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Abstract

We present a continuous, submetric deformation of
the surface of the cube which increases the enclosed
volume by about 25.67%. This improves the previous
bound of about 21.87% by Bleecker

1 Introduction

We address the problem how large the volume of a
body with a surface isometric to that of the unit cube
can be. The idea of considering volume-increasing iso-
metric embeddings is due to Bleecker [2]. He proved
that a volume-increasing continuous isometric defor-
mation exists for every simplicial convex surface in
R3. A deformation is called isometric if it preserves
the geodesic distances between any two points on the
surface. Bleecker also gives a direct construction for
the cube and other platonic solids. By Alexandrov’s
uniqueness theorem [1] a body resulting from such a
deformation must be non-convex.

Most recently, Pak [6] gave an easy construction
for increasing the volume of the unit cube to about
1.1812 based on the work of Milka [4]. Bleecker’s more
involved construction yields a volume of about 1.2187.
A simple upper bound can be obtained by the volume
of the sphere which has the same surface as the cube.
This gives an upper bound on the volume of 1.3820.
This bound is not sharp as the cones around cube
vertices are not isometric to spherical regions.

Bleecker conjectured that for every (not necessarily
simplicial) polyhedron P ⊂ R3 there exists a volume-
increasing deformation of ∂P [2]. Bleecker’s conjec-
ture was positively resolved by Pak [5], who also ex-
tended it to non-convex polyhedra and polyhedra in
higher dimensions.

It was observed by Pak [6] that one can also con-
sider submetric embeddings, a larger class containing
the isometric embeddings. In a submetric embedding
geodesic distances on the surface are non-increasing.
By a result of Burago and Zalgaller [3], for every sub-
metric embedding there is an isometric embedding ar-
bitrary close to it. Thus the bound achieved by sub-
metric embeddings coincides with that by isometric
embeddings.
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In this paper, we present a shrinking, i.e., a con-
tinuous, submetric deformation of the unit cube for
which the resulting volume is at least 1.2567. This
also improves the lower bound on the volume of a
surface isometric to that of a unit cube. The shrink-
ing problem and the idea of looking at shrinkings in
order to get isometric embeddings is due to Pak [5].

2 A Shrinking of the Cube with Large Volume

We present volume-increasing submetric embeddings
of the cube. The embeddings are parametrized by
ε ∈ [0, 0.5]. Increasing ε from zero yields a continuous
deformation. In this section we show a construction
with volume about 1.2444, which we improve in the
next section further.

Our approach is a refinement of Igor Pak’s work
[5, 6]. The original cube is given as the convex hull
of the set {0, 1}3. We denote vertices on the surface
of the cube by pi. The same vertex in the deformed
cube is denoted as vi.

As a first step we cut off ε-cubes in every corner of
the cube (see Figure 1) Now we are going to deform

ε

Figure 1: Cutting off ε cubes.

the remaining part of the cube. We place one vertex in
the middle of every ε segment as shown in Figure 2.a.
The segments defined between p1, p5/4, p3/2, p7/4, p2

have the length ε/2. Let the framework induced by
this chain be C. We move the vertices of C such
that v1, . . . , v2 lie on a quarter-circle (depicted in Fig-
ure 2.b). We apply the deformation for all correspond-
ing pairs of ε segments. This leads to a body which
we divide into a corpus and 12 bars. Figure 3 shows
the parts. A bar is a prism with a 6-gon as base area.
The 6-gon is inscribed in quarter circle. Its shorter
edges have the length ε/2. The radius of the quarter
circle is denoted by δ. Expressed in terms of ε we
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Figure 2: Bending the chains induced by a pair of ε
segments.

Figure 3: Corpus and bar and star.

obtain

δ =
1
2
ε

√
1

2− 2 cos(π/8)
.

The volume of one bar is given by

Vbar = 2(1− 2ε)δ2 sin(π/8).

The corpus is the remaining part after cutting out the
bars. Its volume is given by

Vcorpus = (1− 2ε)3 + 6δ(1− 2ε)2.

It remains to place the cut-outs at the corners of
the body. We have to deform the ε-cubes, such that
they fit into the open 12-gons (formed by three chains
C) of the body. Consider the open part depicted in
Figure 2.b. One vertex is part of the corpus and the
three bars, which we denote by v0. In the follow-
ing we refer to an orthogonal coordinate system. Its
origin lies at v0 and its x,y, and z directions are de-
fined by the rays passing through v1, v2, and v3. The
object we glue into this part is called star. It is de-
fined as the convex hull of the vertices on the chains
between v1, v2, v3 together with v0 and a vertex v∗.
The coordinate of v∗ is chosen in such a way, that
the embedding is submetric. We place v∗ on a line
given by x = y = z. The condition for a submetric
embedding is fulfilled if no distance is enlarged. The
crucial distances are obtained in the original cube be-
tween p1, p5/4 and p3/2 and the original corner vertex
of the cube pc. All other distances which occur are
symmetric variants of these distances. Therefore we
have to choose v∗ = (a, a, a) such that the following

conditions hold.

‖p1 − pc‖ =
√

2ε ≥ ‖v1 − vc‖
‖p5/4 − pc‖ =

√
5

2 ε ≥ ‖v5/4 − vc‖
||p3/2 − pc‖ = ε ≥ ‖v3/2 − vc‖

To compute the distances we need the coordinates of
v1, v5/4 and v3/2 in the specified coordinate system
which are

v1 = (0, δ, 0),
v5/4 = (δ sin(π/8), δ cos(π/8), 0),

v3/2 =
(
δ/
√

2, δ/
√

2, 0
)

.

We are left with three equation systems which lead
to different upper bounds on a. It turns out that
the smallest feasible solution for a is obtained by the
distance between v1 and v∗, namely 0.976468 ε. If
we set v∗ to (0.9764 ε, 0.9764 ε, 0.9764 ε) all distances
decrease.

Finally, we have to evaluate the volume of the stars.
Each star is divided into tetrahedra. There are two
types of tetrahedra, one is given by the convex hull
of v0, v1, v5/4, v∗ and the other by the convex hull of
v0, v5/4, v3/2, v∗. Both tetrahedra appear 6 times in
every star. That leads to the following expression for
the volume of a star;

Vstar = 1.227259706ε3.

Now we can evaluate the volume of the complete body
which is

V = Vcorpus + 12Vbar + 8Vstar.

See Figure 4 for the graph of V (ε) for the feasible val-
ues of ε. The volume V (ε) is maximized at about ε0 =
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Figure 4: The volume of the deformed cube in terms
of ε.

0.351311, which induces a volume V (ε0) = 1.2444.
Thus, this improves the bound of Bleecker [2]. The
deformed cube for this value of ε is shown in Fig-
ure 5. Each star has 3 concave edges depicted as
dashed lines. In the next section we refine our con-
struction.
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Figure 5: Deformed cube.

3 A Refined Construction

We refine the construction to increase the volume of
the cube. A crucial part of the construction was to
take two adjacent edges of length ε and turn them into
a chain of 4 edges of length ε/2. The deformation puts
all vertices of the chain on a quarter circle with ra-
dius δ. In the previous section the chain C contained
5 vertices. If we increase the number of vertices on C
the deformed cube becomes more “spherish”, promis-
ing a larger volume. In the limit C is a spherical arc.
In the following, we consider this situation.

The value of δ is the radius of a circle with perimeter
8π, therefore

δ =
4ε

π
.

The volume of the corpus is the same as calculated in
Section 2. Every bar is a prism with a quarter circle
of radius δ as base area. This leads to

Vbar =
1
4
(1− 2ε)πδ2.

The stars consist of three equally sized quarter cones.
The base area coincides with the base area of the bars.
The height of the quarter cones is given by a. The
value of a has to be chosen in such a way that the
embedding is submetric. We consider the point px

on the C (See Figure 6). Let its distance from p1 be
x. For the deformed cube we consider the same co-

px

x

pc

Figure 6: The point px.

ordinate system like in Section 2. The coordinates of

the point vx are (δ cos(x/δ), δ sin(x/δ), 0). The dis-
tance between px and pc (depicted in Figure 6) equals√

(ε− x)2 + ε2. This leads to the following expres-
sion for the submetric condition:

(ε−x)2 +ε2 ≥ (a−cos(x/δ))2 +(a−δ sin(x/δ))2 +a2.

The inequality holds with equality if,

a(x, ε) = 1
3π

(
4 cos

(
xπ
4ε

)
ε + 4 sin

(
xπ
4ε

)
ε +√

32ε2(cos
(

xπ
4ε

)
sin

(
xπ
4ε

)
− 1) + 3π2(x2 + 2ε2 − 2xε)

)
The variable a depends on x and ε. We choose x

as a multiple of ε. Minimizing the expression over all
x ∈ [0, 1]ε yields a value for a of about a = 0.9772 ε
which is obtained at about x = 0.1144 ε. Therefore
we can describe the volume of the star by

vstar =
1
4

0.9772 ε δ2π.

Finally we maximize the volume of the whole body (1
corpus, 12 bars, 8 stars) over ε ∈ [0, 0.5]. It turns out
that the maximum is at least 1.2567 which is obtained
at about ε = 0.37712.

4 Future Work

Our construction leads to a non-convex body. Due to
Alexandrov [1] we know that there exist no convex iso-
metric embedding for a convex polytope with larger
volume. It would be interesting to convexify our con-
struction to find a submetric embedding for the cube,
which is convex and has largest possible volume. The
example given in [6] gives a convex polyhedral con-
struction with a volume only a little large than 1.
Related to this question is a conjecture, posed in [6]:

Conjecture 1 (Pak) Let S0 be a convex polyhedral
surface in R3 and let S1 be a convex polyhedral surface
submetric to S0 of greater volume. Then there exists
a volume increasing shrinking from S0 to S1.

Since volume-increasing shrinkings exist for poly-
hedral surfaces in any dimension [6], one can ask for
shrinkings for hypercubes. What ratios of the volume
can be obtained in dimensions larger than 3? What
is the relation between the ratio and the dimension?
Notice that if we mimic the construction given in Sec-
tion 3 in R2, we end up with a circle, which matches
the upper bound.

We have concentrated in our paper on shrinkings
of the cube. Our technique is applicable to other sur-
faces as well. However the computations for other
interesting bodies (like platonic solids) still has to be
done.
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