
Differentiable Rendering of Neural SDFs through
Reparameterization

Sai Praveen

Bangaru

MIT CSAIL

USA

sbangaru@mit.edu

Michaël Gharbi

Adobe Research

USA

mgharbi@adobe.com

Tzu-Mao Li

UC San Diego

USA

tzli@ucsd.edu

Fujun Luan

Adobe Research

USA

fluan@adobe.com

Kalyan Sunkavalli

Adobe Research

USA

sunkaval@adobe.com

Miloš Hašan

Adobe Research

USA

mihasan@adobe.com

Sai Bi

Adobe Research

USA

sbi@adobe.com

Zexiang Xu

Adobe Research

USA

zexu@adobe.com

Gilbert Bernstein

MIT CSAIL &

UC Berkeley

USA

gilbo@berkeley.edu

Frédo Durand

MIT CSAIL

USA

fredo@mit.edu

(a) multi-view
dataset

(b) IDR [Yariv 2020] with
additional mask supervision

(not used in our pipeline)

optimized RGB

IDR

ours
(d) our reconstructions

optimized depth

(c) our warp-reparameterized
 inverse SDF renderer

Figure 1: We propose a novel method to correctly differentiate a neural SDF renderer by reparameterizing the pixel integral.

Direct application of automatic differentiation to the renderer fails because of discontinuities like silhouette boundaries.

In this work we show that, by carefully designing a discontinuity-aware warp function V(𝑢;\) to reparameterize the pixel

domain, we can remove these discontinuities, and the reparameterized integral is amenable to automatic differentiation. We

demonstrate the benefits of our method on inverse rendering problems. Starting from a multiview dataset of real photos (a), our

reparameterized renderer (c) can optimize a neural SDF that closely matches the input data, and generalizes to novel views. Our

renderer matches or outperforms prior SDF renderers [Yariv et al. 2020] (b), while doing away with their need for additional

geometric supervision in the form of per-view masks, which can be unreliable for real-world data. We show additional surface

reconstructions obtained with our inverse renderer in (d).

ABSTRACT

We present a method to automatically compute correct gradients
with respect to geometric scene parameters in neural SDF render-

ers. Recent physically-based differentiable rendering techniques for

meshes have used edge-sampling to handle discontinuities, particu-

larly at object silhouettes, but SDFs do not have a simple parametric

form amenable to sampling. Instead, our approach builds on area-
sampling techniques and develops a continuous warping function

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9470-3/22/12.

https://doi.org/10.1145/3550469.3555397

for SDFs to account for these discontinuities. Our method leverages

the distance to surface encoded in an SDF and uses quadrature on

sphere tracer points to compute this warping function. We further

show that this can be done by subsampling the points to make the

method tractable for neural SDFs. Our differentiable renderer can

be used to optimize neural shapes from multi-view images and pro-

duces comparable 3D reconstructions to recent SDF-based inverse

rendering methods, without the need for 2D segmentation masks to

guide the geometry optimization and no volumetric approximations

to the geometry.

CCS CONCEPTS

• Mathematics of computing → Differential calculus; Integral
calculus; Calculus; • Computing methodologies → Modeling
and simulation; Computer vision; Computer vision represen-

tations; Rendering; Ray tracing.

https://doi.org/10.1145/3550469.3555397

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Bangaru, Gharbi, Li, Luan, Sunkavalli, Hašan, Bi, Xu, Bernstein, and Durand

KEYWORDS

differentiable rendering, signed distance functions, neural SDFs

ACM Reference Format:

Sai Praveen Bangaru, Michaël Gharbi, Tzu-Mao Li, Fujun Luan, Kalyan

Sunkavalli, Miloš Hašan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Frédo

Durand. 2022. Differentiable Rendering of Neural SDFs through Reparam-

eterization. In SIGGRAPH Asia 2022 Conference Papers (SA ’22 Conference
Papers), December 6–9, 2022, Daegu, Republic of Korea. ACM, New York, NY,

USA, 9 pages. https://doi.org/10.1145/3550469.3555397

1 INTRODUCTION

Differentiable rendering algorithms have become crucial tools in

solving challenging inverse problems [Zhao et al. 2020], thanks to

their ability to compute the derivatives of images with respect to

arbitrary scene parameters. Naive differentiation of rendering algo-

rithms does not handle discontinuities caused by visibility changes

and object boundaries correctly. Previous work has observed that

the discontinuities can be handled by properly handling the Dirac

delta signals, and derived algorithms for explicit geometry repre-

sentations like triangle meshes [Li et al. 2018; Zhang et al. 2020].

On the other hand, implicit representations like signed distance

fields (SDFs) are appealing since they do not require the initialized

geometry to have the right topology. Recent work has demonstrated

the use of SDFs—usually parameterized using multi-layer percep-

tron networks—for the task of reconstructing shape and surface

reflectance from images. However, these methods either require ad-

ditional geometric supervision such as segmentation masks [Yariv

et al. 2020; Zhang et al. 2021b] or make approximations to the ge-

ometry using volumetric models [Oechsle et al. 2021; Yariv et al.

2021] that limit their applicability.

In this paper, we derive an algorithm to automatically compute

correct gradients with respect to geometric scene parameters in

neural SDF renderers. Previous methods that rely on silhouette

sampling are not directly applicable to SDFs since direct sampling

of boundaries of implicit functions is challenging. Instead, we build

on the reparameterization approaches [Bangaru et al. 2020; Loubet

et al. 2019], which removes discontinuities through reparameteri-

zation while preserving the integral values. These methods do not

require explicit sampling along discontinuities. Previous reparam-

eterization methods focused on triangle meshes, and require new

derivation for reparameterizing SDF rendering.

Specifically, we construct a silhouette-aware reparameterization

similar to that of Loubet et al. [2019], but following the equivalent

unbiased warp definition that Bangaru et al. [2020] used to produce

correct gradients for triangle-meshes. We leverage the fact that

SDFs naturally encode the distance to the surface, and develop a

practical algorithm that uses a quadrature on sphere tracing [Hart

1996] samples to construct a reparameterization that removes the

discontinuities. We further show that this can be computed using

only a subset of sphere tracing samples, reducing the computational

burden of the backward pass for bulky neural SDFs.

Our algorithm produces correct geometry gradients for SDFs.

It does away with the segmentation masks and depth guidance

required by previous techniques [Yariv et al. 2020], without making

a volumetric approximation to the geometry [Oechsle et al. 2021;

Yariv et al. 2021]. We show that our differentiable renderer can be

used to optimize neural shapes from multi-view images, with no

additional information beyond the RGB data and the corresponding

camera parameters. Our focus is on occlusion discontinuities, so

the rest of the paper assumes a differentiable shading model.

2 RELATEDWORK

We focus on work that recovers the latent 3D scene from images

through differentiable rendering. We categorize them by the type

of scene representation.

Meshes. To account for discontinuities, earlier work focused on

approximating the derivatives of mesh rendering by smoothing

the geometry [de La Gorce et al. 2011; Kato et al. 2018; Liu et al.

2019; Loper and Black 2014; Rhodin et al. 2015]. Alternatively, some

work derived correct analytical derivatives under simplified as-

sumptions [Arvo 1994; Zhou et al. 2021]. Li et al. [2018] noticed

that the differentiation of discontinuities caused by the visibility

and geometric boundaries lead to Dirac delta signals, and can be in-

tegrated by the pixel antialiasing integral or the rendering equation.

They proposed an edge sampling algorithm to explicitly sample the

Dirac delta on triangle mesh silhouettes. Importance sampling the

silhouettes can be difficult, therefore Loubet et al. [2019] and Ban-

garu et al. [2020] later proposed to convert the silhouette integral

into an area integral. Loubet et al. formulated the conversion using

a reparameterization, and derived an approximated reparametriza-

tion to remove discontinuities. Bangaru et al. built on Loubet et al.’s

work and derived an unbiased estimator by showing the equiva-

lence between the reparameterization and divergence theorem. On

the other hand, Zhang et al. [2020] showed that directly sampling

silhouette in path-space [Veach 1998] can also be done efficiently.

Directly sampling the silhouette for SDFs is difficult. Our work

extends the reparameterization approach to handle SDFs, including

approximate SDFs defined by neural networks.

Level sets and signed distance fields. A level set defines a surface

using the roots of a 3D implicit function. A signed distance field

is a specific kind of level set where the implicit function defines

the distance of a 3D point to the surfaces, where the sign is nega-

tive when the point is inside the object. SDFs can be represented

using polynomials [Blinn 1982], voxels [Izadi et al. 2011], or neural

networks [Park et al. 2019]. Differentiable rendering for SDFs has

been discussed in computer vision and used for 3D surface recon-

struction [Jiang et al. 2020; Kellnhofer et al. 2021; Niemeyer et al.

2020; Yariv et al. 2020; Zhang et al. 2021b], but current methods

all ignore the discontinuities when differentiating, and require 2D

object masks to converge. An alternative way to render the signed

distance field is to convert it to another format such as a thin par-

ticipating medium [Oechsle et al. 2021; Wang et al. 2021; Yariv et al.

2021], a mesh [Remelli et al. 2020], or a point cloud [Cole et al. 2021].

These methods all introduce approximation. Instead, we focus on

deriving accurate gradients without approximation. Our work is

closely related to the concurrent work by Vicini et al. [2022]. They

too build on the warped-area sampling formulation from Bangaru

et al. [2020], and arrive at a similar harmonic weighting scheme

applied to sphere tracer points. The main difference is that we ap-

ply our method to the neural SDF and radiance model proposed by

Yariv et al. [2020] to remove their mask requirement in a principled

https://doi.org/10.1145/3550469.3555397

Differentiable Rendering of Neural SDFs through Reparameterization SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

(a) naive rendering with
2D visibility discontinuities

(d) our reparameterized
integrand

side view
of scene

(b) sphere tracer points

weighted
mean along

ray warp

(c) continuous
boundary-consistent warp

Figure 2: Overview. A standard SDF rendering pipeline is generally discontinuous, which means there are points 𝑢 where the

rendering function 𝐿(𝑢;\) is not differentiable in \ , highlighted in red (a). Our method uses intermediate points from a sphere

tracer (b) applied to an SDF 𝑓 , to compute a warp function V (c). Using this warp, we reparameterize the integration domain to

avoid discontinuities (d), which allows us to compute correct gradients of the rendering equation. The key to achieving this is

to design the warpV so it is continuous in 𝑢 everywhere, and satisfies some consistency criterion on the geometric boundaries.

manner. Vicini et al. [2022], on the other hand, experiment with

voxelized SDFs and analytical BRDFs. The higher memory require-

ment of neural SDFs motivated our top-k version of the harmonic

weights. We also focus on primary visibility since our main goal is

to lift the mask requirement in neural SDF rendering.

Volumes. A scene can also be represented as participating media

instead of solid surfaces. Gkioulekas et al. [2013] pioneered the use

of differentiable volume rendering for inverse problems. Zhang et

al. [2019; 2021c] tackled discontinuities at volumetric boundaries.

Recently, there has been a surging interest in using volumetric

representations—parameterized either as discretized grids or neu-

ral networks—for view synthesis [Liu et al. 2020; Lombardi et al.

2019; Mildenhall et al. 2020; Xie et al. 2022]. These volumetric rep-

resentations allow for a trivially differentiable rendering model

and can achieve high-quality novel view synthesis and appearance

acquisition [Bi et al. 2020a,b]. However, it is still a challenge to

extract high-quality surface geometry from these methods, and

while the trade-offs between surface and volume representations is

an interesting research topic, we focus on surface representations.

Light transport. In addition to handling discontinuities, recent

work also studies the reduction of variance and memory consump-

tion for Monte Carlo rendering [Nimier-David et al. 2020; Vicini

et al. 2021; Zeltner et al. 2021; Zhang et al. 2021a]. Earlier rendering

work used derivatives for forward rendering [Li et al. 2015; Luan

et al. 2020; Ramamoorthi et al. 2007; Ward and Heckbert 1992]. Our

work is largely orthogonal to these.

3 METHOD

Our method computes the correct gradient of a rendering function

(i.e., the pixel integral of the radiance function on the camera image

plane) with respect to geometric parameters, in the presence of

primary visibility discontinuities, for scenes where the geometry is

represented by a signed distance field 𝑓 , parameterized by \ (e.g.,

the weights of neural network). Our approach builds on Bangaru

et al. [2020]. We show how to extend their warp function to SDFs

in order to reparameterize an intractable boundary integral. We

summarize the necessary background in § 3.1. We then derive a

warp function for SDFs that is continuous and boundary consistent

(§ 3.2) as an integral along camera rays, and show how to compute

it via quadrature using sphere tracer points (§ 3.3). In Section 3.4,

we finally give an unbiased approximation for this warp that is

tractable for use with neural SDFs. Section 3.5 provides details on

how to use our approach to solve inverse rendering problems.

3.1 Background: boundary-aware warping

Without loss of generality, assume a box pixel filter, so thatU ⊂ R2

is the image plane region corresponding to the pixel of interest. Let

𝐿(𝑢;\) denote the radiance along the ray from 𝑢 ∈ U, a point on

the image plane, and denote \ ∈ R𝑁 the vector of geometric scene

parameters (e.g. neural network weights). In matrix expressions

below, we will assume vector quantities (𝑢, 𝑥 , \) to be row vectors,

and gradients with respect to \ to be column vectors.

We aim to compute the gradient of the rendering integral 𝐼 with

respect to parameters \ :

𝜕\ 𝐼 =
𝜕

𝜕\

∫
U
𝐿(𝑢;\)𝑑𝑢. (1)

Primary visibility discontinuities make the radiance function non-

differentiable along occlusion boundaries (Fig. 3). DenotingU
sil
(\) ⊂

U the set of object silhouettes, for a point 𝑢
sil

∈ U
sil
, the radiance

𝐿(𝑢
sil

;\) is discontinuous in \ . This makes naive automatic differen-

tiation methods applied to the Monte Carlo sampling of 𝐼 produce

incorrect gradients since they ignore the Dirac delta that arises

from the differentiation.

Li et al.[2019; 2018] and Zhang et al. [2019] showed that Eq. (1)

can be split into two terms: an interior integral, for contributions

away from discontinuities and a boundary integral, along disconti-

nuities:

𝜕\ 𝐼 =

∫
U

𝜕

𝜕\
𝐿(𝑢;\)𝑑𝑢 + 𝐼

sil
. (2)

The second integral 𝐼
sil

is harder to compute because sampling

the boundary is difficult. This is particularly true for SDFs whose

surface boundaries admit no easy parametric form. We will not

cover boundary sampling in detail, since we will not use it; instead,

we will use a result from Bangaru et al. [2020], who showed, using

the divergence theorem, that this boundary term can be turned into

an integral over the interiorU \U
sil
(\), which is easier to sample:

𝐼
sil

=

∫
U\Usil (\)

∇𝑢 · (𝐿(𝑢;\)V(𝑢;\)) 𝑑𝑢. (3)

Here ∇𝑢 · is the divergence operator, and V(𝑢;\) ∈ R𝑁×2
is a

warping function required to satisfy two properties:

(1) continuity:V(·;\) is continuous onU, and

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Bangaru, Gharbi, Li, Luan, Sunkavalli, Hašan, Bi, Xu, Bernstein, and Durand

2D pixel space side view of the 3D scene

Figure 3: As geometric parameters \ vary, visibility creates

discontinuities in the rendering function 𝐿(𝑢;\) which tradi-

tional automatic differentiation cannot handle (left). These

discontinuities correspond to continuous changes in our

SDF representation 𝑓 (𝑥 ;\) (right). We compute the derivative

𝜕\𝑢𝑠𝑖𝑙 of a pixel-space silhouette point w.r.t. the geometry

parameters \ by computing the derivative 𝐺 (𝑥 ;\) of the cor-
responding 3D scene point 𝑥 , and projecting it onto the screen

space U through the inverse Jacobian.

(2) boundary consistency:V agrees with the derivative of the

discontinuity points when 𝑢 approaches the discontinuity.

That is, lim𝑢→𝑢sil
V(𝑢;\) = 𝜕\𝑢sil for 𝑢sil ∈ U

sil
(\).

Bangaru et al. further show the area integral is equivalent to ap-

plying the change of variable [Loubet et al. 2019] 𝑢 ↦→ 𝑇 (𝑢, \) =
𝑢 + (\ − \0)V(𝑢;\) in Eq. (1), where the derivative is computed at

\0, but 𝜕\\0 = 0. After reparameterization we get:

𝜕\ 𝐼 =

∫
U

𝜕\ [𝐿(𝑇 (𝑢, \), \) |det (𝜕𝑢𝑇 (𝑢, \)) |] d𝑢. (4)

Expanding 𝑇 and using Eq. (3), one can show that Eq. (4) indeed

computes 𝜕\ 𝐼 . Intuitively, the reparameterization 𝑇 moves each

point on the boundary locally at the velocity of their derivatives,

essentially removing the discontinuities, while the determinant

term accounts for the change of measure.

The main goal of this paper is to derive a suitable form for

V(𝑢;\) for SDFs, that can be tractably computed, so that we can

evaluate Eq. (4) using Monte Carlo estimation.

Rendering. To render an SDF 𝑓 and compute 𝐿(𝑢;\), we need to

find the closest intersection point 𝑥 (𝑢, 𝑡) ∈ R3
such that 𝑓 (𝑥 ;\) =

0, where 𝑡 is the distance along the primary ray associated with

pixel location 𝑢. To find the intersection distance, we use sphere

tracing [Hart 1996], which applies a fixed-point iteration to generate

a sequence of points 𝑥𝑛 ∈ T (𝑢), such that lim𝑛→∞ 𝑥𝑛 = 𝑥 .

3.2 Continuous boundary-consistent warp for

SDFs

In this section, we construct an idealized warp functionV int
that

satisfies the continuity and boundary-consistency conditions of Sec-

tion 3.1. First, we derive the boundary gradient 𝜕\𝑢sil withwhich the

warp should agree at silhouette points (§ 3.2.1). We then smoothly

extrapolate this gradient using a weighted integral along the pri-

mary ray passing through 𝑢, to obtain our warp function (§ 3.2.2).

We show necessary and sufficient conditions on the weighs to make

the warp continuous and boundary-consistent (§ 3.2.3).

3.2.1 Boundary consistency for implicit functions. The boundary
consistency condition in Section 3.1, requires that, at a discontinuity

point 𝑢
sil

the warp agrees with 𝜕\𝑢sil. The derivation proposed by

Bangaru et al. [2020] does not apply directly to implicit surfaces,

so we derive this boundary derivative using the implicit function

theorem. Specifically, the derivative of a scene point 𝑥 ∈ R3
on the

surface, i.e., 𝑓 (𝑥 ;\) = 0, w.r.t. parameters \ ∈ R𝑁 is given by:

𝐺 (𝑥 ;\) := 𝜕\𝑥 = − 𝜕\ 𝑓 𝜕𝑥 𝑓
𝑇

∥𝜕𝑥 𝑓 ∥2
∈ R𝑁×3 . (5)

The above directly follows from the implicit function theorem ap-

plied to 𝑓 (𝑥 ;\) = 0. This implicit velocity formulation also ap-

pears in previous work [Remelli et al. 2020; Stam and Schmidt

2011; Vicini et al. 2022]. To get the derivative in pixel coordinates

𝜕\𝑢 = 𝜕\𝑥 · 𝜕𝑥𝑢 ∈ R𝑁×2
, we need to project this derivative by the

Jacobian 𝜕𝑥𝑢 ∈ R3×2
, which for a perspective camera can be easily

derived by hand. For more generality, we can obtain this Jacobian

as the pseudo-inverse † of the forward Jacobian:

𝜕𝑥𝑢 = (𝜕𝑢𝑥 (𝑢, 𝑡))† . (6)

Taken together, the derivative at a silhouette point 𝑢
sil
, with

corresponding 3D position 𝑥
sil

= 𝑥 (𝑢
sil
, 𝑡
sil
), is then:

𝜕\𝑢sil = 𝐺 (𝑥
sil

;\) 𝜕𝑥𝑢. (7)

Figure 3 illustrates the geometric configuration.

3.2.2 Extending to a smooth warpV int (𝑢;\) by integration along
the ray. Now that we have an expression for the warp at silhou-

ette points, we extend it to all points, by smoothing this term in a

consistent manner. Our method leverages the fact that our implicit

SDF 𝑓 (𝑥 ;\) is continuous in 3D space and achieves smoothing by

convolving along the ray (Fig. 4 (b)). This avoids casting expensive

additional rays which are needed by Bangaru et al. [2020], and also

propagates gradients to points in free space near the boundary

points. While investigating the free space gradient is outside the

scope of this paper, previous work [Oechsle et al. 2021; Wang et al.

2021] have noted that this can have a stabilizing effect on the opti-

mization of neural SDFs. Note that, while they adapt a volumetric

rendering model for better convergence, we do so while computing

correct boundary gradients for a surface-based representation.

Our proposed warp function smoothly extends Eq. (7) to non-

boundary points as follows:

V int (𝑢;\) =
∫ 𝑡0

𝑡=0
𝑤 (𝑥 (𝑢, 𝑡)) 𝐺 (𝑥 ;\) 𝜕𝑥𝑢 𝑑𝑡∫ 𝑡0

𝑡=0
𝑤 (𝑥 (𝑢, 𝑡)) 𝑑𝑡

, (8)

with 𝑡0 the distance to the closest intersection, 𝑡0 = ∞ when the

ray does not intersect.

3.2.3 Choice of weights. In order to satisfy the boundary consis-

tency criteria, the weights need to asymptotically satisfy the limit:

lim

𝑢→𝑢sil

𝑤 (𝑥 (𝑢, 𝑡))∫ 𝑡0

𝑡 ′=0
𝑤 (𝑥 (𝑢, 𝑡 ′)) 𝑑𝑡 ′

= 𝛿 (𝑡 − 𝑡
sil
), (9)

where 𝛿 is the Dirac delta operator.

From Eq. (9), we see that our weights have to depend on some

notion of distance to the silhouette. For an implicit function 𝑓

that is at least 𝐶1 continuous, the following constraints implicitly

characterize the silhouette points [Gargallo et al. 2007]:

𝑓 (𝑥 (𝑢, 𝑡);\) = 0,

𝜕𝑥 𝑓 (𝑥 (𝑢, 𝑡);\)𝑇 𝜕𝑡𝑥 (𝑢, 𝑡) = 0.
(10)

Differentiable Rendering of Neural SDFs through Reparameterization SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

(a) warped-area sampling (b) ours

Figure 4: (a) Warped-area sampling uses additional random

rays around the primal ray and averages 𝜕\𝑥 (𝑢; 𝑡) using

boundary-aware harmonic weights. (b) Our method instead

takes a weighted average along the ray, repurposing the SDF

𝑓 into weights 𝑆 (𝑥)−𝛾 .

The first condition requires the point to be on the surface, and the

second condition requires the SDF gradient to be perpendicular

to ray direction [Hertzmann 1999]. We can use these equations to

build a silhouette characteristic function S(𝑥), which takes value

0 whenever 𝑥 is a silhouette point, and is continuous everywhere.

Specifically, we define:

S(𝑥) = |𝑓 (𝑥 ;\) | + _𝑑

���𝜕𝑥 𝑓 (𝑥 ;\)𝑇 𝜕𝑡𝑥
��� , (11)

where _𝑑 > 0. This characteristic function is similar to the boundary

test function used by Bangaru et al. [2020] for meshes. However,

unlike their boundary test, S(𝑥) is defined everywhere in the SDF’s

3D domain, not just the surface points. This allows us to use these

weights for our integral along any ray.

Our final harmonic weights are given by:

𝑤 (𝑥) = S(𝑥)−𝛾 , 𝛾 > 2. (12)

For 𝛾 > 2, our weights satisfy the limit in Eq. (9). Intuitively, this is

because the𝑤 (𝑥) → 𝛿 (𝑥 −𝑥
sil
) as 𝑥 → 𝑥

sil
. See our supplementary

material for a discussion of correctness, and derivation of 𝛾 > 2.

Fig. 5(a) shows our weight distribution along the ray for all 𝑢 in

an 1D example sphere tracer.

3.3 Estimating the warp through its quadrature

V𝑞

We now have a clear form for our warp function that can be used

to reparameterize and differentiate the rendering function. Unfortu-

nately, the asymptotical sharpness of our weights required to obtain

a valid warp, also makes the integral (8) very difficult to sample.

For 𝑢 close to the silhouette U
sil
, the weights become very concen-

trated near the surface boundary, presenting a tricky integrand if

we were to uniformly sample along the ray.

Careful importance sampling of areas near the boundary could

remedy this, but there is unfortunately no straightforward way

to implement this: the weight distribution depends heavily on the

configuration of silhouettes near 𝑢, dictated by the SDF.

Our approach foregoes stochastic sampling altogether. We con-

struct a trapezoidal quadrature on the series of intermediate points

𝑥𝑛 ∈ T (𝑢) generated by the sphere tracer, shown in Fig. 5(b). This

quadrature estimator for the warp is given by:

V𝑞 (𝑢;\) =
∑
𝑥𝑖 ∈T (𝑢) 𝑤

𝑞 (𝑥𝑖) 𝐺 (𝑥 ;\) 𝜕𝑥𝑢∑
𝑥𝑖 ∈T (𝑢) 𝑤𝑞 (𝑥𝑖)

,

where𝑤𝑞 (𝑥𝑖) = 𝑤 (𝑥𝑖)
(𝑡𝑖−1 − 𝑡𝑖+1)

2

,

(13)

and 𝑡𝑖 is the distance along the ray to sphere tracer point 𝑥𝑖 . Assum-

ing the underlying SDF 𝑓 (𝑥 ;\) is 𝐶1 continuous, the intermediate

points of the sphere tracer are continuous at all 𝑢 ∉ U
sil
. By com-

position of continuous functions,V𝑞 (·;\) is also continuous.

Our quadrature warp V𝑞
satisfies the continuity and boundary

consistency condition (§3.1). Since we apply trapezoidal quadra-

ture,V𝑞 (𝑢;\) is in general a biased estimator of integralV int (𝑢;\).
However, the two terms are equal in the limit as𝑢 approaches the sil-

houette, i.e., for𝑢
sil

∈ U
sil
, lim𝑢→𝑢sil

V𝑞 (𝑢;\) = lim𝑢→𝑢sil
V int (𝑢;\),

and since the right-hand side is boundary consistent, so is our quad-

rature warpV𝑞
. See supplemental for a sketch proof of correctness.

3.4 Top-𝑘 subset weighting �̄�𝑘 to reduce

memory use

For complex SDFs such as a neural network, our quadrature warp

Vq
has the caveat that it requires back-propagating through every

sphere tracer point. Previous work like IDR [Yariv et al. 2020] do

not have this issue since their (biased) gradient is only computed

at the intersection point, and they exclude other points from the

gradient computation. Our approach, on the other hand, uses a

weighted sum, so we cannot discard intermediate points.

However, as shown in Fig. 5(b), the vast majority of sphere tracer

points have negligible weight, and most of the mass is concentrated

close to the silhouette. We exploit this by only using the subset

of points with the highest weight in our warp estimation. That is,

instead of using all of𝑇 (𝑢), we can instead use a top-k subset𝑇𝑘 (𝑢).
Selecting the top-𝑘 weights requires adjusting them to ensure that

they remain continuous. For a subset size of 𝑘 , our weights are1:

�̄�𝑘 (𝑥) =

𝑤q (𝑥) − min

𝑥 ∈𝑇𝑘 (𝑢)
𝑤q (𝑥), if 𝑥 ∈ 𝑇𝑘 (𝑢)

0 otherwise.

(14)

The weights �̄�𝑘 (𝑥) still produce a continuous warp field (see

supplemental for a sketch of proof). Intuitively, even though the set

of points change as a function of 𝑢, whenever this change occurs,

the points that swap in or out of the set always have weight 0.

3.5 Inverse Rendering Details

In this section, we briefly discuss some details that make our inverse

rendering pipeline tractable.

Implementation. Our method requires 3 nested derivative passes

to (i) compute normals 𝜕x 𝑓 , (ii) compute Jacobian of the trans-

formation 𝜕𝑢𝑇 and (iii) to compute derivatives of the full pipeline

𝜕\ [𝐿(𝑇 (𝑢, \)) |det (𝜕𝑢𝑇 (𝑢, \)) |]. We use the Python JAX automatic

differentiation system [Bradbury et al. 2018], which supports nested

forward+backward differentiation. We use forward-mode for (i) and

(ii), and reverse-mode for (iii). Note that since (i) and (ii) both in-

volve differentiating w.r.t spatial coordinates, the SDF model must

be𝐶1 continuous in x (but only𝐶0 continuous in 𝜽). We enforce𝐶1

continuity through softplus non-linearities instead of using ReLUs

Network architecture. For our inverse rendering results, we use

the network architecture shown in Fig. 11 of Yariv et al. [2020].

Since our method is slightly more memory-intensive (even with

1
Note that even though we consider the top 𝑘 weights, only 𝑘 − 1 weights actually

have a non-zero contribution to the \ -derivative.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Bangaru, Gharbi, Li, Luan, Sunkavalli, Hašan, Bi, Xu, Bernstein, and Durand

SDF and
weight profile

unnormalized
weight

normalized
weight

(a) harmonic weight (b) quadrature approximation (c) top-k subset weight

Figure 5:Weight visualization. A contour plot of a sample 2D SDF (first row). We use an orthographic camera for illustration,

so camera rays are parallel to the horizontal axis. We show our three weighting schemes in unnormalized (second row) and

normalized (third row) form. Our proposed harmonic weights (a) for 𝛾 = 4.0, _𝑑 = 1𝑒 − 1 are well approximated by a trapezoidal

quadrature on the sphere tracer points (b). The blank regions with no weight can be excluded from the computation, which

leads to our proposed our proposed top-𝑘 subset weights (c), for 𝑘 = 8. This reduces both the compute and memory burden of

the backward pass. We visualize the weight in a symlog plot, values are linear in [0, 10
1] and [0, 10

−3] for the unnormalized and

normalized weights, respectively.

Radiance OursFinite diff.Naïve

KI
TT

Y
SA

N
TA

TO
RU

S

Figure 6: Gradientqality. We compare the image gradi-

ents computed naïvely without reparameterization [Yariv

et al. 2020] and with our method against the “ground truth”

gradient computed with finite differences for three scenes.

Our method properly handles boundary discontinuities both

due to object edges (in purple insets) and self-occlusions (in

green insets).

top-𝑘 subset weights), we reduce the width of the SDF network to

256 channels per layer. In this architecture, the shading network

predicts the final radiance based on the position, viewing direction

and a geometric feature vector. Unlike NeRF [Mildenhall et al. 2020]

and its variants, the shading network is only evaluated at surface
points. We use 6-levels of positional encoding on the input position

𝑥 to allow the network to reconstruct fine geometry.

Pixel sampling. Similar to Yariv et al. [2020] and other neural

methods, we sample a subset of pixels for each iteration since it

can be computationally prohibitive to trace the entire image when

using a deep neural representation. However, unlike Yariv et al.

[2020], which works with a single ray at the center of the pixel, our

approach must integrate the spatially-varying warpV over each

pixel. We achieve this by Monte-Carlo sampling within each pixel.

Multi-level optimization. Since we only use a subset of pixels,

the likelihood of sampling a pixel with silhouette gradient is fairly

low. For unbiased derivatives, only pixels that are partially covered

by a surface have a non-zero boundary contribution. This is in

contrast to approximate derivatives (e.g., [Liu et al. 2019], [Yariv

et al. 2020]) that have a wider spatial footprint. To alleviate this

issue, we use a multi-scale pyramid of the target image throughout

our optimization.

Initialization. We use the geometric network initialization [Atz-

mon and Lipman 2020] which approximately produces a spherical

SDF. We also initializes the weights of the positional encoding layer

to 0 [Yariv et al. 2020]. We found this subtle modification implicitly

enforces a coarse-to-fine mechanism that yields significantly better

generalization to novel views.

Eikonal constraint. We represent our SDF 𝑓 using a neural net-

work, which does not necessarily satisfy the distance property. We

adopt the Eikonal regularization loss [Gropp et al. 2020] to explic-

itly enforce this. Since the resulting 𝑓 is only an approximation of

an SDF, we pad our weights with a small 𝜖 to avoid infinities.

Differentiable Rendering of Neural SDFs through Reparameterization SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea
s
a
n
t
a

k
i
t
t
y

d
u
c
k

p
o
n
y

d
r
a
g
o
n

Input image IDR Radiance IDR Depth IDR 3D Geometry Ours Radiance Ours Depth Ours 3D Geometry

Figure 7: Neural SDF reconstruction.We compare with IDR [Yariv et al. 2020] on three synthetic scenes (top three rows) and

two real captured scene (bottom rows). IDR requires 2D mask supervision, without which it completely diverges. Thanks to our

accurate gradient computation, our reconstructions are on par with IDR, without requiring any additional supervision beyond

the input images and camera poses. In fact, on the real scenes, our reconstructions (without masks) outperform IDR with
masks (see the head of the pony, or the legs, tails and wings of the dragon) because of errors in automatic 2D segmentation.

4 RESULTS

4.1 Ground truth gradient comparions

We first evaluate the correctness of our gradient by visualizing gra-

dients on three different scenes (illustrated in Fig. 6). For Torus—a

analytical torus model textured with a diffuse Perlin noise albedo—

we visualize the gradients w.r.t the outer radius (distance from the

center to the center of the ring). (Santa and Kitty) are 3D mod-

els that we represent as neural SDFs. We take the parameters of

the neural SDF from an intermediate iteration during an inverse

rendering optimization, and visualize the gradient w.r.t the bias

parameter of the last layer output (i.e. the level set perturbation).

We also compute the gradient without reparameterization; this is

similar to the gradient used in previous SDF-based inverse render-

ing methods [Yariv et al. 2020]. Note that the interior gradient is

largely unaffected by reparameterization, with the gradient at the

silhouettes being the largest benefit of our method, especially at

self-occlusions. In the next subsection, we show that this boundary

gradient is critical and without it, the inverse rendering diverges.

4.2 Comparisons with IDR

We compare our reconstructions against the SDF-based inverse

rendering method of IDR [Yariv et al. 2020]. IDR does not correctly

account for the boundary term of gradient of the rendering integral

and requires additional supervision, in the form of accurate 2D

segmentation masks. We implement IDR in our pipeline to ensure

that the only difference is our reparameterization. We use the same

network architecture for both methods (See Sec. 3.5 for details),

and report results after roughly 25,000 network updates. Note that

our method uses more samples (2 in the interior + 4 on each pixel

boundary) since we use a Monte-Carlo approach to estimate the

warp. IDR only requires one sample, fixed at the center of the pixel.

SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea Bangaru, Gharbi, Li, Luan, Sunkavalli, Hašan, Bi, Xu, Bernstein, and Durand

Figure 7 shows that, on three synthetic scenes (Santa, Kitty

and Duck), our method without any 2D masks supervision obtains

comparable depth and RGB reconstruction as IDR with (perfect)

mask supervision. We also show reconstructions of a captured real

scene (Pony from Bi et al. [2020b]). Here, we provide IDR with 2D

masks derived from a COLMAP reconstruction, which has errors.

As a result, our reconstruction outperforms IDR on this scene. Table

1 establishes this result using mean reconstructed PSNR.

We also tried to compare with IDR without mask supervision.

In most cases, IDR without masks diverges completely because

of the lack of gradients from the silhouette. This is similar to the

observation made by Oechsle et al. [2021].

Our pipeline takes 10.1s per iteration on a system with 2× RTX

2080Ti, at 24,576 rays per iteration.

Table 1: PSNR Comparison. Our method performs on-par with IDR

on all datasets in spite of having no mask supervision.

IDR (with masks) Ours (w/o masks)

Santa 34.86 dB 33.59 dB

Kitty 36.96 dB 33.71 dB

Duck 37.30 dB 34.14 dB

Pony 32.06 dB 31.56 dB

Dragon 31.64 dB 32.72 dB

4.3 Ablation study: Subset size

Our top-k weighting scheme reduces the memory footprint of our

optimization, but this comes at a cost. The smaller 𝑘 , the sharper

the weight landscape. This can cause high variance that can impede

the optimization of fine details. We explore this through an ablation

study on the Santa dataset, varying 𝑘 shown below. We use 36

views for this study, and report results after 20, 000 network updates.

Details are resolved for 𝑘 ≥ 14, as shown in Fig. 8

31.58 db 33.2 db 34.61 db34.54 db

Figure 8: Set Size Ablation. We compare reconstructions

(at 25,000 updates) using different top-k subset sizes from

𝑘 = 3 to 𝑘 = 21, out of a total of 22 sphere tracer steps. We

find that beyond 𝑘 = 7, we obtain diminishing returns on

reconstruction quality. In this scenario, that translates to

roughly 65% fewer network evaluations stored in memory

for the backward pass.

5 CONCLUSION

We have presented a novel method to correctly differentiate neural

SDFs rendering. Unlike prior work that relies on accurate masks

or biased approximations of the boundary gradients, we reparam-

eterize the pixel filter integral to account for the discontinuities.

We have validated the correctness of our approach using finite

difference ground truth, and demonstrated superior optimization

convergence comparing state-of-the-art neural SDF renderers.

While we have focused on primary visibility in this work, our

formulation can be extended to handle global illumination. In par-

ticular, we expect to be able to model light rays and jointly optimize

for SDF geometry as well as surface reflectance and illumination.

Modeling full global illumination with neural SDFs may require

extensions or approximations to be computationally tractable. Fi-

nally, inverse rendering under unknown, natural illumination is

ill-posed and it would be interesting to explore geometry, material

and illumination priors that can be combined with our differentiable

rendering formulation.

ACKNOWLEDGMENTS

This work was partially completed during an internship at Adobe

Research and subsequently funded by the Toyota Research Institute

and the National Science Foundation (NSF 2105806). We acknowl-

edge the MIT SuperCloud and the Lincoln Laboratory Supercom-

puting Center for providing HPC resources. We also thank Shuang

Zhao for early discussions, and Yash Belhe for proof-reading.

Differentiable Rendering of Neural SDFs through Reparameterization SA ’22 Conference Papers, December 6–9, 2022, Daegu, Republic of Korea

REFERENCES

James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources.

In SIGGRAPH. ACM Press/Addison-Wesley Publishing Co., 343–350.

Matan Atzmon and Yaron Lipman. 2020. SAL: Sign Agnostic Learning of Shapes From

Raw Data. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area Sampling

for Differentiable Rendering. ACM Trans. Graph. 39, 6 (2020), 245:1–245:18.
Sai Bi, Zexiang Xu, Pratul P. Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Milos

Hasan, Yannick Hold-Geoffroy, David J. Kriegman, and Ravi Ramamoorthi. 2020a.

Neural Reflectance Fields for Appearance Acquisition. CoRR abs/2008.03824 (2020).

Sai Bi, Zexiang Xu, Kalyan Sunkavalli, Milos Hasan, Yannick Hold-Geoffroy, David

Kriegman, and Ravi Ramamoorthi. 2020b. Deep Reflectance Volumes: Relightable

Reconstructions from Multi-View Photometric Images. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV).

James F Blinn. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph.
1, 3 (1982), 235–256.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Forrester Cole, Kyle Genova, Avneesh Sud, Daniel Vlasic, and Zhoutong Zhang. 2021.

Differentiable surface rendering via non-differentiable sampling. In International
Conference on Computer Vision. 6088–6097.

Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand

pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. 33, 9
(2011), 1793–1805.

Pau Gargallo, Emmanuel Prados, and Peter Sturm. 2007. Minimizing the reprojection

error in surface reconstruction from images. In International Conference on Computer
Vision. 1–8.

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.

Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. 32, 6
(nov 2013), 162:1–162:13.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit

Geometric Regularization for Learning Shapes. In Proceedings of Machine Learning
and Systems 2020. 3569–3579.

John C Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing

of implicit surfaces. The Visual Computer 12, 10 (1996), 527–545.
Aaron Hertzmann. 1999. Introduction to 3D Non-Photorealistic Rendering: Silhouettes

and Outlines. In SIGGRAPH Course Notes. Course on Non-Photorelistic Rendering,
Stuart Green (Ed.). ACM Press/ACM SIGGRAPH, New York.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,

Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

et al. 2011. KinectFusion: real-time 3D reconstruction and interaction using a

moving depth camera. In symposium on User interface software and technology.
559–568.

Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker. 2020. SDFDiff: Differen-

tiable rendering of signed distance fields for 3D shape optimization. In Computer
Vision and Pattern Recognition. 1251–1261.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3DMesh Renderer.

In Computer Vision and Pattern Recognition. IEEE, 3907–3916.
Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon

Wetzstein. 2021. Neural lumigraph rendering. In Computer Vision and Pattern
Recognition. 4287–4297.

Tzu-Mao Li. 2019. Differentiable Visual Computing. Ph.D. Dissertation. Massachusetts

Institute of Technology. Advisor(s) Durand, Frédo.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable

Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 37, 6 (2018), 222:1–222:11.

Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand.

2015. Anisotropic Gaussian Mutations for Metropolis Light Transport through

Hessian-Hamiltonian Dynamics. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34, 6
(2015), 209:1–209:13.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.

Neural Sparse Voxel Fields. NeurIPS (2020).
Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable

Renderer for Image-based 3D Reasoning. International Conference on Computer
Vision (2019).

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,

and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes

from Images. ACM Trans. Graph. 38, 4, Article 65 (July 2019), 65:1–65:14 pages.

MatthewM. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable

Renderer. In European Conference on Computer Vision, Vol. 8695. ACM, 154–169.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing

discontinuous integrands for differentiable rendering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 38, 6 (2019), 228.

Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020. Langevin

Monte Carlo Rendering with Gradient-based Adaptation. ACM Trans. Graph. (Proc.
SIGGRAPH) 39, 4 (2020).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance

Fields for View Synthesis. In European Conference on Computer Vision.
Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Dif-

ferentiable volumetric rendering: Learning implicit 3D representations without 3D

supervision. In Computer Vision and Pattern Recognition. 3504–3515.
Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Ra-

diative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable

Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 4 (July 2020). https:

//doi.org/10.1145/3386569.3392406

Michael Oechsle, Songyou Peng, and Andreas Geiger. 2021. UNISURF: Unifying

Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. In

International Conference on Computer Vision (ICCV).
Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-

grove. 2019. DeepSDF: Learning continuous signed distance functions for shape

representation. In Computer Vision and Pattern Recognition. 165–174.
Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis

of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1 (2007), 2.
Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoît Guillard, Timur Bagaut-

dinov, Pierre Baque, and Pascal Fua. 2020. MeshSDF: Differentiable iso-surface

extraction. In Advances in Neural Information Processing Systems, Vol. 33. 22468–
22478.

Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian

Theobalt. 2015. A Versatile Scene Model with Differentiable Visibility Applied to

Generative Pose Estimation. In International Conference on Computer Vision. IEEE,
765–773.

Jos Stam and Ryan Schmidt. 2011. On the Velocity of an Implicit Surface. ACM
Trans. Graph. 30, 3, Article 21 (may 2011), 7 pages. https://doi.org/10.1145/1966394.

1966400

Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Stanford University. Advisor(s) Guibas, Leonidas J.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path replay backpropagation:

differentiating light paths using constant memory and linear time. ACM Trans.
Graph. (Proc. SIGGRAPH) 40, 4 (2021).

Delio Vicini, Sébastien Speierer, andWenzel Jakob. 2022. Differentiable Signed Distance

Function Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4
(July 2022), 125:1–125:18. https://doi.org/10.1145/3528223.3530139

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping

Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for

Multi-view Reconstruction. In Advances in Neural Information Processing Systems.
Greg Ward and Paul Heckbert. 1992. Irradiance Gradients. In Eurographics Workshop

on Rendering. Eurographics Association, 85–98.
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.

Neural Fields in Visual Computing and Beyond. Comput. Graph. Forum. State of the
Art Report (2022).

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of neural

implicit surfaces. In Advances in Neural Information Processing Systems.
Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and

Yaron Lipman. 2020. Multiview Neural Surface Reconstruction by Disentangling

Geometry and Appearance. Advances in Neural Information Processing Systems 33
(2020).

Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte

Carlo estimators for differential light transport. ACM Trans. Graph. (Proc. SIG-
GRAPH) 40, 4 (2021).

Cheng Zhang, Zhao Dong, Michael Doggett, and Shuang Zhao. 2021a. Antithetic

Sampling for Monte Carlo Differentiable Rendering. ACM Trans. Graph. (Proc.
SIGGRAPH) 40, 4 (2021).

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.

Path-Space Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 6
(2020), 143:1–143:19.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and

Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 38, 6 (2019), 227.

Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021c. Path-Space Differentiable Rendering

of Participating Media. ACM Trans. Graph. (Proc. SIGGRAPH) 40, 4 (2021), 76:1–
76:15.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. 2021b. PhySG:

Inverse rendering with spherical gaussians for physics-based material editing and

relighting. In Computer Vision and Pattern Recognition. 5453–5462.
Shuang Zhao, Wenzel Jakob, and Tzu-Mao Li. 2020. Physics-Based Differentiable

Rendering: From Theory to Implementation. In ACM SIGGRAPH 2020 Courses.
Article 14, 30 pages.

Yang Zhou, Lifan Wu, Ravi Ramamoorthi, and Ling-Qi Yan. 2021. Vectorization for

Fast, Analytic, and Differentiable Visibility. ACM Trans. Graph. 40, 3 (2021).

http://github.com/google/jax
https://doi.org/10.1145/3386569.3392406
https://doi.org/10.1145/3386569.3392406
https://doi.org/10.1145/1966394.1966400
https://doi.org/10.1145/1966394.1966400
https://doi.org/10.1145/3528223.3530139

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Background: boundary-aware warping
	3.2 Continuous boundary-consistent warp for SDFs
	3.3 Estimating the warp through its quadrature Vq
	3.4 Top-k subset weighting k to reduce memory use
	3.5 Inverse Rendering Details

	4 Results
	4.1 Ground truth gradient comparions
	4.2 Comparisons with IDR
	4.3 Ablation study: Subset size

	5 Conclusion
	Acknowledgments
	References

