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The Existence of a Pseudo-triangulation in a given Geometric Graph
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Abstract

We show that the problem of deciding if a pseudo-
triangulation is contained inside a geometric graph
is NP-complete. For this we investigate the Trian-
gulation Existence Problem, which is known to be
NP-complete. We present a new proof for its NP-
completeness and modify it in such a way that it can
be applied for pseudo-triangulations.

1 Introduction

A pseudo-triangle is a polygon with exactly three
convex corners. A planar partition of a point set
into pseudo-triangles is called pseudo-triangulation. A
pseudo-triangulation is called pointed, if all its ver-
tices are incident to an angle greater than π. Many
different applications for pseudo-triangulations are
known.

The main focus of this paper lies on the problem,
if there exists a pseudo-triangulation as a subset of a
given geometric graph. The geometric graph does not
have to be planar. We call this problem the Pseudo-

Triangulation Existence Problem (PTRI).

The “triangulation version” of the PTRI is known
as the Triangulation Existence Problem (TRI).
Lloyd showed in 1977 [6] that the TRI is NP-hard by
a reduction from CNF-SAT. Although the idea be-
hind the construction is not difficult, it seems hard to
modify the complex gadgets for new NP-completeness
results.

In section 2 we will present a new proof for TRI.
Instead of reducing from CNF-SAT we will use a re-
duction from Planar 3-SAT(which was not known
in 1977). This allows us a simpler construction for the
NP-hardness proof. We profit from the fact that Pla-

nar 3-SATis more structured than CNF-SAT. As a
side effect it is now easier to modify the construction
in such a way that we can apply it for PTRI.

Pseudo-triangulations do not always show the same
behavior as triangulations (to name just one example,
their flipping distance is smaller [1]). It is a natural
question, in how far known results from triangulations
can be generalized for pseudo-triangulations. This
might help to understand the properties of pseudo-
triangulations better.
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In [8] a NP-completeness result for triangulation
(minimum vertex degree) was generalized for pseudo-
triangulations with similar ideas used in this paper.

The problem of finding a pseudo-triangulation in-
side a triangulation was discussed in [7]. The com-
plexity status of finding a pseudo-triangulation with
minimal number of edges inside a triangulation was
introduced as an open problem. Its status is still open.

2 A new proof for the NP-hardness of TRI

First of all we state the problem, for which we want
to prove its NP-completeness

Triangulation Existence Problem (TRI)
Input: A geometric graph G = (V, E).
Question: Is there a graph G′ = (V, E′

⊂ E) and G′

is a triangulation ?

Theorem 1 TRI is strongly NP-complete.

The proof of the theorem will be given by the fol-
lowing discussion. The Problem lies in NP, because we
can verify in polynomial time if a guessed subgraph of
G is a triangulation. To show NP-hardness, we reduce
Planar 3-Sat to TRI. A formula φ is planar if it can
be represented as a planar graph G(φ) = (Vφ, Eφ).
The set Vφ is given by the variables and the clauses
of φ. The pairs of all (negated) variables and their
associated clauses define Eφ. The Problem if a pla-
nar formula in 3-CNF is satisfiable is known to be
NP-complete [5].

The reduction from Planar 3-Sat is done by sub-
stituting edges and vertices of Gφ by more complex
subgraphs (called gadgets). The resulting graph con-
tains a triangulation, if and only if the formula is sat-
isfiable,

We are using 4 different types of gadgets. The most
essential gadget is the Wire gadget. It is responsible
for carrying the value of a variable to the clauses and
therefore it will be a replacement for the edges. The
variables themselves are represented as a piece of the
Wire gadget. To evaluate the clauses we introduce a
Nand gadget and a Not gadget, which will be also
used to negate variables. Finally we present a gadget
which will split an edge, while maintaining the sta-
tus of the wire for the outgoing parts. This gadget
is called the Split gadget. Starting with the Wire

gadget we will explain the gadget one by one.
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Wire

The Wire gadget represents the state of a literal
which can be either true or false. Therefore it con-
sist of a graph which contains exactly two triangu-
lations (Figure 1). The two contained triangulations
are called black (representing the value TRUE) and
dashed (representing the value FALSE). We will also
call their edges black and dashed. In the figures the
dashed triangulation is drawn with dashed lines. The

(a) (b) (c)

Figure 1: (a) The Wire (a); (b) & (c) its triangula-
tions.

reader should check that it is not possible to switch
inside the gadget from the dashed to the black tri-
angulation and vice versa. This is due to the fact
that there is no triangle which contains a dashed edge
and a black edge. Therefore the choice of one edge
determinates the status of all the other edges inside
the gadget. It is possible to bend the gadget without
destroying its structure. Figure 2 shows a 90 degree
bend. A variable will be realized as a part of the Wire

Figure 2: A Wire with a 90 degree bend.

gadget (the part where we chose the fist diagonal).

Split

The Split gadget has three input parts (Figure 3).
Like the Wire it contains a dashed and a black tri-
angulation. Since there is no triangle with a dashed
and a black edge, it is not possible to switch between
the black and dashed triangulation inside the gadget.
For this reason the status of the wire is the same on
the three output parts. The gadget will be used for
producing multiple copies of a variable (or its negated
version). Its open ends connect perfectly to the Wire.

Not

To realize a negation, we have to change the orienta-
tion of the diagonals inside the wire. Figure 4 shows
how this can be done. Again we have two triangula-
tions induced by the gadget and there exists no trian-
gle with dashed and black edges. Hence, the orienta-
tion of the diagonals is switched by the gadget.

Nand

(a) (b)

Figure 3: (a) The Split gadget; (b) a close up of the
gadget.

(a) (b)

Figure 4: (a) The Not gadget; (b) one of its triangu-
lation.

The last gadget needed for the reduction is the Nand

gadget. Its purpose is to evaluate the clauses (we can
simulate an OR gate).

The Nand has three inputs and is slightly more
complex than the other gadgets. It allows more than
two triangulations. Therefore it contains edges which
can not be handled as black or dashed (we call these
edges gray). Lets assume that the dashed triangula-
tion represents the value true. The gadget allows a
triangulation for all possible input combinations, ex-
cept when all are dashed triangulations. Lets have
a closer look at the gadget shown in Figure 5. We

a1

a2

b1

b2

Figure 5: The Nand gadget.

see that three input wires meet in a 9-gon, which is
filled with diagonals. The structure is symmetric un-
der rotation by 120 degrees, but it is not symmetric
by reflection. It can be observed that there are only
three gray diagonals crossing the black edge a1a2 but
there are 6 gray edges crossing the dashed diagonal
b1b2. Hence having three dashed triangulated input
wires makes it impossible to find a triangulation of
the 9-gon. The removal of all gray diagonals in this
setting leaves an empty hexagon (Figure 6.a), which
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can’t be triangulated. On the other hand, all other
combination of the input can be triangulated (as seen
in Figure 6.b-d). All other combinations are symmet-
ric versions of Figure 6. Therefore the functionality of
a NAND gate is provided by the gadget and clauses
can be evaluated in combination with the NOT gad-
get.

(a) (b)

(c) (d)

Figure 6: The Nand gadget with different input val-
ues.

After the substitution of the edges and vertices of
Gφ by the gadgets, we might have pockets and holes
inside the resulting graph. We will triangulate them
arbitrarily. Any edge of the graph which is not crossed
by any other edge has to be contained in the trian-
gulation. Thus no boundary edge of a gadget can
be deleted and the triangulation of the holes doesn’t
affect the functionality of the gadgets.

Clearly a formula φ is satisfiable, if and only if there
exists a triangulation inside the constructed graph.
To finishes the proof of Theorem 1 we observe that
the reduction can be made in polynomial time.

3 Pseudo-triangulations inside a graph

The new proof of the NP-completeness of TRI allows
us to attack similar problems with the same basic
idea. One natural variation of TRI is the following:
Pseudo-Triangulation Existence Problem
(PTRI)
Input: A geometric graph G = (V, E).
Question: Is there a graph G′ = (V, E′

⊂ E) and G′

is a pointed pseudo-triangulation ?

Theorem 2 PTRI is strongly NP-complete.

As done in the proof for Theorem 1 the proof will be
given in the following discussion. Like in Section 2, we
reducing again from Planar 3-SAT and we will in-
troduce again the same set of gadgets (namely Wire,

Split, Not and Nand).

Wire

The Wire gadget can be easily obtained from the one
used for TRI. Now two pseudo-triangulations are part
of the gadget. We call them again dashed and black.
It is not possible to find a pseudo-triangle inside the
gadget, which consists of a dashed and a black diago-
nal. Hence the choice of a diagonal determinates the
whole pseudo-triangulation. See Figure 7 for the cor-
responding pictures. It should be clear that bending

Figure 7: The Wire and its pseudo-triangulations.

the gadget is no problem. We omit the picture for the
90 degree bend.

Not

The Not gadget is basicly the same as the one for the
triangulation case. We just ensure that every vertex
contains an angle greater than π. Figure 8 shows the
gadget.

(a) (b)

Figure 8: (a) The Not gadget; (b) one of its triangu-
lation.

Split

The Split is shown in Figure 9.a. It has three in-
coming wire parts and a central area, which has to be
covered by a pseudo-triangle. This is possible, if all

a

bc

(a) (b)

Figure 9: (a) The Split gadget; (b) its black pseudo-
triangulation.

three wires are dashed or black pseudo-triangulations
(Figure 9.b shows the black pseudo-triangulation of
the gadget). It is not possible to find a pseudo-
triangulation for any other combination. In these
case, we could not construct an angle greater π at
at least one of the points a, b, c. Therefore the face
covering the center of the gadget would be at least a
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pseudo-quadrilateral.

Nand

The Nand gadget (Figure 10) is based on the gadget
used for TRI. Again we have a 9-gon and a number
of gray diagonals. These have to be used to pseudo-
triangulate the 9-gon. The pseudo-triangulation of

Figure 10: The Nand gadget.

the incoming wires forbids a certain set of diago-
nals, depending if the pseudo-triangulation is black or
dashed. If all wires use dashed pseudo-triangulations
it is not possible to pseudo-triangulate the 9-gon (Fig-
ure 11.a). All other cases (shown in Figure 11.b-d, up
to symmetric equivalences) can produce valid pseudo-
triangulations.

(a) (b)

(c) (d)

Figure 11: The Nand gadget with different input val-
ues.

The remaining holes of the constructed graph will
be arbitrarily pseudo-triangulated (which is always
possible). It remains to show that gadget boundary
edges must be part of the pseudo-triangulation if one
exists. If all vertices are pointed this follows from
the fact that the removal of an edge, which is not
crossed by any other edge, will construct a pseudo-
quadrilateral. We leave the discussion for the non-

pointed vertices of the gadgets to the full version of
the paper.

It follows that this set of gadgets presents a valid
reduction from Planar 3-SAT to PTRI.

4 Remarks and Open Problems

Since the gadgets for the reduction to TRI are small
and easy to understand, they can be used to prove
several similar NP-completeness results. One might
think of the Problem if a quadrilateralization is con-
tained inside given geometric graph.

Another interesting question related to PTRI is the
following.

Planar Rigid Graph Containment (PRGC)
Input: Geometric graph G = (V, E).
Question: Is there a planar (minimal) rigid graph
G′ = (V, E′

⊂ E)?

Although there are fast algorithms for testing pla-
narity [4] and rigidity (e.g. [2]) it is not clear if we
can find efficiently a rigid planar subset of a given
graph. This problem is related to PTRI, since ev-
ery pointed pseudo-triangulation forms a planar min-
imal rigid graph. Furthermore every planar minimal
rigid graph can be embedded as a pointed pseudo-
triangulation [3]. The gadgets we used will not help
us, since a different embedding will destroy their func-
tionality.
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