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Abstract

This article is a supplement to our 2006 ICIP paper, “Dead-End Elimination as a Heuristic for Min-Cut Image Seg-
mentation” [1], which we assume the reader has read. We summarize the proof of the dead-end elimination theorem
(due to Desmet et al. [2] and Goldstein [3]), briefly discuss the performance of our current implementation of DEE
pairs, show the input images for which timings are referenced in the main paper, and present examples of processed
images to show that DEE does not affect the resulting segmentation.

1 Proof of DEE Theorem

The original dead-end elimination theorem is due to Desmet et al. [2]. Goldstein’s DEE theorem [3] is closely related
but more powerful: Let ia and ir be two specific assignments at a particular position i. Then, if

E(ia)−E(ib)+∑
j

min
f

[E(ia, j f )−E(ib, j f )] > 0,

the assignment ia cannot possibly be in the global minimum configuration and can therefore be eliminated from the
space. ia cannot be in the global minimum energy assignment if there exists another assignment at the same position,
ib, such that the total energy with ia is higher than the total energy with ib even when we choose every other position
to give ia the best pairwise energies relative to ib.

We now summarize proofs due to Desmet and Goldstein.

Proof. Given two possible assignments, ia and ib at position i, let us assume that

E(ia)−E(ib)+∑
j

min
f

[E(ia, j f )−E(ib, j f )] > 0

This is the premise of the DEE theorem. Let the global minimum energy assignment (GMEA) at each position be
represented by the subscript g. Define
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Etot,g(ia) = E(ia)+∑
j
(ia, jg)+∑

j
E( jg)+ ∑

j<k
E( jg,kg)

Etot,g(ib) = E(ib)+∑
j
(ib, jg)+∑

j
E( jg)+ ∑

j<k
E( jg,kg)

where j,k 6= i

Here, Etot,g(i f ) is the total energy of the system when every position except position i has the assignment it has in
the GMEA, while the ith position is assigned f . We pulled out terms that involved the ith position in each of the above
two definitions. Subtracting these two equations and canceling out the terms that do not involve the ith position yields:

Etot,g(ia)−Etot,g(ib)
= E(ia)−E(ib)+∑

j
E(ia, jg)−∑

j
E(ib, jg)

= E(ia −E(ib)+∑
j
[E(ia, jg)−E(ib, jg)])

Note that for each j,

E(ia, jg)−E(ib, jg) ≥ min
f

[E(ia, j f )−E(ib, j f )],

by the definition of the minimum operator. Thus, the sum over all j can be bounded:

∑
j
[E(ia, jg)−E(ib, jg)] ≥ ∑

j
min

f
[E(ia, j f )−E(ib, j f )]

Therefore,

Etot,g(ia)−Etot,g(ib) ≥ E(ia)−E(ib)+∑
j

min
f

[E(ia, j f )−E(ib, j f )] > 0

by our original assumption, which forms the premise of the DEE theorem. It follows that Etot,g(ia) > Etot,g(ib). But
this means that ia cannot possibly be an assignment in the GMEA because there exists an assignment ib that, when all
other positions have GMEA assignments, produces a lower energy assignment.

2 Input Images and Segmentation Results

We ran the Edmonds-Karp and Boykov-Kolmogorov min-cut algorithms on a set of natural images of size 50× 50
pixels and 500×500 pixels. We show a subset of these in Figure 1; these are the input images for which timings are
referenced in Table 1 of the main paper.

3 Performance of DEE Pairs

DEE pairs eliminates pairs of assignments, such that when DEE singles is run afterwards, there are fewer degrees of
freedom in choosing assignments over neighbors, and more pixels can therefore be eliminated. The pseudocode and
runtime of DEE pairs is given in the mai paper.

When used with DEE singles, our current implementation of DEE pairs did not offer consistent additional speed-
ups over Edmonds-Karp (EK) [4] alone, and further slowed down Boykov-Kolmogorov (BK) [5]. However, we have
found that the structure of the image segmentation problem will allow us to further speed up DEE pairs, and we are
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Input DEE singles+EK DEE singles+pairs+EK ∆EP
bird1100 0.17 0.19 1.09%
bird2100 0.49 0.10 23.29%
cat100 0.83 0.72 1.36%
coast100 0.11 0.11 1.35%
f eather100 0.26 0.23 1.70%
f ungus100 0.05 0.04 0.82%
monkey100 0.05 0.07 0.65%
rock1100 0.09 0.05 0.59%
rock2100 0.13 0.13 0.94%
rowboat100 0.05 0.05 0.21%
squirrel100 0.14 0.13 0.56%
windmill100 0.17 0.16 1.35%

Table 1: Comparison of running times (in seconds) for DEE+EK with and without DEE pairs. All images used here
were 100x100 pixels. Times do not include time to read in initial image data. “∆EP” is the (Percentage of pixels
assigned using DEE pairs - Percentage assigned without DEE pairs)

currently doing so. For example, for this problem, the pairs of assignments that generally increase eliminating power
when running DEE singles are those for which both pixels are assigned to the same segment. Therefore, by focusing
on eliminating only these pairs, we can cut the runtime of DEE pairs in half.

Shown in Table 1 are running times for 100x100 pixel images for (a) DEE singles followed by EK, and (b) DEE
singles followed by one iteration of DEE pairs, DEE singles again, and finally EK. In all cases DEE singles was run
until no more pixels could be eliminated by it. Note that for some images (e.g. bird2, cat) DEE pairs sped up
the segmentation, but the speedup was not consistent across all images. For most images, one iteration of DEE pairs
eliminated enough pairs to ultimately assign only around 0-2% more pixels than DEE singles could alone.
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Figure 1: Input images.
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(a) rowboat: Successful segmentation.

(a) bird1: Unsuccessful segmentation.

Figure 2: Successful and unsuccessful binary segmentations of 500×500 images. Both min-cut algorithms (EK and
BK), alone and preceded by DEE, produce identical segmentation results.
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