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RENDERING
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DIFFERENTIABLE RENDERING
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WHY DIFFERENTIABLE RENDERING?

Motivation 1 = render-'(0)
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WHY DIFFERENTIABLE RENDERING?

Motivation 2 ====p Deep Learning (adversarial robustness, etc..)
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SCENE PARAMETER DERIVATIVES
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AUTO-DIFF HAS A VISIBILITY PROBLEM

Sudden discontinuity |:> Auto-diff fails due to edges

) Smooth function |:> Auto-diff computes correct derivative







RASTERIZATION APPROACHES ARE LIMITED

-

Key Idea: Analytical occupancy

[Jalobeanu 2004]

~

-

Key Idea: Approximating visibility

Soft Rasterizer [Liu 2019]
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RENDERING AS AN INTEGRAL

Secondary Integral
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| MONTE CARLO ESTIMATION
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DISCONTINUOUS INTEGRANDS

(Incorrect) | Attempt 1 =——=> Apply auto-diff to summation
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EDGE-SAMPLING

Challenges for Edge-Sampling

Arbitrary silhouette sampling is hard!




EDGE-SAMPLING HAS TROUBLE WITH SPECULAR

REFLECTIONS

(Near-)Perfect Mirror
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Rendering Caustics

Manifold-Exploration
MLT

[Jakob 2012]

Natural Constraint Representation
for MLT
[Kaplanyan 2014]




AREA-SAMPLING

Transform samples with 0. Avoids discontinuities.

—

Reparameterizing Discontinuous
Integrands for Differentiable Rendering
[Loubet 2019]
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Heuristic Approximation!
May not work for all samples.







SUMMARY OF METHODS

-

N

Rasterization

+ Fast

- Approximate visibility

- No secondary effects

~

-

N

Edge-sampling

(a) half-spaces

+ Exact derivative

- Depth complexity
- No perfect specularities
- Complex data structures

~

)

4 )
Area-sampling
+ Fast (No complex sampling)
- Approximate derivative
N /




OUR APPROACH



THE REYNOLDS TRANSPORT THEOREM
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CONVERTING EDGE-SAMPLES TO AREA-SAMPLES
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THE DIVERGENCE THEOREM
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APPLYING THE DIVERGENCE THEOREM TO THE EDGE

Goal: Rewrite fv -1 | into area integral /g I
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QUICK RECAP

* Used Reynolds transport theorem to find the boundary integral /0D fv-n

* Rewrote fv-n
oD

* Have to define the vector field V@ over domain D

to

(/DV-(%J")\

using the divergence theorem.
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A 2D EXAMPLE SCENE

j[ w € (), the domain of integration

[ wgb), wéb) e o) , the discontinuous set ]
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VELOCITY V : THE BOUNDARY DERIVATIVE

| 8@%@

: Derivative of boundary position w.r.t ©

0 =0
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WARP FIELD ), : EXTENSION OF V' TO ALL POINTS
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‘ '[ V(g : defined over D ]
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.
| VALIDITY OF V@

Rule 1: Continuous

»V@(v

W ! W
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| VALIDITY OF V@

Rule 2: Boundary Consistent

»Vg(v




INTERPOLATION WITHOUT KNOWLEDGE OF

BOUNDARIES

[

-

Available quantities

Origin point

Ray

Intersection

Primitive

~

/

No access to discontinuity points
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.
CONSTRUCTING V@

Attempt 1 ==mp Find Opw through implicit derivative

y = INTERSECT(w, ) > Jpw = ——

At all points (not just boundaries)

+ Boundary consistent
- Not continuous

(Incorrect)

(direct)
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.
| CONSTRUCTING V@

Attempt 2 =—mmp Filter Attempt 1 with a Gaussian filter

(Incorrect)

0 -
/ k (w : w/) wy Végaussmn)
0 Opy

k(.,.) = Gaussian filter

+ Continuous
- Not boundary consistent

(w)
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BOUNDARY-AWARE WEIGHTING

Goal: Find weights

klw, w’)} st [ Vy =

gy

at boundaries.
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Ideal weighting function

St
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Approach Dirac delta near boundaries
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BOUNDARY-AWARE WEIGHTING

< ~

Implicit Boundary through geometric normals

— (w,n) =10

at boundaries
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.
CONSTRUCTING V@

Our Approach = Filter Attempt 1 with harmonic weights

klw,w') =

D(w,w) | T

B(w')

=

Distance function

\

Boundary test

+ Boundary consistent

+ Continuous

N h ‘ )
v 6(’ armonic) (w)

32



.
COMPUTING V@

1. Sample path using path tracer (N paths)

For each bounce:

\ 4

2. Sample auxiliary rays (N’ rays)

3. Compute boundary term B() locally

4. Compute weight k(.,.) and a@w

5. Find weighted mean
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ADDITIONAL DETAILS

/

Russian Roulette

\

/

Variance Reduction

Antithetic Variates

No Variance Reduction

Antithetic Variates +
Control Variates

~

Relationship with
Reparameterization

Vo(w) <D T (w; 0)

Vo(w) = 0T (w; 0)]p—p,
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RESULTS



VARIANCE COMPARISON WITH EDGE-SAMPLING
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BIAS COMPARISON WITH REPARAMETERIZATION

CORKSCREW

HCYLINDER
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Illustration

Image I

Reference
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Rotating cylindrical objects present a complicated scenario for area-sampling
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BIAS COMPARISON WITH REPARAMETERIZATION

HEDGE

PranT-PoTt

Illustration

Image I Reference Ours Loubet et al. 2019

Extremely complex geometry like foliage can cause heuristic to fail
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POSE ESTIMATION CAN FAIL WITH BIASED

GRADIENTS

@ Reparameterization

Multiple Initializations

JZ@X
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CONTRIBUTIONS

-
Edge-integral to

Area-integral

NG
O

~

-

Warp field conditions

fw(wv

\

Harmonic
interpolation
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