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ABSTRACT 
 
In this paper we present a novel method of simulating the 
elegant brushstrokes found in calligraphic lettering and 
painting.  Such simulations have earlier been attempted 
with physically based or texture-mapped approaches, 
methods that succeeded in producing aesthetic, but also 
computationally intensive, results.  We introduce a 
brushstroke model based on a parametric curve, the 
interval spline. By defining brush effects as mathematical 
constraints between knots, we generate artistic strokes 
that render faster than earlier methods and are also 
resistant to scaling.  More significantly, because the 
construction of the interval spline curve is based on 
changes in the shape of the brush as it moves along a path, 
variations within a single stroke not fully modeled with 
earlier attempts are inherently captured by this 
representation.  We present a system for painting with 
interval spline strokes and discuss a number of examples 
created with this method. 
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1 INTRODUCTION 
 
Much NPR research effort has been devoted to simulation 
of traditional graphic media.  We focus our attention on 
the elegant brushstrokes of calligraphic (or brush-pen) 
painting.   

Classical calligraphy has long been one of the most 
respected of brush arts.  In addition to describing a 
particular style of painting, calligraphy refers to the 
artistic form of lettering practiced by Asian and European 
scholars for centuries.  The long, fluid strokes on a 
Chinese scroll and the even, controlled lettering on an 
illuminated manuscript are the results of years of 
disciplined practice fueled by artistic instinct.  Though a 
computer cannot capture the creative spirit of an artist, it 
can simulate the brushstroke characteristics that are so 
important in its manifestation.  The 8th-century Chinese 

painter and poet Wang Wei describes the importance of 
stroke shape in a painting: 
 

“With a curved line I represent the Song 
mountain ranges… A swift stroke will be 
sufficient for the Taihua Mountain… With 
changes and variations in all directions, 
movement is created…” [6] 

 
In this paper we present our efforts to simulate some 

of the features that make calligraphic brushstrokes so 
compelling. 
 
1.1 Related work 
 
Our simulation of brushstrokes draws from a long line of 
earlier work in understanding the interactions of bristles 
and ink with paper.  The various models of brushstrokes 
attempted in recent years range from texture-mapping, to 
application of arbitrarily deformable images along a 
stroke path, to physical simulations.  There has also been 
a great deal of work in user interfaces for allowing an 
artist to input strokes into the computer.  Here we briefly 
discuss the efforts that have laid the ground work for our 
research. 

Texture-mapped methods.  In rendering artistic 
silhouettes, Northrup and Markosian created the basis of 
an artistic stroke, the variable-width line primitive, by 
defining “rib vectors” composed of triangle strips [16].  
Hsu et al. introduced “skeletal strokes”, deformable 
images that can be anchored, scaled, or transformed by 
multiple factors at each control point [11].  Hsu and Lee 
went on to explore applications of such strokes in a 
drawing and animation systems [10].  While this push 
toward mathematically deformable models of 
brushstrokes has led to some promising results, these 
representations still fundamentally rely on texture 
mapping for rendering many of the artistic stroke effects. 

Physically-based approaches.  Though their 
watercolor simulator is empirically based, Curtis et al. 
make use a cellular automaton and other physical models 
to simulate the dynamics of water interacting with 
suspended pigment [5].  Their simulation drew from the 
work of Strassman, who produced “hairy brushes” 
simulating the interactions of bristles, ink, water, and 



paper [20].  Haeberli’s Dynadraw connects a virtual mass 
to the mouse with a damped spring.  As the user draws, 
the movement of the mass, not the mouse, is stroked [8].  
The brushstrokes resulting from this early work were 
visually stunning but, due to the complexity of the 
physical simulation, also computationally intensive. 

Stroke input interfaces.  There has been nearly as 
much work on methods for inputting strokes as there has 
on rendering them.  Bleser et al. gave the user a pressure- 
and angle-sensitive tablet on which to create “charcoal” 
sketches [2].  Chua and Winton devised a low-cost mouse 
input device allowing the user to change brush widths and 
angles as a stroke is constructed [4]. 
 
1.2 Overview  
 
In the following section, we discuss the specific 
properties of an artist’s brushstroke that we seek to model, 
and in Section 3 we outline our approach to simulating 
such effects.  Section 4 introduces the mathematical basis 
of our stroke model, the interval spline and interval spline 
curve.  Section 5 discusses artistic stroke effects 
simulated using the interval spline model, and in Section 
6, we present images generated by our artistic stroke 
system.  Section 7 discusses our results and future work. 
 
 
2 STROKE PROPERTIES 

 
The style of Chinese painters ranges from the strong, 
explosive marks of the “ink-splash” method and to the 
informal, loose strokes of the “worn-out brush” manner.  
We focus on the brush-pen technique which incorporates 
both thin, continuous lines and broad, soft strokes.  Large 
patches of  “ink-splash” shading are also often used.   

The shape of a stroke on  paper depends a number of 
factors.  These include the speed of painting, the texture 
of paper or canvas, the pressure applied at particular 
points, and the brush angle, and most of all, the artist.  
However, we identify a number of features shared across 
many styles: The initial stroke is typically the heaviest, 
and the amount of pigment tapers off as the stroke is 
completed.  Ink is distributed more sparsely at stroke ends 
and edges and more densely at thick corners.  In addition 
to the variations in transparency, we seek to model the 
veins of white along the length of the stroke where there 
is absence of ink. 
 
 
3 SIMULATING ARTISTIC STROKES 
 

Various methods have been attempted in recent years 
with the goal of simulating such strokes.  Although the 
results of physical simulations and texture-mappings are 
attractive, there are a number of inherent problems that 
limit their practical usage in an interactive system.   

The first is inefficiency.  The texture-mapping 
process is computationally intensive as texture 

coordinates along the length of the stroke must be re-
calculated each time the stroke is re-drawn.  A physically 
accurate simulation is also necessarily time-intensive.  In 
fluid simulations, for example, systems of Navier-Stokes 
equations must often be solved.   

Another issue is physical scalability.  It is a challenge 
to ensure the appearance of the texture-mapped stroke at 
all sizes and display resolutions.   

Finally, because our goal is to allow a stroke’s 
construction to proceed in a manner intuitive for the user, 
we seek a model extensible for use with a pen-based input 
device.  There is currently no easy way to extend a 
texture-mapped stroke for such use.  The shape of a stroke 
on  paper depends on the speed at which it is drawn, the 
pressure applied at particular points, and other factors.  
With texture-mapped methods, the only way to achieve 
such variations within a single stroke is to apply multiple 
textures along segments of the stroke. 

These three issues are addressed by our use of the 
interval spline, a parametric curve that stores dense 
vectors of information at its knots.   

By defining artistic styles as mathematical constraints 
between curve points, we are able to generate 
brushstrokes that both resist scaling and render faster than 
texture-mapped lines.  A basic variable-width line is 
easily rendered, and stylistic variations can be applied 
along the length of the stroke.  Such artistic effects can be 
described quantitatively in terms of constraints between 
parameters stored at its knots.  This vector-based 
approach simplifies the representation of a complex 
stroke, reducing data stored in addition to the rendering 
time, making them ideal for use in an interactive system. 

The mathematical basis of an interval spline curve 
provides a solution to the third problem.  The construction 
of the interval spline curve, discussed in detail in the next 
section, can be visualized as being based on control 
shapes (knots) defined though time as a brush is moved 
along its path.  These snapshots of the brush’s shape form 
the knots of the interval spline curve.  Thus, brush 
variations within a single stroke are inherently captured 
by the interval spline model. 
 
 
4 INTERVAL SPLINES AND CURVES 
 
The interval spline curve is a parametric representation 
capable of a complete description of coefficient errors.  
Interval analysis first emerged as a tool in numerical 
mathematics to enable computers to execute algorithms 
capable of capturing round off errors automatically [15].  
Related curves have in the past been primarily applied in 
the domain of computer-aided design (CAD) to remedy 
lack of robustness in design systems.   

Sederberg and Farouki first proposed using interval 
Bezier curves to approximate arbitrary smooth functions 
[18].    The range of values represented by these intervals 
take into account all sources of measurement uncertainty.  
Tuohy et. al extended interval Bezier curves to interval B-
spline curves to approximate the data points of a reverse-



engineered CAD model [22].  Others have studied the 
representation and geometric operations of interval B-
spline curves, such as those used to solve CAD 
intersection problems [3,12,19].   

at its knots. 
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We use the interval spline curve to approximate not 

the uncertainty in measured data, but rather the 
uncertainty of ink applied by a brush.  Here we introduce 
the mathematics of interval splines and interval spline 
curves.  Though the interval method applies to many 
types of splines, we discuss the particular cases of B-
splines and interpolatory splines. 
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4.3 Interpolatory interval spline curves 
 
Though a basic B-spline is easily implemented, it is not 
intuitive for use by a non-mathematician as the curve does 
not pass though its knots.  It can be difficult to determine 
the exact position of the curve by adjusting the knot 
values.  We gain finer control through use of a curve that 
passes through each knot, an interpolatory spline.   

 
4.1 Interval B-splines 
 
Replacing the constant coefficient of the familiar B-spline 
basis function with an interval of real numbers results in 
an interval B-spline defined by a function of the following 
form 

 
An interpolatory interval spline curve [9] is defined such 
that its center curve interpolates a given set of points.  
Given a set of points P , we use a spline 
curve  to interpolate the given set of points.  That is, 
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the B-spline basis function of order k associated with knot 
sequence , where t  

and  for i between 0 and n.  N  can be 
defined by the following recursive formula: 
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where the parameters are chord length parameters, that is, 

 is the length of P . If we impose two 

boundary conditions for the cubic spline curve c , for 
example, 
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)(tc  can be uniquely determined by solving a tridiagonal 
system of linear equations.  Though one would expect 
such computations to be expensive, this system of 
equations can actually be solved in O(N) time.  This fact 
and the ease of control offered by interpolatory spline 
curves make them the optimal curve representation for 
use in our system. 
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where  i = 2,…,n.  The B-spline basis functions  are 
non-negative over  , hence 
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4.4 Visualization of interval spline curves 
 

 Interval spline curves consist of a family of interval 
splines whose control points are located inside the ranges 
defined by the interval control points.  The interval spline 
itself is defined by two splines, an upper and lower bound.   

In this result, B  is the lower bound of 

 and  is the  upper bound of  
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B On the other hand, the interval spline curve should be 
considered as defined by the control shapes stored at its 
knots.  The interpolatory interval spline curve is perhaps 
more easily visualized than the B-spline.  Consider the 
example in Figure 1 on the following page.  Construction 
of the curve is initiated when the pen is put to paper with 
the definition of the initial control ellipse.    As the size of 
the brush changes as it is swept along the length of the 
stroke, the brush characteristics recorded at fixed periods 
become the control knots of the curve. 

 
 
4.2 Interval B-spline curves 
 
Building on the interval B-spline representation is the 
interval B-spline curve.  An interval B-spline curve takes 
its coefficient values from  control shapes,  vectors  stored  
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Figure 1  A brushstroke approximated by an interpolatory 
interval spline curve.  (a) The original brushstroke.  (b) 
Approximating (a) with an interpolatory interval spline curve 
defined by control shape (in this case, ellipses). 

Figure 2   (a) Pencil-sketched and (b) painted brush styles. 

 
(a) 

(b) 

 

 
 
 
5 ARTISTIC INTERVAL SPLINES Figure 3  (a) Texture-mapped stroke by Northrup and 

Markosian [16].  (b) Stroke generated by our system with ink 
density controlled by probability distributions. 

 
We utilize both interval splines and interval spline curves 
to simulate artistic stroke effects.  The interval curve is 
implemented as a family of splines constrained by control 
knots and rendered on-screen using a number of position 
evaluator functions.   

 
 

In addition to the default position evaluator, color and 
texture evaluators can be enabled to generate texture 
coordinate.  Texture-mapping can be used along the 
stroke length to give the appearance of bristle lines or on 
stroke endings for a rough, “dry brush” appearance.  
Aesthetically, the results from the interval spline method 
compare favorably to those of texture-mapping as can be 
seen in Figure 3. 

 
5.1 Variable-width lines 
 
Hand-drawn strokes are rarely as uniform in thickness as 
those generated by computer.  Thus, a requirement in 
simulating this traditional media is the simulation of lines 
of varying width.  Several such methods have been 
attempted in the past, including rib vectors [16] and 
skeletal strokes [11].  As discussed in the previous 
section, variable-width strokes can be easily described, 
with a minimal number of knots, as either interval splines 
or interval spline curves. 

 
 
6 RESULTS 
 
We measure the success of our model  both  
quantitatively, in terms of rendering efficiency, and 
qualitatively, in terms of aesthetics.  

5.2 Stylistic effects  
6.1 Efficiency  

After defining the outline of a variable-width stroke, we 
can apply the stylistic variations to achieve the desired 
aesthetic effect.  By storing width and color information 
in the control rectangles, the interval spline allows easy 
application of styles described in mathematical terms.  
The sketched style shown in Figure 2(a) is achieved by 
adjusting the number of curves in the family of the 
interval spline and the number of evaluated segments in 
those curves, and randomly perturbing the width and 
direction of these curves.   

 
Because a family of curves must be evaluated, one would 
expect the rendering of an interval spline curve to 
complete in real-time.  In fact, interval spline curves 
render fast enough for use in an interactive system.  While 
this has already exceeded our expectations, the fastest 
rendering speeds are achieved once the user has 
completed his composition and the final image is 
rasterized for display. 
 

We simulate the painted style of Figure 2(b) by 
evaluating probabilities of ink density (in terms of color 
and transparency) along the lengths between control 
rectangles.  The density of ink is often greatest when the 
brush initially touches paper, tapering off as the stroke is 
completed.  Ink is distributed more sparsely at stroke ends 
and edges and more densely at thick corners.  A degree of 
randomness controls the transparency, “flecks”, and 
“veins” found along the length of a stroke and particularly 
common at endings. 

6.2 Painting with interval splines 
 
The success of any simulation of traditional media is 
measured ultimately not by the ruler or stopwatch of an 
engineer, but rather by the eye of an artist.  Here we 
present a system for users to “paint” in calligraphic styles 
with interval spline strokes. 

The user first defines the curve outline by placing and 
adjusting the parameters of its control rectangles.  
Stylistic variations are then applied along the length of the  



 
Figure 4  A swan painted in calligraphic style using artistic interval spline brushstrokes.  Based on a painting by the Chinese artist Fang Zen [6]. 

 
 
 

outline.  A drawing can be composed of a single 
continuous spline or can be composed of a number of 
discrete curves.As can be seen in Figures 4 and 5, a user 
can quickly create an impressive painting with this 
interactive system. Each image was created from scratch 
in only a few minutes. 

Only a few expressive strokes are needed to suggest 
the image of the swan in Figure 4.  Varying widths of 
probability-distribution fill strokes are used to suggest 
feathers, beak, and water. 

Notice the mixture of stroke styles used to render 
Figure 5.  Ribbon-like strokes are trace the folds of the 
wiseman’s robe.  Thin strokes of varying width are used 
for the delicate features of his head and face.  A thick 
probability-distribution fill suggests the bushy beard. 
 
 
7 DISCUSSION AND FUTURE WORK 
 
We have approached brushstroke simulation not as a 
texture-mapping problem or physical simulation but 
rather as the 2D mathematical problem of rendering 
strokes using interval splines.  Storing dense information 
vectors at its knots, the parameters of the interval spline 
are easily manipulated.  The significance of the current 
approach is its ability to produce the artistic strokes faster 
and with greater flexibility.  By defining styles as 
mathematical constraints between curve points, our 

system produces aesthetic strokes that both render faster 
than traditional strokes and resist scaling.  The general 
nature of this approach suggests other applications to 
which it can be extended.  

Additional artistic effects.  We have simulated a 
number of them with this system, but it would be 
worthwhile to attempt others in the future.  Specifically, 
there are a number of characteristics of the “dry brush” 
method not sufficiently captured by our current stroke 
model.  It would be interesting to integrate our 
representation with other related systems, such as hairy 
brushes or computer-generated watercolor. 

Integration with pen-based devices.  Though a 
skilled user can quickly create an expressive composition 
with our system, the interface is hardly as intuitive to use 
as brush and paper.  Thus, our future work involves 
integrating this system with a pen-based input device 
capable of recording angle, width, and pressure.  The 
appearance of these curves would more easily incorporate 
the intent of the user as the setting of the control knots are 
set with this additional information about the user’s 
application of the stroke measured through time.  
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