
DEAD-END ELIMINATION AS A HEURISTIC FOR MIN-CUT IMAGE SEGMENTATION

Mala L. Radhakrishnan∗†, Sara L. Su†

MIT ∗Department of Chemistry and †Computer Science and Artificial Intelligence Laboratory

ABSTRACT

We apply the dead-end elimination (DEE) strategy from pro-

tein design as a heuristic for the max-flow/min-cut formu-

lation of the image segmentation problem. DEE combines

aspects of constraint propagation and branch-and-bound to

eliminate solutions incompatible with global optimization of

the objective function. Though DEE can be used for seg-

mentation into an arbitrary number of regions, in this paper

we evaluate only the case of binary segmentation. We pro-

vide a runtime analysis and evaluation of DEE applied to two

min-cut algorithms. Preliminary results show that DEE con-

sistently reduces the search space for the Edmonds–Karp al-

gorithm; tuning DEE as a heuristic for Boykov–Kolmogorov

and other algorithms is future work.

Index Terms— Image segmentation, graph theory

1. INTRODUCTION
A number of successful graph-cut techniques have been pro-

posed for image segmentation, including the methods of Wu

and Leahy [1], Shi and Malik [2], and Boykov, Jolly, and

Kolmogorov [3, 4, 5]. These methods model an image as a

graph of pixels and their pairwise similarities. In the graph

G = (V,E), nodes V correspond to pixels, and the capac-

ity of edge (i, j) ∈ E is proportional to the similarity of the

pixels represented by nodes i and j. The graph’s terminals s

and t represent the foreground and background regions. Each

node is connected to s and t with edges whose weights mea-

sure the pixel’s “foregroundness” and “backgroundness”.

It has been shown that the s–t minimum cut of such a graph

yields an optimal binary partitioning based on a pairwise ob-

jective function [3]. The goal is to cut edges to form two

disjoint sets such that similar nodes are in the same set and

dissimilar nodes are in different sets. The cost of the cut is

the sum of the capacities of the cut edges, and the minimum

s-t cut of this graph minimizes the energy function

E =
X

i∈V

self(ip) +
X

i,j∈V, i<j

pair(ip, jq) , (1)

where self(ip) is the self energy of pixel i in state p, and p =

foreground or background. pair(ip, jq) is the pairwise energy
between pixels i and j. When p �= q (i.e., when the pixels

are assigned to different segments), pair(ip, jq) = w(i, j).
If pixels are assigned to the same segment, their pairwise en-

ergy is 0. The self energies are such that the energy associated

Figure 1: Segmentations of two 500 × 500 images using the Eq.
2 energy function. Both min-cut algorithms, alone and preceded by
DEE, produce identical segmentations. DEE is able to greatly reduce
the search space, regardless of the quality of the final segmentation.

with a pixel’s “foregroundness” is the weight of the edge con-

necting its node to the background terminal, and vice versa;

with these assignments, the s-t min-cut minimizes the above

energy function. For a more detailed explanation of self and

pair energies, see the paper by Boykov and Jolly [3].

In the following section, we discuss dead-end elimination
(DEE) and its application to this minimization problem. In

§3 and §4, we evaluate DEE as a preconditioner to two min-

cut algorithms. Finally, we summarize our findings in §5 and

consider directions for future work.

2. DEE AS A MIN-CUT PRECONDITIONER
DEE is used in computational chemistry for the combinato-

rial optimization problem of assigning amino acids at protein

positions such that the energy of a desired protein structure

is minimized. We summarize the form of the DEE theorem

introduced by Goldstein [6]. (Please see the papers by Gold-

stein or Desmet et al. [7] for a more detailed explanation.)

Consider a linear objective function of the form

E =
X

i

E(ia) +
X

i<j

E(ia, jb) ,

where E(ia) is the self energy of assignment a in the ith posi-

tion and E(ia, jb) is the pairwise energy between assignments

a and b in the ith and jth positions, respectively.

We will optimize this function over the discrete combi-

natorial space of assignments at each position. This general

problem is NP-hard [8]. However, if there are at most two as-

signments per position and the energy function is of the form

outlined in §1, the problem reduces to the s-t min-cut prob-

lem of Equation 1. Let ia and ib be two specific assignments

at position i. Then, if

E(ia) − E(ib) +
X

j

min
f

[E(ia, jf) − E(ib, jf)] > 0 ,

24291424404819/06/$20.00 ©2006 IEEE ICIP 2006

sparse DEE singles (one iteration):

for each pixel i

for each possible assignment ia
for each possible assignment ib �= ia
for each neighbor j of i

choose possible assignments f to minimize E(ia, jf) − E(ib, jf)
if total energy of these assignments with ia is greater than the

total energy of these assignments with ib, eliminate ia.

sparse DEE pairs (one iteration):

for each pixel i

for each possible assignment ia
for each neighbor j of i

for each possible assignment jb

for each possible pair of assignments ic and jd s.t.((c �= a) or (d �= b))

for each neighbor k of i or j

choose possible assignments kf to minimize the difference between

the state energies of (ia + jb + kf) and (ic + jd + kf).

if total state energy of these assignments with (ia, jb) is greater than

total state energy with (ic, jd), eliminate pair (ia, jb).

Figure 2: DEE singles and pairs routines. “Possible” assignments (or pairs of assignments) are those that have not yet been eliminated.
Note that for binary image segmentation, there are only two possible assignments per position, so the for–loops shown simplify greatly;
nevertheless, DEE can be applied to problems involving any number of assignments per position.

the assignment ia cannot be in the global minimum configu-

ration and can therefore be eliminated from the search space.

The condition asserts that ia cannot be in the global mini-
mum energy assignment (GMEA) if there exists another as-

signment at the same position ib such that the total energy

with ia is higher than the total energy with ib, even when

we choose every other position to give ia the best pairwise

energies relative to ib. Note that, in the general case, when

there is an arbitrary number of possible assignments per pixel,

this does not guarantee that ib is in the GMEA, only that

ia is not. For more details and the proof of the DEE theo-

rem, please see the supplemental technical report, available at

http://csail.mit.edu/˜sarasu/pub/icip06.

In practice, DEE singles and pairs eliminations1 are run

iteratively until either a global minimum is found or the re-

maining space is small enough that it can be enumerated or

passed to another algorithm. In cases where few assignments

can be eliminated, the solution time is worst-case exponential,

a consequence of the problem being NP-hard in general pro-

tein design applications; however, DEE’s eliminating power

makes it extremely powerful in practice.

2.1. Application of DEE to image analysis

The min-cut formulation of the segmentation problem is iden-

tical to minimizing a pairwise objective function that utilizes

the self and pair energies from §1. To cast this as a problem

suitable for DEE, let the number of positions be the number of

pixels. We apply DEE to eliminate assignments for pixels that

are incompatible with the global energy minimum. The DEE

routine (Figure 2) allows for an arbitrary number m of possi-

ble assignments per pixel. When there are only two possible

states (foreground or background), eliminating an assignment

for a pixel trivially assigns it.

We now analyze the runtime of DEE on images and ar-

gue that it can be used as a heuristic. Assuming that each

pixel has a constant number of neighbors allows for a sparse

1The theorem can be extended to eliminate pairs of assignments; a pair

can never occur together in the global energy minimum assignment if there

is another pair at those positions that is always better. The proof for this

is analogous to the one for singles, where each ia or ib becomes a pair of

assignments.

implementation. In the sparse DEE singles routine, we loop

over pixels only once. Therefore, each iteration of DEE sin-

gles takes O(n) time, where n is the number of pixels, and

the time to determine if a pixel can be eliminated is propor-

tional to the number of neighbors J . A sparse implementation

of DEE pairs also runs in O(n) time because the number of

pairs is a multiple of the number of pixels. However, now, the

constant is proportional to J2. The runtime also depends on

m. From the pseudocode, we see that DEE singles and pairs

run in O(m3) and O(m5) time, respectively; these factors are

small for the binary case, m = 2.

Running a constant number of linear-time DEE iterations

may greatly reduce the size of the problem, and we can feed

the reduced problem into a polynomial-time algorithm such

as Edmonds–Karp [9]. DEE will not increase the asymptotic

running time; even if DEE eliminates nothing, the O(n) run-

ning time will not asymptotically affect the polynomial run-

ning time of the min-cut, assuming a sparse graph with n

nodes and O(n) edges. We can alternatively run DEE singles

iterations until no more pixels are assigned in two consec-

utive iterations. Now, the worst-case running time is O(n2),
although this may yield the optimal answer faster by eliminat-

ing more of the space before the min-cut algorithm is called.

We have found that our implementation of DEE pairs pro-

vides value as a preconditioner only for certain images, as

the time to run DEE pairs often outweighs its eliminating

power. DEE pairs helps only because DEE singles now con-

siders fewer pairs, so terms not eliminated before might now

be eliminated. Here we focus our discussion on singles. Im-

proving our pairs implementation is future work; see the sup-

plementary material for further discussion.

We propose the following heuristic for min-cut image seg-

mentation: Run DEE singles through a constant number of

iterations or until no more pixels can be assigned. Output

all determined pixels. For all pixels that have not yet been as-

signed, modify their assignments’ self energies such that now,

E(ia, updated) = E(ia) +
X

j=Di

E(ia, jd) ,

where jd is the determined assignment of pixel j and Di is

the set of neighbors of i whose assignment has been deter-

mined. We only need to consider pair energies between two

2430

pixels that are both undetermined. A smaller graph can be

constructed with these modified self energies and remaining

pair energies, and a standard polynomial-time algorithm is

then used on this reduced problem. The time to create the

modified graph is the time to loop through all neighbors of all

unassigned pixels to generate the new self energies: O(n).

2.2. A problem-specific graph interpretation of DEE

DEE in protein design is generally applied to problems for

which self and pair energies can take arbitrary values. In our

application to image segmentation, the pair energy between

two nodes (pixels) in the same state is zero, and that between

pixels in different states is non-negative. This reduced energy

landscape simplifies our implementation.

With these energy constraints, the DEE singles routine re-

duces to a simpler heuristic: For each node i on the graph

corresponding to an unassigned pixel, if the sum of the edges

directly leaving i that eventually lead to terminal s through

at most one neighbor is greater than the sum of all edges that

lead to terminal t plus the sum of all the undetermined edges

(edges that can still go to both terminals), then assign i to s.

The graph interpretation of DEE pairs is more complex, but

again, speed-ups in the implementation can be made by mak-

ing use of the energy constraints.

3. IMPLEMENTATION
We compared segmentations of grayscale natural images us-

ing two common min–cut algorithms: Edmonds–Karp (EK)

[9] and Boykov–Kolmogorov [5]. We applied Goldstein DEE

as a preconditioner to these and compared the running times

with and without DEE. We implemented EK and DEE in C++

and used the existing fastest-known C++ implementation of

BK. (All were compiled with the ‘-O2’ flag.) Pre– and post–

processing (computing edge weights and displaying the final

segmented images) was done in MATLAB. We used two sim-

ple weight functions. The first is linear in the difference be-

tween the intensities Iu and Iv of two pixels u and v:

w(u, v) = max(0, �c(k − |Iu − Iv|)�) , (2)

where c is a real constant, 0 < c ≤ 1, and k is an integral

constant, 0 < k < 255 (i.e., the range of valid pixel values).

For our experiments, we chose c = 0.25 and k = 100. We

also tried the exponential function

w(u, v) = �c1e
−(Iu−Iv)2/c2� (3)

where c1 and c2 are positive integral constants. Here, we set

c1 = 25 and c2 = 100. The self energies for the two states

are Ia and (255 − Ia).

Note that the goal of our work was not to find the best

weight function or energy function but to test a heuristic that

would improve performance in practice.

Input EK DEE+EK %

bird150 0.36 0.05 80%

bird250 0.26 0.02 98%

cat50 0.43 0.07 80%

coast50 0.35 0.03 92%

feather50 0.43 0.05 90%

fungus50 0.31 0.02 97%

monkey50 0.31 0.01 98%

rock150 0.34 0.02 97%

rock250 0.36 0.02 95%

rowboat50 0.31 0.02 100%

squirrel50 0.30 0.02 95%

windmill50 0.42 0.02 95%

Input BK DEE+BK %

bird1500 0.04 0.10 64%

bird2500 0.02 0.09 61%

cat500 0.12 0.18 57%

coast500 0.04 0.07 74%

feather500 0.05 0.11 64%

fungus500 0.02 0.05 88%

monkey500 0.03 0.04 92%

rock1500 0.02 0.05 85%

rock2500 0.04 0.09 76%

rowboat500 0.02 0.03 97%

squirrel500 0.04 0.11 51%

windmill500 0.04 0.07 87%

Table 1: CPU times for preliminary trials with natural images (subscript

50 indicates a 50 × 50 image, 500 a 500 × 500 image). EK and BK are

the times for Edmonds–Karp and Boykov–Kolmogorov alone; DEE+EK and

DEE+BK are the times with DEE as a preconditioner. % is the percentage of

pixels that DEE was able to assign. The energy function used is Eq. 2; Eq. 3

produced similar results. Times do not include time to compute and read in

initial graph weights from a file (which, for larger images, was the dominant

term but not the focus of this study) and, for BK and DEE+BK, the time to

output the final segmentation.

4. EXPERIMENTAL RESULTS
We compared four cases: (1) EK running alone, (2) BK run-

ning alone, (3) DEE followed by EK, and (4) DEE followed

by BK. The four methods produced identical segmentations.

Eliminating power. For most images, DEE singles was

able to assign a significant percentage of pixels after a single

iteration, regardless of the quality of the final segmentation

(see Figure 1). The fraction of pixels assigned, or eliminating
power (EP), decreased slightly with image size (Figure 3a)2,

but significantly as the dominance of the pairwise interactions

in the objective function increased (Equation 1). Figure 3b

plots EP versus the ratio of pairwise energy and self energy

terms, which was varied by changing the parameter c in Equa-

tion 2. EP dropped to ≈ 50% for these images when the max-

imum pair energy was ≈ 40% of the maximum self energy.

Running time. The running time was roughly linear in

the image size (Figure 3c). We compared the running times of

the four cases listed above, all running on a 3-GHz processor.

In case (3), DEE singles was run until no more pixels could

be assigned. Because EK itself is quite slow, we restricted our

results to 50 × 50 pixel images (resized using MATLAB). In

(4), a single iteration of DEE singles was run on 500 × 500
pixel images. Table 1 compares the running times (averaged

over 3 trials). A small number of DEE cycles sped up the EK

min-cut computation. However, these results are preliminary,

as our implementations of EK and DEE have not been rigor-

ously optimized. Nevertheless, the results look promising.

Currently, DEE+BK is slower than BK alone, even though

a single iteration of DEE can assign a large fraction of pixels.

This may be due to other heuristics in the standard BK imple-

mentation, as well as our currently non-optimal implementa-

tion of DEE, and we will investigate this further.

2In this case, the pair energies were on average kept at ≈ 10% of the self

energies so that, with 8 neighbors, the maximum sum over pairwise energies

for a pixel was roughly equal to the maximum self energies.

2431

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image size (kilopixels)

Fr
ac

. p
ix

el
s

as
si

gn
ed

, 1
 s

in
gl

es
 it

er
.

bird1
rowboat

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(max pair energy)/(max self energy)

Fr
ac

. p
ix

el
s

as
si

gn
ed

, 1
 s

in
gl

es
 it

er
. bird1

rowboat

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Image size (kilopixels)

D
E

E
 ru

nn
in

g
tim

e
(s

ec
on

ds
)

bird1
rowboat

(a) (b) (c)

Figure 3: Eliminating power (fraction of pixels assigned) and running time of DEE applied to two images, using the energy function shown in Eq. 2. (a)

Eliminating power as a function of image size. (b) Eliminating power as a function of the dominance of the pair terms. (c) Running time (averaged over 3

trials) of DEE as a function of image size, for one DEE singles iteration, including time to make the new graph to pass onto the BK algorithm. Images were

resized using MATLAB.

5. CONCLUSIONS AND FUTURE WORK
We have shown dead-end elimination to be an effective pre-

conditioner for the Edmonds–Karp algorithm applied to the

image segmentation problem, assigning a large portion of pix-

els quickly. We expect that DEE will improve running times

for other min-cut methods, including Boykov–Kolmogorov, if

we can further improve our implementation. Such improve-

ments, along with further experimentation, are future work.

The problem of segmenting an image into more than two

regions is NP-hard. Many min-cut algorithms no longer ap-

ply, but DEE can still greatly reduce the search space such

that an exact solution can be found by other methods, e.g. the

integer programming method of Kingsford et al. [10]. Eval-

uating the eliminating power of DEE applied to multiway cut

problems is future work.

DEE allows for more flexibility than graph-based meth-

ods in choice of energy function. Energy functions need not

follow the rules outlined by Kolmogorov and Zabih [11]. A

more flexible energy function may result in more accurate

segmentations, and applying DEE followed by combinatorial

optimization methods (e.g. integer programming) might be a

desirable way to compute multiway cuts.

Acknowledgments. Implementation advice from M. Altman

and comments from V. Kolmogorov, S. Paris, and B. Tidor

helped improve this paper. We thank D. Karger for suggesting

a simplified interpretation of the heuristic and F. Durand for

input images. The authors were supported by a DOE CSGF

fellowship under grant number DE-FG02-97ER25308 and a

National Science Foundation graduate fellowship.

6. REFERENCES

[1] Z. Wu and R. M. Leahy, “An optimal graph theoretic

approach to data clustering: Theory and its application

to image segmentation,” IEEE T. Pattern Anal., vol. 15,

no. 11, 1993.

[2] J. Shi and J. Malik, “Normalized cuts and image seg-

mentation,” IEEE T. Pattern Anal., vol. 22, no. 8, Au-

gust 2000.

[3] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for

optimal boundary and region segmentation of objects in

N-D images,” in Proc. of IEEE ICCV, July 2001.

[4] Y. Boykov and V. Kolmogorov, “Computing geodesics

and minimal surfaces via graph cuts,” in Proc. of IEEE
ICCV, November 2003.

[5] Y. Boykov and V. Kolmogorov, “An experimental com-

parison of min-cut/max-flow algorithms for energy min-

imization in computer vision,” IEEE T. Pattern Anal.,
September 2004.

[6] R. F. Goldstein, “Efficient rotamer elimination applied

to protein side-chains and related spin glasses,” Biophys.
J., May 1994.

[7] J. Desmet, M. De Maeyer, B. Hazes, and I. Lasters, “The

dead-end elimination theorem and its use in protein side-

chain positioning,” Nature, vol. 356, April 1992.

[8] N. A. Pierce and E. Winfree, “Protein design is NP-

hard,” Protein Engineering, vol. 15, no. 10, 2002.

[9] J. Edmonds and R. Karp, “Theoretical improvements

in algorithmic efficiency for network flow problems,” J.
ACM, vol. 19, no. 2, April 1972.

[10] C. L. Kingsford, B. Chazelle, and M. Singh, “Solv-

ing and analyzing side-chain positioning problems us-

ing linear and integer programming,” Bioinformatics,

vol. 21, no. 7, 2005.

[11] V. Kolmogorov and R. Zabih, “What energy functions

can be minimized via graph cuts?,” IEEE T. Pattern
Anal., vol. 26, no. 2, pp. 147– 159, February 2004.

2432

