Flexible Visual Authoring Using Operation History

Sara Su Massachusetts Institute of Technology April 8, 2009

Committee in Charge: Prof. Frédo Durand (MIT, Supervisor) Prof. Maneesh Agrawala (UC Berkeley) Prof. Robert C. Miller (MIT) Dr. Sylvain Paris (Adobe)

Digital authoring

Precise and complex editing

Collaboration, dissemination of content

Experimentation Undo lowers the cost of mistakes

Revisiting history

Storing and retrieving state

Hierarchical authoring

Grouping, structure, selections

Operations and selections today

Uses of history

System activity logs, instrumentation (not our focus)

Operation history, undo

Version control

Tutorials

Uses of selections and grouping

Efficient editing of sets of items (multiple selections) Hierarchical modeling, CAD

Motivation

Address limitations of standard techniques

Undo - sequential

Selections - not persistent

Grouping - rigid structure expensive to modify

Thesis:

Reusing operations, selections, and groups from a document's history can improve interaction for the end user.

Enhancing authoring and review

Visualizing history for non-linear interaction Storyboards: Interactive Visual Histories

Reusing complex selections for efficiency History-Based **Selection Expansion**

Enabling bookmarking for flexible grouping Soft Groups: Multiple Selection Authoring and Reuse

Thesis context

Demonstrate techniques in context of **visual authoring** Features in Inkscape vector graphics editor

Human component

Evaluations with beginner- and intermediate-level users Iterative design

Talk outline

Interactive Storyboards

Visualizing history for non-linear interaction

Selection Expansion

Reusing complex selections for efficiency

Soft Groups

Flexible authoring of multiple selections

Interactive Storyboards Visualizing history for non-linear interaction

Selection Expansion

Soft Groups

Motivation: Visual histories

Enable flexible **browsing** of history

Design a more intuitive interface to document's editing history Show history in spatial context

Enable flexible manipulation of history

Interface to selective undo

Related work: Undo

Undo

Revisit history Undo arbitrarily far back Sequential

Selective undo

Text

Spreadsheets

Graphics

[Kawasaki and Igarashi 2004]

Amulet [Myers et al. 1997]

Related work: Graphical histories

Snapshots Editable graphical histories

[Meng et al. 1998]

Film and schematic storyboards Assembly diagrams

[[]Goldman et al. 2006]

Our storyboard visualization

Graphically represents user editing actions Assembly instructions for a document

Shows actions in context: **action depictions** Must be descriptive, intuitive, and easy to select

Our storyboard visualization

Graphically represent user editing actions

Show actions in context: action depictions

Design considerations

Discrete events Before and after In-place visualization Summarization Figure-ground separation

Applications

Selective undo

User selects an action to undo Consider all later actions on the same object Cancel only those that are dependent Spatial transforms: {translate, rotate} Appearance changes: {fill change, stroke change} Shape modifications: {scale, control point edit}

Collaborative editing

"Track changes"

Asynchronous editing by multiple users

Evaluation

Goals

Record users' impressions after using storyboards for one hour Evaluate selective undo interface

Design

12 beginner-level users of 2D drawing programs Background interview, interactive tutorial Recreate a "typical" drawing

User feedback

Strengths

Free experimentation Spatial memory cues Persistent history

Limitations

Clutter, scalability

Addressing clutter

Per-object history "Magic lens" limits storyboard view

Multi-frame storyboard Multiple frames in a storyboard Multiple actions per frame

Summary: Interactive Storyboards

Interactive storyboards for visualizing history Browsing history in spatial context

Composite, per-object, and multi-frame storyboards Selective undo application Collaborative editing

Interactive Storyboards

Selection Expansion Reusing complex selections for efficiency

Soft Groups

Motivation: Selection reuse

Multiple selections are fundamental in editing Edit the same set of objects together Reselecting the set can be repetitive, laborious Esp. with overlapping, occluding objects

Groups

Intuitive, easy to build hierarchy An item cannot belong to more than one group at a time Ungrouping/regrouping expensive

Related work: Selecting content

Transparency filters

Multiblending [Baudisch and Gutwin 2004] Context-aware free-space transparency [Ishak and Feiner 2004]

Physical interaction metaphors

"Paper peeling" windows [Beaudoin-Lafon 2001] Exposé [Apple 2003]

Magic Lens [Bier et al. 1993]

Splatter [Ramos et al. 2006]

Related work: Complex selections

Generalizing selections

Selection guessing [Miller and Myers 2002] Selection classifier [Ritter and Basu 2009] Interactive query relaxation [Heer *et al.* 2008]

Related work: Adapting user interfaces

Resize/rearrange menus to reduce target acquisition time Fisheye menus [Bederson 2000] Flexcel [Thomas and Krogsæter 1993]

Dynamically organizing menu items – frequency, recency [Greenberg and Witten 1985] [Mitchell and Shneiderman 1989] Split menus [Sears and Shneiderman 1994]

Selection expansion

Hypothesis:

Items that have been edited together are likely to be edited together again.

From an initial selection, **expand** to a larger set

Base the expansion on **frequency** of use

Greedy expansion strategy

User makes a selection (query)

Look in operation history for single best item to add Candidates = items that have been edited with the query set Pick the item appearing most frequently

Expand the selection by one

A simple example

1

Excerpt: Operations affecting {e}:

32

Query = $\{e\}$

Query = $\{e,d\}$

Candidate object f:

Frequency = 2

		objects									
		a	b	С	d	е	f	g	h	i	j
0	0				3	3					
	10				2	2	2	2			
	11					2		2			
1	32					1					
					ob	jec	ts				

Candidate object g:

Frequency = 2

			00,0010									
		а	b	С	d	е	f	g	h	i	j	
operations	0				3	3						
	10				2	2	2	2				
	11					2		2				
	32					1						

Query =
$$\{e,d,f\}$$

Candidate object g: Frequency = 2

		objects									
		a	b	С	d	е	f	g	h	i	j
S	0				3	3					
tior	10				2	2	2	2			
perations	11					2		2			
ope	32					1					

Three expansions:

Larger expansion steps

For efficiency, merge steps when we can Look for plateaus in maximum selection frequency

Two expansions:

Implementation: QuickSelect

Evaluation of QuickSelect

Eleven subjects

Recruited from general population

All familiar with at least one 2D drawing program (not Inkscape)

Apparatus

Controlled lab setting

Modified version of Inkscape

Two-part study

1. Selection reuse with existing histories

Evaluate how QuickSelect affects selection speed and accuracy

2. Selection reuse in free drawing

Record users' subjective preferences in unconstrained drawing

Study 1: Existing histories

Two **conditions**: standard selection, QuickSelect 20 **tasks**: edit existing drawings

Procedure:

Hypothesis: QuickSelect will reduce time to complete the trials and reduce number of editing errors.

Results of Study 1

Study 2: Free drawing

Try selections in a more realistic setting

Procedure

Recreate "typical" drawing described during interview Unstructured drawing with prompts to try different selections No measure of success

Feedback

Easy to learn and use Perceived improvement in speed Perceived improvement in accuracy Study 2 more convincing about applicability

Observations

Strengths of QuickSelect

Performance savings larger for more complex designs Re-selecting occluded content Re-selecting objects of differing size

Limitations

- Predictability and error handling Combining selection tools
- Additional expansion heuristics

Summary: Selection Expansion

Reuse of multiple selections Simple yet effective history-based strategy

Easy to learn and apply Selection reuse can increase efficiency Greater savings for more complex designs

Expansion behavior can be difficult to predict \rightarrow soft groups

Interactive Storyboards

Selection Expansion

Soft Groups Flexible authoring of multiple selections

Motivation: Flexible grouping

Groups

Easy to use, membership in only one group at a time Selections

Membership created as needed, ephemeral

Selection expansion

Reuse selections from history, lacks predictability

Related work

Selecting, grouping, tagging Flexible grouping - ScanScribe [Saund et al. 2003] Relation building from history [Pedersen and McDonald 2008]

Soft groups

Users **bookmark** multiple selections they wish to reuse Like groups, soft groups are **persistent** and **reusable**

An item can belong to more than one soft group

Like selections, soft groups appear **on demand** Retrieval interaction similar to selection expansion Expansion steps determined by user

Create Soft Group

Group creation P $\langle r \rangle$ PP PS

Group creation

Retrieve Soft Group

Group retrieval

Exploratory evaluation

Goals

Get user feedback on ease of learning and use Compare soft groups to standard selection and grouping Compare soft groups to selection expansion

Nine beginner- to intermediate-level users of 2D software

Procedure:

Recreate "typical" drawing described during interview Unstructured drawing with no measure of success First, asked to try soft groups Second, introduced to selection expansion

Observations from user study

Strengths of soft groups

Straightforward use, easy to learn Spatial memory cues: "visual reminder" Improves efficiency of authoring Fixed cost to creating soft groups but faster retrieval

Limitations

Error handling Visibility, responsiveness

Comparison to selection expansion

QuickSelect "seems faster" than soft groups Intermediate users concerned about cost of correcting QS SG offer more control

Summary: Soft Groups

Bookmarking selections for reuse Complementary alternative to standard selection and grouping Persistent like standard groups Appear on demand like standard selections

Easy to learn and use Users preference divided by experience Beginners: efficiency of selection expansion Intermediate-level users: control of soft groups

Summary of thesis contributions

Presented three uses of history for the end user Interactive Storyboards Selection Expansion (QuickSelect) Soft Groups

Demonstrated in the context of vector graphics editing

User evaluations suggest increased efficiency and flexibility in editing

Applications and open challenges

Prototyping

Selection reuse for faster prototyping and testing of variations Storyboards lower the cost of experimentation

Collaboration

Recorded history for collaborators

Education

Storyboards as tutorials

Future work

Other domains Expert users Longer-term observation Keystroke-level modeling

Conclusions

Bigger picture: Mining operation history to enhance HCI

Demonstrated history-based techniques for improving authoring and review processes

Acknowledgments

Prof. Frédo Durand Prof. Maneesh Agrawala Prof. Rob Miller Dr. Sylvain Paris

Adobe Systems: Fred Aliaga, Steve Johnson, Craig Scull Inkscape, Open Clip Art Library MIT Computer Graphics Group Su Family

NSF Graduate Research Fellowship Program MIT Presidential Fellowship Program