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Abstract. We investigate the maximum number of simple cycles and
the maximum number of Hamiltonian cycles in a planar graph G with
n vertices. Using the transfer matrix method we construct a family of
graphs which have at least 2.4262n simple cycles and at least 2.0845n

Hamilton cycles.

Based on counting arguments for perfect matchings we prove that 2.3404n

is an upper bound for the number of Hamiltonian cycles. Moreover, we
obtain upper bounds for the number of simple cycles of a given length
with a face coloring technique. Combining both, we show that there is
no planar graph with more than 2.8927n simple cycles. This reduces the
previous gap between the upper and lower bound for the exponential
growth from 1.03 to 0.46.

1 Introduction

In this paper we consider the following question:

How many simple cycles and how many Hamiltonian cycles can there be

in a planar graph with n vertices?

Since the determination of the exact numbers seems to be out of reach, our goal
is to learn more about the asymptotic behavior of these numbers. Denoting by
Cs(G) and Ch(G) the numbers of simple cycles and of Hamiltonian cycles in a
graph G we define

Cs(n) = max {Cs(G) | G is a planar graph on n vertices} , and

Ch(n) = max {Ch(G) | G is a planar graph on n vertices} .

It is easy to observe that both Cs(n) and Ch(n) grow exponentially and thus we
are interested in describing this exponential growth rate by constants c, d ∈ IR
such that cn ≤ Cs(n) ≤ dn, and analogously for Ch(n).
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The lower bound Cs(n) = Ω(2.259n) was obtained in [1] and is based on
counting the number of simple paths connecting two adjacent vertices in a spe-
cial planar graph on 29 vertices and joining n/28 copies of it in a cyclic way.
An O(3.363n) upper bound was proved in the same paper by a probabilistic
argument. Here we extend the original problem setting to Hamiltonian cycles.

The problem has gained new attention by some recent results of Sharir and
Welzl [2], [3]. They investigate the numbers of several geometric objects on a
point set in the plane, among them triangulations and crossing-free spanning cy-
cles. In particular they note that an upper bound on the number of crossing-free
spanning cycles can be obtained by combining an upper bound on the number
of triangulations with an upper bound on the number of Hamiltonian cycles in
planar graphs. Here, we will present the proof to the

√
6

n
upper bound for the

number of Hamiltonian cycles, which is quoted in [2] as a personal communica-
tion, along with an improvement to 4

√
30n.

In [2] Sharir and Welzl prove a bound of O(86.81n) for the number of crossing-
free spanning cycles on n points with an alternative approach. This bound is
better than the combined bound and it remains better even if the improved
bound for Hamiltonian cycles presented in our paper is used. In fact, the lower
bound on the number of Hamiltonian cycles presented in our paper shows that
a better combined bound cannot be obtained without improving the bound on
the number of triangulations.

The paper is organized as follows: In Section 2 we present new lower bounds
for Cs(n) and for Ch(n). We prove Cs(n) = Ω(2.4262n) and Ch(n) = Ω(2.0845n).
Both bounds are based on the so-called transfer matrix method applied on a
twisted cylinder.

In Section 3 we prove first the O( 4
√

30n) upper bound on Ch(n). Next we
present a new technique for upper bounds on the number of simple cycles with
a given length k in planar graphs on n vertices. Combining both we will obtain
a new O(2.8928n) upper bound for Cs(n).

2 Lower bounds

We will present a new lower bound for Cs(n) by counting cycles on the twisted

cylinder. We use the technique of the transfer matrix method (see [4–6]).
The twisted cylinder describes a graph which is parametrized by a width

w and a length l. We will describe the graph by the following construction:
Consider an bl/wc × w integer lattice with the upper leftmost point (0, 0) and
the lower rightmost point (r, w). Furthermore we attach (l mod w) squares at the
right end, starting from the top. As a next step we triangulate each square of the
lattice by adding diagonals ((x, y), (x+1, y+1)) for all appropriate values x and y.
Finally we identify all edges ((x, w), (x+1, w)) with the edges ((x+1, 0), (x+2, 0))
for all x smaller than bl/wc. Observe that this graph is planar since it can be
embedded as the graph of a 3-polytope. Figure 1 shows a twisted cylinder of
length 41 and width 5, and Figure 2 shows a planar embedding of a twisted
cylinder of length 12 and width 6. To count the cycles, we construct the cylinder



Fig. 1. The graph of a twisted cylinder.

by increasing its length consecutively. We name the cylinder of width w after
k rounds Zw

k and call the last inserted w + 1 points its border. During the
construction we have to deal with unfinished cycles. These cycles are represented
as non-intersecting paths which start and end at the border of Zw

k . To complete
a cycle we need the information which of the points at the border belong to the
same path. We will store this information in a string of length w + 1 which we
call the signature. The last point introduced corresponds to the first character of
the signature, its predecessor to the second character and so on. Every path has
a start and an end point on the border. The point that was introduced later is
considered as the start point, the other as the end point of a path. We associate a
start point at the border with an A. The position of the end point of a path will be
marked in the signature as B. Interior points of paths at the border are denoted
by X . A point at the border that is not used from any path will be represented
as O in the signature. Thus we get as signature a string from {A, B, X, O}w+1.
Figure 2 shows an example which has the signature AXOAOBB. Notice that

A

X O

A

OB

B

Fig. 2. Partially constructed cycle with signature AXOAOBB.

the signatures can be represented as 2-Motzkin paths [7, Exercise 6.38.], which
are one of the numerous incarnations of Catalan structures.



We come back to the counting procedure. During the construction we trace
the number of completed and uncompleted cycles. We count the different ways
of generating an uncompleted cycle by a variable indexed by its signature. The
completed cycles are stored in a distinct variable. All variables are stored in a
vector which we call the state vector Sk.

Going from cylinder Zw
k to Zw

k+1 will change the state vector. We introduce
three new edges and therefore have at most 7 ways to continue uncompleted
cycles (choosing all 3 edges will not give a valid successor state). Not all of these
choices will produce a valid signature for the successor state. For example the
signature AXOAOBB (Figure 2) has four successors, depicted in Figure 3.

ABXOAOB XAXOBOX AXXOBOX OAXOBOX

Fig. 3. The successor states from Figure 2.

It is not hard to see that every entry of the “new” state vector Sk+1 is a
non-negative linear combination of the entries of the “old” state vector Sk. Thus
Sk+1 = T · Sk, where T is a square matrix with non-negative entries, which is
called the transfer matrix. By construction this matrix T does not depend on k,
and thus for every k ≥ 0 we have Sk = T k ·S0. The entry in Sk for the completed
cycles in Zw

k is then a lower bound for Cs(k + w).

This entry can be represented as et · Sk for the appropriate unit basis vector
e. Thus we are interested in the asymptotic behavior of a sequence with elements
pk = at ·T k ·b, where a and b are vectors and T is a square matrix. By considering
the Jordan canonical form T = X−1 ·J ·X it is easy to see that pk = O(q(k)ck),
where c is the largest absolute value of any eigenvalue of T and q is a polynomial
of degree smaller than the multiplicity of any eigenvalue of maximal absolute
value.

If in our case we remove all unreachable configurations from consideration
then the resulting transfer matrix T will be primitive in the sense that for some
` > 0 all entries of T ` are strictly positive. In this case the Perron-Frobenius
Theorem [8] guarantees that the eigenvalue of largest absolute value is real and
unique. Thus Sk = O(ck), where c is the largest real eigenvalue of the transfer
matrix T .

The generation of T and the computation of its eigenvalues was done with the
help of computer programs. We omit the details of the computation of T . The



correctness of the calculations was checked by two independent implementations.
We observed that larger widths will result in larger growth. The largest width our
implementations could handle is 13. The largest absolute eigenvalue for T was
computed as 2.4262. The computation was done on a AMD Athlon 64 with 1.8
GHz and 1 GB of RAM. It required 5 days of CPU-time and 550 MB of memory.
The implementation can be found under [9]. The results of the computation are
listed in Table 1.

Theorem 1. The maximal number of simple cycles in a planar graph G with n
vertices is bounded from below by Ω(2.4262n).

We can also construct a lower bound for Hamiltonian cycles with the method
from above. To this end we restrict the state transitions in such a way that if a
vertex vanishes from the border, it is guaranteed to be on some path. We forbid
all sequences which contain a O as character and calculate the modified transfer
matrix.

The largest eigenvalue for the modified transfer matrix is 2.0845. It is ob-
tained for a twisted cylinder of width 13. See Table 1 for the results of the
computation.

w λT H. cyc. λT simple cyc.

2 1.8124 1.9659
3 1.9557 2.2567
4 2.0022 2.3326
5 2.0335 2.3654
6 2.0507 2.3858
7 2.0614 2.3991

w λT H. cyc. λT simple cyc.

8 2.0688 2.4078
9 2.0740 2.4139
10 2.0777 2.4183
11 2.0805 2.4217
12 2.0827 2.4242
13 2.0845 2.4262

Table 1. Eigenvalues λT of the transfer matrix T , generated for Hamiltonian cycles (H.
cyc.) and simple cycles (simple cyc.) depending on the width of the twisted cylinder.

Theorem 2. The maximal number of Hamiltonian cycles in a planar graph G
with n vertices is bounded from below by Ω(2.0845n).

3 Upper bounds

3.1 Hamiltonian Cycles

In this section G denotes a planar graph with n vertices, e edges, and f faces.
Since additional edges cannot decrease the number of cycles, we focus on trian-
gulated planar graphs. In this case we have 3f = 2e, which leads to e = 3n − 6
and f = 2n − 4.

Let us assume first that n is even and let M(G) denote the number of perfect
matchings in G. By a theorem of Kasteleyn, c.f. [10], there is an orientation of



the edges of G such that the corresponding skew symmetric adjacency matrix A
characterizes M(G) in the following way:

(M(G))2 = | det(A)|.

Note that all but 6n − 12 entries of A are zero and the nonzero entries are 1
or −1. In this situation we can apply the Hadamard bound for determinants and
we obtain | det(A)| ≤

√
6

n
.

In this way we obtain an 4
√

6n upper bound on the number of perfect match-
ings in G, which improves the O(

√
3

n
) bound from [11]. Moreover, our bound

can be improved for graphs with few edges.

Theorem 3. The number of perfect matchings in a planar graph G with n ver-

tices is bounded from above by
4
√

6n.

The number of perfect matchings in a planar graph G with n vertices and at

most kn edges is bounded from above by
4
√

2kn.

Our first bound on the number of Hamiltonian cycles follows from Theorem 3
by an easy observation.

Theorem 4. Ch(n) = O
(

4
√

30n
)

= O (2.3404n).

Proof. Any Hamiltonian cycle in a graph G with an even number of vertices
splits into two perfect matchings, which implies Ch(G) ≤ (M(G))2 ≤

√
6

n
. The

following modification of the arguments above results in a slight improvement
of that bound:
Splitting a Hamiltonian cycle into two perfect matchings, we fix the matching
with the lexicographically smallest edge as the first matching m1 and the other
one as the second matching m2. It follows that if m1 is fixed, m2 is a matching
in a graph with 2.5 n − 6 edges. Repeating the above observations for both
matchings, we get

M1(G) ≤ 4
√

6n, M2(G) ≤ 4
√

5n and together Ch(G) ≤ 4
√

30n.

Finally we study the case that n is odd. We choose in G a vertex v of degree
at most 5, and for each e incident to v we consider the Graph Ge obtained from
G by contracting e. Any Hamiltonian cycle in G contains two edges e and e′

incident to v and hence induces a Hamiltonian cycle in Ge and Ge′ . On the
other hand, any Hamiltonian cycle in some Ge may be extended in up to two
ways to a Hamiltonian cycle in G. Thus we obtain an upper bound on Ch(G) by
adding the number of Hamiltonian cycles in the at most five planar graphs Ge,
leading to a bound of Ch(G) ≤ 5 4

√
30n−1. ut

3.2 Simple Cycles

We start with a new upper bound for the number of cycles in planar graphs and
successively improve the bound.

Instead of counting cycles we count paths on G, which can be completed to
a simple cycle. We call these paths cycle-paths. Their number is an upper bound



for the number of cycles. The number of cycle-paths is maximized when G is
triangulated. Therefore we assume that G is triangulated.

There exist n paths of length 0. The number of all cycle-paths in G of nonzero
length is at most the number of edges e times the maximum number of cycle-
paths starting from an arbitrary edge. Thus the exponential growth of the num-
ber of cycle-paths is determined by the number of cycle-paths starting from an
edge.

Lemma 1. The maximum number of cycle-paths on G starting from an edge is

bounded by O(n) · 3n.

Proof. We give the starting edge an orientation. We consider only paths in the
direction induced by this orientation. The total number of cycle-paths start-
ing from this edge is at most twice the number of cycle-paths with the chosen
orientation.

We associate cycle-paths with the nodes of a tree. The root of the tree con-
tains the path of length one corresponding to the starting edge. The children of
a tree node contain paths starting with the path stored in the predecessor plus
an additional edge. Every cycle-path is only stored in one tree node.

Every cycle-path in G corresponds to a partial red-blue coloring of the faces
of G. The coloring is defined as follows: The faces right of the oriented path
will be colored blue the faces left of the oriented path red (see Figure 4). We
color all faces incident to an inner vertex or the starting edge of the path. The
coloring is consistent, because we consider only paths which can be extended to
cycles. Therefore the colors correspond to a part of the interior or exterior region
induced by the cycle.

Fig. 4. Example of an induced red-blue coloring by a path (light gray corresponds to
red, dark gray to blue).

We construct the tree top down. When we enter a new tree node, the color of
at least two faces incident to the last vertex vi of the path is given. It might be



that other faces incident to vi have been colored before. In that case we color the
faces incident to vi which lie in between two red faces red. The faces which are
located in between two blue faces will be colored blue. Observe that at most one
non-colored connected region incident to vi remains. Otherwise it is not possible
to extend the path to a cycle and therefore the path stored in this tree node is
not a cycle-path. Figure 5 illustrates this procedure. Let kv be the number of

Fig. 5. Completing the red-blue coloring when entering a new vertex (light gray cor-
responds to red, dark gray to blue).

faces of the non-colored region incident to v. We have kv + 1 different ways to
continue the path and therefore kv +1 children of its tree node. No matter which
child we choose, we will color all faces incident to v.

It remains to analyze the number of nodes in the tree. A bound on the number
of nodes can be expressed by the following recurrence:

P (n, f) ≤ (kv + 1)P (n − 1, f − kv) + 1.

Because we want to maximize the number of nodes in the tree, we can assume
that the kvs for all v within a level l of the tree are equal. This holds for the root
and by an inductive argument for the whole tree. Let κl denote the number kv

for the vertices v on level l.
P := P (n− 2, 2n + 2) will give us the number of nodes in the tree. We know

that P (0, ·) = P (·, 0) = 1. All κls have to be non-negative numbers. The κl along
a path of length L have to fulfill the condition

∑

l≤L κl ≤ 2n + 2. A path is of
length at most n − 2, and therefore we can bound P by

1 +

n−2
∑

L=1

∏

l≤L

(κl + 1). (1)

We are interested in a set κl which maximizes (1). Due to the convexity of (1)
the maximum will be obtained when all κl are equal. Thus (1) is bounded by
1+
∑

i≤n(2n+2
n−2 +1)i. Therefore the exponential growth of the maximum number

of cycle-paths is O(n) · 3n. ut



This already yields an improvement of the best known upper bound for cycles
in planar graphs.
Observation 1. The number of simple cycles on a planar graph with n vertices

is bounded from above by O(n) · 3n.

We improve the obtained upper bound further. For this we go back to the
proof of Lemma 1. Instead of considering cycle-paths of length n, we focus on
shorter cycle-paths of length αn, where α ∈ [0, 1].

Lemma 2. Let Cα
s (n) be the number of simple cycles of length αn in a planar

graph with n vertices and f faces. Then we have

Cα
s (n) ≤

(

f

αn
+ 1

)αn

. (2)

Proof. We reconsider the argumentation which led to Observation 1 and notice
that P (k, f) will be maximized by equally distributed values of κl. Therefore we
set κl = f/(αn), which proves the Lemma. ut

As final step we combine the result from Lemma 2 with the results of Sec-
tion 3.1.

Theorem 5. The number of simple cycles in a planar graph G with n vertices

is bounded from above by O(2.89278n).

Proof. An upper bound νn for the number of Hamiltonian cycles will always
imply an upper bound for Cs(G) since every simple cycle is an Hamiltonian
cycle on a subgraph of G. This leads to

Cs(n) ≤
∑

t≤n

(

n

t

)

νt = (1 + ν)n.

Plugging in our bound of 4
√

30 for ν yields Cs(n) ≤ 3.3404n, which is larger
than 3n. Responsible for this are cycles with small length. When choosing a
small subset of vertices, it is unlikely that they are connected in G. Therefore
the Hamiltonian cycles counted for this subset will not correspond to cycles in
G. Thus we overestimate the number of small cycles.

We modify the upper bound induced by the Hamiltonian cycles such that
they can express Cα

s (n). Every αn-cycle is a Hamiltonian cycle on a subgraph
of size αn. Thus

Cα
s (n) ≤

(

n

αn

)

ναn ≤ 5

(

n

αn

)

(
4
√

30)αn

Since
∑

i

(

n
i

)

αi(1−α)n−i = 1, for 0 ≤ α ≤ 1 every summand of this sum is at

most 1. Considering the summand for i = αn yields
(

n
αn

)

≤ (1/(αα(1−α)1−α))n

and therefore

Cα
s (n) = O

((

4
√

30α

αα(1 − α)(1−α)

)n)

. (3)



So far we know two upper bounds for Cα
s (n). The two bounds are shown

in Figure 6. The graph of (3) is represented as dashed gray curve, whereas the
graph of (2) is depicted solid black. Clearly the maximum of the lower envelope
of the two functions induces an upper bound for the exponential growth of cycles
in G.

One can observe that the two functions intersect in the interval [0, 1] in only
one point, which is approximately α̃ = 0.91925. The maximal exponential growth
is realized for this α. Evaluating Cα̃

s (n) yields a bound of 2.89278n on the number
of cycles. ut

At its core the bound of
(

f

αn
+ 1
)αn

in Lemma 2 comes from consuming f

faces in αn steps. A similar bound can be obtained by consuming edges instead.
In this case we do not need a coloring scheme. In each step we get as many ways
to continue the cycle-path as the number of edges consumed in the step. This
yields a bound of

(

e
αn

)αn
. For e = 3n − 6, f = 2n − 4, and α < 1 the bound

obtained by considering faces is stronger.
For this counting argument the graph does not need to be planar. With α = 1

it yields a bound of
(

e
n

)n
on the number of cycles in the graph. This bound has

been independently observed by Sharir and Welzl [2].

1

1.5

2

2.5

3
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n

√

(Cα

s
(G))

Fig. 6. Plot of the two bounds for C
α

s (G).

4 Discussion

We improved the lower and upper bounds for the number of simple cycles in
planar graphs. This reduces the gap between the upper and lower bound for the
exponential growth from 1.03 to 0.46. We believe that the truth is closer to the
lower bound. This is indicated by the technique sketched in the following which
might further improve the upper bound.



For Observation 1 the worst case scenario is the situation where there are
three possible ways to continue the cycle-path. However it is clear that this sit-
uation will not constantly occur during the construction of the cycle-paths. To
use this fact we compute recurrences for the number of cycle-paths by simul-
taneously analyzing two or more consecutive levels of the tree which stores the
cycle-paths. A careful analysis reveals other effects in this setting which also
reduce the number of cycle-paths. In particular, vertices and faces will be sur-
rounded and absorbed by the colored regions. The main part of the analysis is
an intricate case distinction for which we have not checked all cases yet.

Furthermore we used the transfer matrix approach on the twisted cylinder
to obtain lower bounds for other structures (for instance perfect matchings)
on planar graphs. Moreover we adapted the counting procedure for sub-classes
of planar graphs (for instance grid graphs). The results of these computations
have not yet been double-checked and we therefore do not include them in this
extended abstract.
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