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1. Introduction

Visual attention is crucial to a subject’s ability to retrieve
information from complex visual stimuli. The order of sac-
cades and fixations as a subject scans a scene determines
the mental representation formed fromit. It has been shown
that image comprehension is significantly improved when
asubject is provided with visual cues to guide the gaze path
to semantically important regions (Bétrancourt & Tversky,
In press). This problem is particularly important in image
analysis scenarios involving medical, geological, or remote
sensing data where important features might not appear to
the untrained eye.

Studies have found human visual attention to be driven by
neuronal tuning for particular features in the field of view
(Itti & Koch, 2001). The bottom-up view of visual attention
theorizes that a scene is first processed in parallel at low
resolution. Salient low-level features may “pop out” at this
level, causing the eyes to move to focus on an initial region
of interest for further inspection at high resolution (Rosen-
holtz, 1999). Pop-out may be triggered by contrasts in in-
tensity, color, or orientation, or by features such as edges
Or corners.

Based on a biologically plausible model of early visual pro-
cesses (Koch & Ullman, 1985), Itti et al. have proposed
a computational model that attempts to simulate feature-
specific neuronal responses to an input image with center-
surround filters (Itti et al., 1998). Salient regions found
during the pre-attentive stage are identified as outliers in
the filtered responses.

We use this model to develop image processing algorithms
for redirecting attention to specific regions in a scene by
imposing saliency contrast constraints between cognitively
significant regions and the background. Simply identify-
ing a region to emphasize is not enough, as there exists
an infinite number of transformations leading to this goal.
The challenge is to find a transformed image close in pre-
attentive appearance to the original. In this paper, we de-
scribe a technique for altering saliency by changing the fre-
quency distribution of an image and discuss early results.

2. Applications

Saliency alteration tools would be useful in a number of
scenarios. An interactive system would aid educators who
wish to create more comprehensible images but who lack
the artistic skill. An automatic pictorial emphasis tool is an
alternative to the labor-intensive photo editing methods that
are the norm today. The multi-scale image processing tech-
niques we are developing subtly change saliency of image
regions without introducing objectionable visual artifacts.

We target an educational scenario in which a user indicates
which regions of an image should be salient to an audience,
or a semi-automated scenario in which a machine-vision
system analyzes the image and tags regions of interest. To
generate the results shown in this paper, a subject simply
drew polylines around regions of interest. These were used
to create binary masks indicating regions in which to in-
crease and decrease saliency.

The development of saliency-alteration tools is also an im-
portant validation step for the Itti et al. model which has
been previously lacking. Because our work relies on the
assumption that this model captures the bottom-up mech-
anisms of human visual attention, we will need to empiri-
cally validate it using eye-tracking (Duchowski, 2003). If
the model is accurate, eye-tracking experiments should in-
dicate different gaze patterns and search performances be-
fore and after application of the emphasis tool. Our find-
ings could also aid the design of more effective user in-
terfaces by measuring effectiveness of spatial layout and
complexity.
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Figure 1. Three simple images containing salient, low-level fea-
tures triggering pop-out phenomena.



3. Approach

We are developing tools to emphasize or de-emphasize re-
gions of a natural image. Informally, this corresponds to
inverting the Itti et al. computational model of saliency.
This model can be viewed as a mapping from an image to
a spatial saliency map. Given a target saliency map, we
wish to find the image satisfying these constraints. Inver-
sion is non-trivial because the model contains a number of
non-linearities and is not a one-to-one mapping. However,
we can define image transformations that increase or re-
duce the output of the various stages of the model, thereby
modifying the output saliency. This is similar in spirit to
gradient descent optimization. We view this as a special
case optimization with the goal being to reach a feasible
set that satisfies user-specified constraints.

Recall that the model defines salient regions as outliers
from the local feature distribution. In other words, these
are regions in which feature distribution changes dramati-
cally. Therefore, to decrease saliency of a region, we must
reduce variation in its feature distribution. We must use
invertible low-level features to facilitate final image recon-
struction. With this goal in mind, we have explored an im-
age decomposition built on the steerable pyramid, a multi-
scale, multi-orientation image decomposition in the fre-
quency domain using an overcomplete wavelet transform
(Freeman & Adelson, 1991). This representation has the
desirable properties of near-perfect image reconstruction
and encoded orientation information about the original im-
age. We discuss only the basics of steerable pyramids here
and refer the reader to the original paper by Freeman and
Adelson for further detail.

To build a steerable pyramid, an image is first filtered into
lowpass and highpass subbands. The lowpass subband is
further filtered into a set of oriented bandpass subbands and
one lowpass subband. The new lowpass subband is then
subsampled by a factor of 2 in the x- and y-directions, and
the process is repeated to generated the multi-scale steer-
able pyramid. The strength of coefficients at each scale
corresponds to the local spatial frequencies in the original
image.

Because each subband is itself an image, we can use it as
the input to the steerable pyramid algorithm. This recursive
steerable pyramid effectively encodes the variation in local
feature distribution in the original image. Using this de-
composition, we can suppress and promote select frequen-
cies with the effect of altering spatial variation of texture.

In early experiments, we have completely removed varia-
tions in local feature distribution (i.e. setting coefficients
constant), in a sense creating an image in which texture is
globally uniform. Results are shown in Figure 2 for a nat-
ural image taken by an amateur photographer. The middle

image shows the result of reconstructing the original im-
age’s recursive pyramid after altering it to reduce texture
variation in the scene background. We applied a high-pass
filter on feature response after non-linearity and completely
removed the low-frequency variation of feature strength.
Note that we do not blur the background but instead reduce
texture variation. Therefore, although saliency is reduced,
information is not lost. In other words, while the image
remains sharp, the texture boundaries have been blurred.
In practice, we built the image’s steerable pyramid, applied
an absolute-value non-linearity followed by a high-pass fil-
ter with a low cutoff. The image was reconstructed by re-
injecting the signs of the original image to resolve the am-
biguity due to the absolute value.

The bottom image in Figure 2 shows the result of exagger-
ating existing variations in local feature distribution, effec-
tively increasing global texture variation to more sharply
define region boundaries.

4. Current progress and future work

Early results are encouraging, but our approach needs to be
refined. First, we need to process not only contrast, but all
feature channels captured by the saliency model, including
orientation and color. Second, removing variations glob-
ally may be too extreme; we may only want to reduce the
local variations in feature value distribution. Finally, in
Figure 2, we have treated all scales equally for the steer-
able pyramid, including coarse scales (up to 1/10th of the
image). We need to study the respective influence of differ-
ent scales, which will provide important information about
the frequency tuning of bottom-up visual attention. We be-
lieve that running the saliency model backwards will afford
crucial insights about human visual attention.

4.1 Validation

Our goal is to develop image processing techniques that
subtly alter saliency without introducing objectionable vi-
sual artifacts. Thus far, we have relied on visual inspection
to evaluate the success of the techniques discussed in this
paper. We plan to empirically validate our results using
eye-tracking, comparing subjects’ gaze patterns and fix-
ations for modified and unmodified images. To confirm
that the techniques yield quantitatively plausible natural
images, we plan to compare the spectral signatures of mod-
ified and unmodified images (Olshausen & Field, 1996). It
would also be interesting to consider the change in contrast
energy across texture boundaries in the before and after im-
ages. Specifically, the texture discrimination metric pro-
posed by Rosenholtz could be used to provide a quantita-
tive measure of how much texture boundaries are “blurred”
or “sharpened” (Rosenholtz, 2000).



Figure 2. (Top) Photograph taken by an amateur photographer. (Middle) Saliency of the rightmost rock has been increased by decreasing
saliency of the background, effectively “blurring” texture boundaries. (Bottom) Global texture variation has been increased, “sharpening”
texture boundaries. The binary mask used to segment regions in the original image is shown in Figure 3. Original photograph ©Janne

Sinkkonen.



Figure 3. Binary mask used to segment image regions in Figure 2.
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