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ABSTRACT
We present a continuous submetric deformation of the sur-
face of the cube which increases the enclosed volume by
about 25.67%.

Categories and Subject Descriptors: I.3.5 [Computa-
tional Geometry and Object Modeling]
General Terms: Theory
Keywords: Submetric embeddings, surface deformation

1. INTRODUCTION
Every polyhedral surface in R3 has a volume-increasing

isometric deformation [7]. However little is known about
isometric embeddings maximizing the volume. For the poly-
hedra typically studied, i.e., platonic solids and doubly cov-
ered two-dimensional shapes, there is a large gap between
the lower and upper bound for the maximum enclosed vol-
ume. We address the problem of how large the volume of a
body with a surface isometric to that of a cube can be.

An embedding h : S → R3 of a surface S in R3 is isomet-
ric (resp. submetric) if the length of any rectifiable curve
in S is constant (resp. non-increasing) under h. An iso-
metric (resp. submetric) deformation is a continuous map
H : S × [0, ε0] → R3 such that hε(·) := H(·, ε) is an isomet-
ric (resp. submetric) embedding for all 0 ≤ ε ≤ ε0. Instead
of isometric embeddings, submetric embeddings can be used
since every submetric embedding of a polyhedral surface has
an isometric embedding arbitrary close to it [4, 7].

The idea of considering volume-increasing isometric em-
beddings is due to Bleecker [2]. He proves that a volume-
increasing continuous isometric deformation exists for every
simplicial convex surface in R3. By Alexandrov’s uniqueness
theorem [1] a body resulting from such a deformation must
be non-convex. By Bellows conjecture (proved in [5]) the
deformation does not preserve the faces of the polytope.

Recently, Pak [8] gave an easy construction for increas-
ing the volume of the unit cube to about 1.1812 based on
the work of Milka [6]. A more involved construction of
Bleecker [2] yields a volume of about 1.2187. A simple upper
bound of about 1.3820 can be obtained by the volume of the
sphere which has the same surface area as the cube.

In this paper, we present a shrinking, i.e., a continuous,
submetric deformation of the unit cube for which the re-
sulting volume is at least 1.2567. We first present a simple
construction which we then refine. This also improves the
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lower bound on the volume of a surface isometric to that of a
unit cube. Detailed calculations for the constructions in this
paper can be found in [3]. The idea of looking at shrinkings
in order to get isometric embeddings is due to Pak [7].

2. FIRST CONSTRUCTION
We present volume-increasing submetric embeddings of

the cube. The embeddings are parametrized by ε ∈ [0, 0.5].
Increasing ε from 0 yields a continuous deformation. We first
present a construction with volume about 1.2444, which we
improve in the next section.

Our approach is a refinement of Igor Pak’s work [7, 8]. The
original cube is given as the convex hull of the set {0, 1}3.
We denote vertices on the surface of the cube by pi. The
same vertex in the deformed cube is denoted as vi.
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Figure 1: Cutting off ε cubes.

First we cut off ε-cubes at every corner of the cube (see
Figure 1). Next we deform the remaining part of the cube.
We place one vertex in the middle of every ε segment (see
Figure 2.a). The segments between p1, p5/4, p3/2, p7/4, p2

have the length ε/2. Let the framework induced by this
chain be C. We move the vertices of C such that v1, . . . , v2

lie on a quarter-circle (see Figure 2.b). We apply the defor-
mation for all corresponding pairs of ε segments. This leads
to a body that we divide into a corpus and 12 bars. The 8
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Figure 2: Bending the chains induced by a pair of ε
segments.
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Figure 3: Corpus and bar and star.

cut off parts are called stars. Figure 3 shows the deformed
parts. After the deformation a bar is a prism with a 6-gon
as base area. The 6-gon is inscribed in quarter circle. Its
shorter edges have the length ε/2. The radius of the quarter
circle is denoted by δ. The volume of one bar is given by

Vbar = 2(1− 2ε)δ2 sin(π/8).

The corpus is the remaining part after cutting off the bars.
Its volume is given by

Vcorpus = (1− 2ε)3 + 6δ(1− 2ε)2.

It remains to place the deformed stars at the corners of
the body. We have to deform the ε-cubes, such that they
fit into the open 12-gons formed by three chains C of the
body. Consider the open part depicted in Figure 2.b. The
deformed star is the convex hull of the vertices on the chains
between v1, v2, v3 together with v0 and a vertex v∗. The
coordinate of v∗ is chosen in such a way, that the embedding
is submetric. We place v∗ on a line given by x = y = z. This
yields coordinates v∗ = (0.9764 ε, 0.9764 ε, 0.9764 ε).

Finally, we have to evaluate the volume of the stars. Each
star is divided into tetrahedra. There are two types of tetra-
hedra, one is given by the convex hull of v0, v1, v5/4, v∗ and
the other by the convex hull of v0, v5/4, v3/2, v∗. Both tetra-
hedra appear 6 times in every star. That leads to a volume
of a star of

Vstar = 1.227259706ε3.

Now we can evaluate the volume of the complete body which
is

V = Vcorpus + 12Vbar + 8Vstar.

See Figure 4 for the graph of V (ε) for feasible values of ε.
The volume V (ε) is maximized at about ε0 = 0.351311,

which yields a volume V (ε0) = 1.2444. This improves the
bound of Bleecker [2]. The deformed cube for this value of ε
is shown in Figure 5. Each star has 3 concave edges depicted
as dashed lines.
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Figure 4: The volume of the deformed cube.

Figure 5: Deformed cube.

3. A REFINED CONSTRUCTION
We refine the construction to increase the volume of the

cube. A crucial part of the construction was to take two
adjacent edges of length ε and turn them into a chain of 4
edges of length ε/2. The deformation puts all vertices of
the chain on a quarter circle with radius δ. In the previous
section the chain C contained 5 vertices. If we increase the
number of vertices on C the deformed cube becomes more
“spherish”, promising a larger volume. In the limit C is a
spherical arc. In the following, we consider this situation.

The value of δ is the radius of a circle with perimeter 8π,
thus δ = 4επ. The volume of the corpus is the same as
calculated in Section 2. Every bar is a prism with a quarter
circle of radius δ as base area. This leads to

Vbar = (1− 2ε)πδ2/4.

The stars consist of three equally sized quarter cones. The
base area coincides with the base area of the bars. The
height of the quarter cones is given by a. The value of a has
to be chosen in such a way that the embedding is submetric.

As feasible height we get a = 0.9772 ε. We get

Vstar = 0.9772 ε δ2π/4.

Maximizing the volume of the whole body (1 corpus, 12
bars, 8 stars) over ε ∈ [0, 0.5] leads to a volume of 1.2567
obtained at about ε = 0.37712.
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