian and European
scholars for centuries. The long, fluid strokes on a
Chinese scroll and the even, controlled lettering on an
illuminated manuscript are the results of years of
disciplined practice fueled by artistic instinct. Though a
computer cannot capture the creative spirit of an artist, it
can simulate the brushstroke characteristics that are so
important in its manifestation. The 8th-century Chinese

painter and poet Wang Wei describes the importance of
stroke shape in a painting:

“With a curved line I represent the Song
mountain ranges… A swift stroke will be
sufficient for the Taihua Mountain… With
changes and variations in all directions,
movement is created…” [6]

In this paper we present our efforts to simulate some

of the features that make calligraphic brushstrokes so
compelling.

1.1 Related work

Our simulation of brushstrokes draws from a long line of
earlier work in understanding the interactions of bristles
and ink with paper. The various models of brushstrokes
attempted in recent years range from texture-mapping, to
application of arbitrarily deformable images along a
stroke path, to physical simulations. There has also been
a great deal of work in user interfaces for allowing an
artist to input strokes into the computer. Here we briefly
discuss the efforts that have laid the ground work for our
research.

Texture-mapped methods. In rendering artistic
silhouettes, Northrup and Markosian created the basis of
an artistic stroke, the variable-width line primitive, by
defining “rib vectors” composed of triangle strips [16].
Hsu et al. introduced “skeletal strokes”, deformable
images that can be anchored, scaled, or transformed by
multiple factors at each control point [11]. Hsu and Lee
went on to explore applications of such strokes in a
drawing and animation systems [10]. While this push
toward mathematically deformable models of
brushstrokes has led to some promising results, these
representations still fundamentally rely on texture
mapping for rendering many of the artistic stroke effects.

Physically-based approaches. Though their
watercolor simulator is empirically based, Curtis et al.
make use a cellular automaton and other physical models
to simulate the dynamics of water interacting with
suspended pigment [5]. Their simulation drew from the
work of Strassman, who produced “hairy brushes”
simulating the interactions of bristles, ink, water, and

paper [20]. Haeberli’s Dynadraw connects a virtual mass
to the mouse with a damped spring. As the user draws,
the movement of the mass, not the mouse, is stroked [8].
The brushstrokes resulting from this early work were
visually stunning but, due to the complexity of the
physical simulation, also computationally intensive.

Stroke input interfaces. There has been nearly as
much work on methods for inputting strokes as there has
on rendering them. Bleser et al. gave the user a pressure-
and angle-sensitive tablet on which to create “charcoal”
sketches [2]. Chua and Winton devised a low-cost mouse
input device allowing the user to change brush widths and
angles as a stroke is constructed [4].

1.2 Overview

In the following section, we discuss the specific
properties of an artist’s brushstroke that we seek to model,
and in Section 3 we outline our approach to simulating
such effects. Section 4 introduces the mathematical basis
of our stroke model, the interval spline and interval spline
curve. Section 5 discusses artistic stroke effects
simulated using the interval spline model, and in Section
6, we present images generated by our artistic stroke
system. Section 7 discusses our results and future work.

2 STROKE PROPERTIES

The style of Chinese painters ranges from the strong,
explosive marks of the “ink-splash” method and to the
informal, loose strokes of the “worn-out brush” manner.
We focus on the brush-pen technique which incorporates
both thin, continuous lines and broad, soft strokes. Large
patches of “ink-splash” shading are also often used.

The shape of a stroke on paper depends a number of
factors. These include the speed of painting, the texture
of paper or canvas, the pressure applied at particular
points, and the brush angle, and most of all, the artist.
However, we identify a number of features shared across
many styles: The initial stroke is typically the heaviest,
and the amount of pigment tapers off as the stroke is
completed. Ink is distributed more sparsely at stroke ends
and edges and more densely at thick corners. In addition
to the variations in transparency, we seek to model the
veins of white along the length of the stroke where there
is absence of ink.

3 SIMULATING ARTISTIC STROKES

Various methods have been attempted in recent years
with the goal of simulating such strokes. Although the
results of physical simulations and texture-mappings are
attractive, there are a number of inherent problems that
limit their practical usage in an interactive system.

The first is inefficiency. The texture-mapping
process is computationally intensive as texture

coordinates along the length of the stroke must be re-
calculated each time the stroke is re-drawn. A physically
accurate simulation is also necessarily time-intensive. In
fluid simulations, for example, systems of Navier-Stokes
equations must often be solved.

Another issue is physical scalability. It is a challenge
to ensure the appearance of the texture-mapped stroke at
all sizes and display resolutions.

Finally, because our goal is to allow a stroke’s
construction to proceed in a manner intuitive for the user,
we seek a model extensible for use with a pen-based input
device. There is currently no easy way to extend a
texture-mapped stroke for such use. The shape of a stroke
on paper depends on the speed at which it is drawn, the
pressure applied at particular points, and other factors.
With texture-mapped methods, the only way to achieve
such variations within a single stroke is to apply multiple
textures along segments of the stroke.

These three issues are addressed by our use of the
interval spline, a parametric curve that stores dense
vectors of information at its knots.

By defining artistic styles as mathematical constraints
between curve points, we are able to generate
brushstrokes that both resist scaling and render faster than
texture-mapped lines. A basic variable-width line is
easily rendered, and stylistic variations can be applied
along the length of the stroke. Such artistic effects can be
described quantitatively in terms of constraints between
parameters stored at its knots. This vector-based
approach simplifies the representation of a complex
stroke, reducing data stored in addition to the rendering
time, making them ideal for use in an interactive system.

The mathematical basis of an interval spline curve
provides a solution to the third problem. The construction
of the interval spline curve, discussed in detail in the next
section, can be visualized as being based on control
shapes (knots) defined though time as a brush is moved
along its path. These snapshots of the brush’s shape form
the knots of the interval spline curve. Thus, brush
variations within a single stroke are inherently captured
by the interval spline model.

4 INTERVAL SPLINES AND CURVES

The interval spline curve is a parametric representation
capable of a complete description of coefficient errors.
Interval analysis first emerged as a tool in numerical
mathematics to enable computers to execute algorithms
capable of capturing round off errors automatically [15].
Related curves have in the past been primarily applied in
the domain of computer-aided design (CAD) to remedy
lack of robustness in design systems.

Sederberg and Farouki first proposed using interval
Bezier curves to approximate arbitrary smooth functions
[18]. The range of values represented by these intervals
take into account all sources of measurement uncertainty.
Tuohy et. al extended interval Bezier curves to interval B-
spline curves to approximate the data points of a reverse-

engineered CAD model [22]. Others have studied the
representation and geometric operations of interval B-
spline curves, such as those used to solve CAD
intersection problems [3,12,19].

at its knots.

 (4) []() [] ()∑
=

=
n

i
tk

iNit
0

: PB
We use the interval spline curve to approximate not

the uncertainty in measured data, but rather the
uncertainty of ink applied by a brush. Here we introduce
the mathematics of interval splines and interval spline
curves. Though the interval method applies to many
types of splines, we discuss the particular cases of B-
splines and interpolatory splines.

where])[(])[(][eiideiici δε +×+=P .

4.3 Interpolatory interval spline curves

Though a basic B-spline is easily implemented, it is not
intuitive for use by a non-mathematician as the curve does
not pass though its knots. It can be difficult to determine
the exact position of the curve by adjusting the knot
values. We gain finer control through use of a curve that
passes through each knot, an interpolatory spline.

4.1 Interval B-splines

Replacing the constant coefficient of the familiar B-spline
basis function with an interval of real numbers results in
an interval B-spline defined by a function of the following
form

An interpolatory interval spline curve [9] is defined such
that its center curve interpolates a given set of points.
Given a set of points P , we use a spline
curve to interpolate the given set of points. That is,

Nii ,,1,0, L=

)(tc

 [] (1) () ())(][)(
0

])[(: tetc
n

i
tk

iNeiictB εε +=∑
=

+=

where is the center curve and

, with

∑
=

=
n

i
tk

iNictc
0

)()(

∑
=

n
tk

iNi
0

)(ε=
i

t)(ε 0>iε and [. N is

the B-spline basis function of order k associated with knot
sequence , where t

and for i between 0 and n. N can be
defined by the following recursive formula:

]1,1[] −=e

to ≤≤ 1
k
i

()tk
i

nt +≤...{ }knttotU += ,...,1,:

kit +<

k

()tit

 c NiiPit ,,1,0,)(L== (5)

where the parameters are chord length parameters, that is,

 is the length of P . If we impose two

boundary conditions for the cubic spline curve c , for
example,

,
1

0
∑
−

=
=

i

j
jlit jl 1+jPj

)(t

 0)()0(=′′=′′ Ntctc (6)

() [)
[)

+∉
+∈

=
1,,0
1,,11

ititt
ititt

tiN (2)

)(tc can be uniquely determined by solving a tridiagonal
system of linear equations. Though one would expect
such computations to be expensive, this system of
equations can actually be solved in O(N) time. This fact
and the ease of control offered by interpolatory spline
curves make them the optimal curve representation for
use in our system.

())(1
11

)(1
1

tk
iN

itkit
tkittk

iN
itkit

itttk
iN −

++−+

−++−
−−+

−
=

where i = 2,…,n. The B-spline basis functions are
non-negative over , hence

()tk
iN

),(∞−∞∈t

 [(3))](max),(min[)](tBtBtB =

4.4 Visualization of interval spline curves

 Interval spline curves consist of a family of interval
splines whose control points are located inside the ranges
defined by the interval control points. The interval spline
itself is defined by two splines, an upper and lower bound.

In this result, B is the lower bound of

 and is the upper bound of

.

)(
0

)(min tk
iN

n

i
iat ∑

=
=

)(
0

)(max tk
iN

n

i
ibt ∑

=
=)]([tB

)]([tB

B On the other hand, the interval spline curve should be
considered as defined by the control shapes stored at its
knots. The interpolatory interval spline curve is perhaps
more easily visualized than the B-spline. Consider the
example in Figure 1 on the following page. Construction
of the curve is initiated when the pen is put to paper with
the definition of the initial control ellipse. As the size of
the brush changes as it is swept along the length of the
stroke, the brush characteristics recorded at fixed periods
become the control knots of the curve.

4.2 Interval B-spline curves

Building on the interval B-spline representation is the
interval B-spline curve. An interval B-spline curve takes
its coefficient values from control shapes, vectors stored

(a)

(b)

(a)

(b)

Figure 1 A brushstroke approximated by an interpolatory
interval spline curve. (a) The original brushstroke. (b)
Approximating (a) with an interpolatory interval spline curve
defined by control shape (in this case, ellipses).

Figure 2 (a) Pencil-sketched and (b) painted brush styles.

(a)

(b)

5 ARTISTIC INTERVAL SPLINES Figure 3 (a) Texture-mapped stroke by Northrup and

Markosian [16]. (b) Stroke generated by our system with ink
density controlled by probability distributions.

We utilize both interval splines and interval spline curves
to simulate artistic stroke effects. The interval curve is
implemented as a family of splines constrained by control
knots and rendered on-screen using a number of position
evaluator functions.

In addition to the default position evaluator, color and
texture evaluators can be enabled to generate texture
coordinate. Texture-mapping can be used along the
stroke length to give the appearance of bristle lines or on
stroke endings for a rough, “dry brush” appearance.
Aesthetically, the results from the interval spline method
compare favorably to those of texture-mapping as can be
seen in Figure 3.

5.1 Variable-width lines

Hand-drawn strokes are rarely as uniform in thickness as
those generated by computer. Thus, a requirement in
simulating this traditional media is the simulation of lines
of varying width. Several such methods have been
attempted in the past, including rib vectors [16] and
skeletal strokes [11]. As discussed in the previous
section, variable-width strokes can be easily described,
with a minimal number of knots, as either interval splines
or interval spline curves.

6 RESULTS

We measure the success of our model both
quantitatively, in terms of rendering efficiency, and
qualitatively, in terms of aesthetics.

5.2 Stylistic effects
6.1 Efficiency

After defining the outline of a variable-width stroke, we
can apply the stylistic variations to achieve the desired
aesthetic effect. By storing width and color information
in the control rectangles, the interval spline allows easy
application of styles described in mathematical terms.
The sketched style shown in Figure 2(a) is achieved by
adjusting the number of curves in the family of the
interval spline and the number of evaluated segments in
those curves, and randomly perturbing the width and
direction of these curves.

Because a family of curves must be evaluated, one would
expect the rendering of an interval spline curve to
complete in real-time. In fact, interval spline curves
render fast enough for use in an interactive system. While
this has already exceeded our expectations, the fastest
rendering speeds are achieved once the user has
completed his composition and the final image is
rasterized for display.

We simulate the painted style of Figure 2(b) by
evaluating probabilities of ink density (in terms of color
and transparency) along the lengths between control
rectangles. The density of ink is often greatest when the
brush initially touches paper, tapering off as the stroke is
completed. Ink is distributed more sparsely at stroke ends
and edges and more densely at thick corners. A degree of
randomness controls the transparency, “flecks”, and
“veins” found along the length of a stroke and particularly
common at endings.

6.2 Painting with interval splines

The success of any simulation of traditional media is
measured ultimately not by the ruler or stopwatch of an
engineer, but rather by the eye of an artist. Here we
present a system for users to “paint” in calligraphic styles
with interval spline strokes.

The user first defines the curve outline by placing and
adjusting the parameters of its control rectangles.
Stylistic variations are then applied along the length of the

Figure 4 A swan painted in calligraphic style using artistic interval spline brushstrokes. Based on a painting by the Chinese artist Fang Zen [6].

outline. A drawing can be composed of a single
continuous spline or can be composed of a number of
discrete curves.As can be seen in Figures 4 and 5, a user
can quickly create an impressive painting with this
interactive system. Each image was created from scratch
in only a few minutes.

Only a few expressive strokes are needed to suggest
the image of the swan in Figure 4. Varying widths of
probability-distribution fill strokes are used to suggest
feathers, beak, and water.

Notice the mixture of stroke styles used to render
Figure 5. Ribbon-like strokes are trace the folds of the
wiseman’s robe. Thin strokes of varying width are used
for the delicate features of his head and face. A thick
probability-distribution fill suggests the bushy beard.

7 DISCUSSION AND FUTURE WORK

We have approached brushstroke simulation not as a
texture-mapping problem or physical simulation but
rather as the 2D mathematical problem of rendering
strokes using interval splines. Storing dense information
vectors at its knots, the parameters of the interval spline
are easily manipulated. The significance of the current
approach is its ability to produce the artistic strokes faster
and with greater flexibility. By defining styles as
mathematical constraints between curve points, our

system produces aesthetic strokes that both render faster
than traditional strokes and resist scaling. The general
nature of this approach suggests other applications to
which it can be extended.

Additional artistic effects. We have simulated a
number of them with this system, but it would be
worthwhile to attempt others in the future. Specifically,
there are a number of characteristics of the “dry brush”
method not sufficiently captured by our current stroke
model. It would be interesting to integrate our
representation with other related systems, such as hairy
brushes or computer-generated watercolor.

Integration with pen-based devices. Though a
skilled user can quickly create an expressive composition
with our system, the interface is hardly as intuitive to use
as brush and paper. Thus, our future work involves
integrating this system with a pen-based input device
capable of recording angle, width, and pressure. The
appearance of these curves would more easily incorporate
the intent of the user as the setting of the control knots are
set with this additional information about the user’s
application of the stroke measured through time.

Acknowledgements

The authors wish to thank the anonymous reviewers for
the valuable feedback they provided.

 A wiseman rendered in Eastern calligraphic style using Figure 5

our artistic stroke system.

eferences

[1] T. Baudel. A mark-based interaction paradigm for free-

[2] T.W. Bleser, J.L. Sibert, and J.P. McGee. Charcoal

[3] W.Cho, T.Maekawa, N.M. Patrikalakis, and J. Peraire.

[4] Y.S. Chua and C.N. Winton. User interface for simulating

R

hand drawing. In Proceedings of UIST 1994, November
1994.

sketching: returning control to the artist. ACM
Transactions on Graphics, 7(1), pp. 76-81, 1988.

Topologically reliable approximation of trimmed
polynomial surface patches. In Graphical Models and
Image Processing, Vol. 61, 1999.

calligraphic pens and brushes. In Proceedings of the ACM
Sixteenth Annual Conference on Computer Science, 1988.

[5] C.J. Curtis, S.E. Anderson, J. E. Seims, K.W. Fleisher, and
D.H. Salesin. Computer-generated watercolor. In
Proceedings of SIGGRAPH 1997, pp. 421-430, 1997.

[6] W.T. De Bary, W.-T. Chan, and B. Watson. Sources of

chinese tradition (Columbia University Press, 1960).

[7] F. Zen. Paintings of Fang Zen (1999).

[8] P. Haeberli. Dynadraw. Silicon Graphics Corporation,
1989.

[9] J. Hoschek and D. Lasser. Fundamentals of computer

aided geometric design, A.K. Peters Ltd., 1993.

[10] S.C. Hsu and I.H.H. Lee. Drawing and animation using
skeletal strokes. In Proceedings of SIGGRAPH 1994, pp.
109-118, July 1994.

[11] S.C. Hsu, I.H.H. Lee, and Neil E. Wiseman. Skeletal

strokes. In Proceedings of UIST 1993, November 1993.

[12] C.-Y. Hu, T. Maekawa, N.M. Patrikalakis, and X. Ye.
Robust interval algorithm for surface intersections. In
Computer Aided Design, 1997.

[13] J. Lansdown and S. Schofield. Expressive rendering: a

review of nonphotorealistic techniques. IEEE Computer
Graphics and Applications, 15(3), pp. 29-37, May 1995.

[14] L. Markosian, M.A. Kowalski, S.J. Trychin, L.D. Bourdev,

D. Goldstein, and J.F. Hughes. Real-time
nonphotorealistic rendering. In Proceedings of SIGGRAPH
1997, pp. 415-420, August 1997.

[15] R.E. Moore. Interval analysis (Englewood Cliffs, NJ:

Prentice Hall, 1966).

[16] J.D. Northrup and L. Markosian. Artistic silhouettes: a
hybrid approach. In Proceedings of NPAR 2000, pp. 31-
38, June 2000.

[17] S. Schlectweg. Lines and how to draw them. In Norsk

smarbeid inner grafisk databehandling NORSIGD Info,
February 1997.

[18] T.W. Sederberg and R. Farouki. Approximation by

interval bezier curves. In IEEE Computer Graphics and
Applications, 1992.

[19] G. Shen and N.M. Patrikalakis. Numerical and geometric

properties of interval b-splines. In International Journal of
Shape Modeling, Vol. 4, 1998.

[20] S. Strassman. Hairy brushes. In Computer Graphics,

20(4), pp. 225-232, August 1986.

[21] S.T. Tuohy, T. Maekawa, G. Shen, and N.M. Patrikalakis.
Approximation of measured data with interval b-splines.
In Computer Aided Design, 1997.

