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Abstract. We study the problem how to obtain a small drawing of a 3-
polytope with Euclidean distance between any two points at least 1. The
problem can be reduced to a one-dimensional problem, since it is sufficient
to guarantee distinct integer x-coordinates. We develop an algorithm that
yields an embedding with the desired property such that the polytope is
contained in a 2(n−2)×2×1 box. The constructed embedding can be scaled
to a grid embedding whose x-coordinates are contained in [0, 2(n − 2)].
Furthermore, the point set of the embedding has a small spread, which
differs from the best possible spread only by a multiplicative constant.

1 Introduction

Let G be a 3-connected planar graph with n vertices v1, . . . , vn and edge set E.
Due to Steinitz’ seminal theorem [18] we know that G admits a realization as 3-
polytope, and every edge graph of a 3-polytope is planar and 3-connected. The
question arises how one can obtain a “nice” realization of a 3-polytope when its
graph is given. One particular property, which is often desired from an aesthetically
point of view, is that the vertices of the embedding should be evenly distributed. If
two vertices lie too close together they are hard to distinguish. Such an embedding
may appear as bad “illustration” for the human eye. Of course we can always scale
a 3-polytope to increase all of its pointwise distances, but this does not affect the
relative distances and the subjective perception of the viewer remains unchanged.
Therefore, we restrict ourselves to an embedding, whose vertices have, pairwise, an
Euclidean distance of at least 1. We say that in this case the embedding/drawing
is under the vertex resolution rule. See [1] for a short discussion on resolution
rules. Notice, that the resolution rule depends on a particular distance measure.
Throughout the paper we use the Euclidean distance, but our results can be easily
modified for the L1 distance.

In 2d, drawings of planar graphs can be realized on an O(n)×O(n) grid [14,5].
Since the grid is small, these grid embeddings give a good vertex resolution for
free. The situation for 3-polytopes is different. The best known algorithm uses a
grid of size O(27.55n) [12]. Thus, the induced resolution might be bad for this grid
embedding.

Let us briefly discuss some approaches for realizing G as 3-polytope. Steinitz’
original proof is based on a transformation of G to the graph of the tetrahedron.
? Author-created version. c©Springer-Verlag Berlin Heidelberg 2009. To appear.
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The transformation consists of a sequence of local modifications that preserve
the realizability of G as 3-polytope. However, the proof does not include a direct
method how to construct the 3-polytope given by G. The Koebe-Andreev-Thurston
Theorem on circle packings gives a more constructive proof of Steinitz’ Theorem
(see for example Schramm [15]). This approach relies on non-linear methods which
makes many geometric features of the constructed 3-polytope intractable. A third
approach uses liftings of planar graphs with equilibrium stresses (known as the
Maxwell-Cremona correspondence [20]). This powerful method is used in a series
of embedding algorithms: Eades and Gravan [6], Richter-Gebert [13], Chrobak,
Goodrich, and Tamassia [1], Ribó Mor, Rote, and Schulz [12]. A completely dif-
ferent approach is due to Das and Goodrich [4]. It uses an incremental technique
which only needs O(n) arithmetic operations for embedding G as 3-polytope, but
works only for triangulated planar graphs.

Results: We show how to obtain an embedding of G as 3-polytope inside a 2(n−
2) × 2 × 1 box under the vertex resolution rule. It is even possible to make the
box arbitrarily flat such that its volume gets arbitrarily small. But for aesthetic
reasons we leave the side lengths at least 1. Our algorithm is based on the Maxwell-
Cremona approach and extends the ideas of [12]. In contrast to the construction of
[12] we can handle more complicated interior edge weights (stresses). Our algorithm
creates an embedding with two more interesting properties: (1) it can be scaled to
a grid embedding whose x-coordinates are in [0, 2(n− 2)], and (2) the point set of
the embedding has a good ratio between its largest and shortest pointwise distance.
We show that this number differs only by a constant from the best possible ratio.

Related work: In [1] Chrobak, Goodrich, and Tamassia introduced an algorithm
that embeds a 3-polytope with good vertex resolution. However, their result was
only published as preliminary version, without giving all details. Moreover, their
algorithm is only applicable for polytopes that contain a triangular face. We reuse
some of their ideas, but especially the complicated setting where the polytope does
not have a triangular face requires completely new techniques.

2 Preliminaries: Maxwell and Tutte

Since G is 3-connected and planar, the facial structure of G is uniquely determined
[21]. Let us pick an arbitrary face fb, which we call the boundary face. We assume
further that the vertices are ordered such that v1, v2, . . . , vk are the vertices of fb

in cyclic order. An edge (vertex) is called boundary edge (vertex) if it lies on fb,
otherwise interior edge (vertex). In this paper every embedding is considered as
straight-line embedding. A 2d embedding of G is described by giving every vertex
vi a coordinate pi = (xi, yi)T . We denote the 2d embedding with G(p) and consider
only embeddings that realize fb as convex outer face.

The combination of the Maxwell-Cremona correspondence and barycentric em-
beddings provides an elegant technique for embedding 3-polytopes. Let us first
define the common concept of both methods.

Definition 1 (Stress, Equilibrium) An assignment ω : E → R of scalars to the
edges of G (with ω(i, j) =: ωij = ωji) is called a stress. Let G(p) be a 2d embedding
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of G. A point pi is in equilibrium, iff∑
j:(i,j)∈E

ωij(pi − pj) = 0. (1)

The embedding of G is in equilibrium, iff all of its points are in equilibrium.

If G(p) is in equilibrium according to ω, then ω is called equilibrium stress for
G(p). From special interest are stresses that are positive on every interior edge of
G. These stresses are called positive stresses.

Suppose we fixed an embedding G(p) in the plane. Let hi : V → R be a height
assignment for the vertices of G. The function h defines a 3d embedding of G
by giving every vertex pi the additional z-coordinate zi = h(pi). If in the 3d
embedding every face of G lies on a plane the height assignment h is called lifting.
The so-called Maxwell-Cremona correspondence describes the following.

Theorem 1 (Maxwell [11], Whiteley). Let G be a 3-connected planar graph
with 2d embedding G(p) and a designated face f̂ . There exists a correspondence
between

A.) equilibrium stresses ω on G(p),
B.) liftings of G(p) in R3, where face f̂ lies in the xy-plane.

If the stress is positive, the lifting refers to a convex 3-polytope.

The complete proof of the Maxwell-Cremona correspondence is due to White-
ley [20] (see also [3]). Richter-Gebert’s book [13, Section 13] containes a simple
algorithm that computes the lifting: The location of every face in the lifting is
specified by G(p) and a plane on which the face lies. For convenience we introduce
for every vertex pi = (xi, yi)T a (homogenized) 3d vertex p′i := (xi, yi, 1)T . We
define for every face fj a vector qj ∈ R3, such that 〈qj ,p〉 describes the height of
the point p ∈ fj in the lifting. The vectors q can be computed incrementally by

qb = (0, 0, 0)T ,

ql = ωij(p′i × p′j) + qr,
(2)

where the edge pointing from i to j, separates fl and fr, such that fl lies to the
left and fr lies to the right. Notice that the computed lifting does not depend on
the ordering of the faces that is used to determine the q vectors.

To apply the Maxwell-Cremona correspondence we need a 2d embedding of G
with equilibrium stress. Let ω be an arbitrary stress that is zero on the boundary
edges and positive on the interior edges. We obtain from the stress ω its Laplace
matrix L = {lij}, which is defined by its entries as

lij :=


−ωij if (i, j) ∈ E and i 6= j,∑

j ωij if i = j,

0 otherwise.

An embedding G(p) is described by the vectors x = (x1, . . . , xn)T and y =
(y1, . . . , yn)T . Let B := {1, . . . , k} and I := {k + 1, . . . , n} be the index sets of
the boundary, respectively interior vertices. We subdivide x,y, and L by B and I
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and obtain xB ,xI ,yB ,yI , LBB , LII , LBI and LIB . The equilibrium condition (1)
for the interior vertices can be phrased as LIBxB + LIIxI = 0. The same holds
for the y-coordinates. This implies that we can express the vectors xI and yI as
linear functions in terms of xB and yB , namely by

xI = −L−1
II LIBxB , yI = −L−1

II LIByB . (3)

The matrix LII is singular and hence the vectors xI and yI are properly and
uniquely defined (see [13,7]). The embedding is known as (weighted) barycentric
embedding. For every positive stress the coordinates give a strictly convex straight-
line embedding (see for example [7]). A weighted barycentric embedding has the
following nice interpretation: The interior edges of the graph can be considered as
springs with spring constants ωij . The barycentric embedding models the equilib-
rium state of the system of springs when the boundary vertices are anchored at
their fixed positions.

3 Extending an Equilibrium Stress to the Boundary

The interior vertices computed by (3) are in equilibrium by construction. However,
the stressed edges of the boundary vertices do not sum up to zero but to

∀i ∈ B
∑

j:(i,j)∈E

ωij(pi − pj) =: Fi. (4)

To apply the Maxwell-Cremona correspondence we have to define the (yet unas-
signed) stresses on the boundary edges such that they cancel the vectors Fi. If
the outer face is a triangle this is always possible by solving a linear system with
three unknowns [8]. But in general this is only possible for special locations of the
boundary face. The problem how to position fb is challenging, because changing
the location of the boundary face will also change the vectors Fi. We follow the
approach of Ribó, Rote, and Schulz [12] to express this dependence and obtain a
formalism that helps us to extend the equilibrium stress to the boundary.

Lemma 1 (Substitution Lemma [12]). There are weights ω̃ij = ω̃ji, for i, j ∈
B, independent of location of the boundary face such that

∀i ∈ B Fi =
∑

j∈B:j 6=i

ω̃ij(pi − pj). (5)

The weights ω̃ij are the off-diagonal entries of −LBB + LBIL
−1
II LIB, which is the

Schur Complement of LII in L multiplied with −1.

Proof. Let Fx denote the vector (F x
1 , . . . , F

x
k )T , where F x

i is the x-coordinate of
the vector Fi. We rephrase (4) as Fx = LBBxB +LBIxI and use (3) to substitute
xI to get

Fx = LBBxB − LBIL
−1
II LIBxB =: L̃xB .

The matrix L̃ = LBB − LBIL
−1
II LIB is the Schur complement of LII in L. For

the y-coordinates, we obtain a similar formula with the same matrix L̃. We define
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ω̃ij as the off-diagonal entries −l̃ij of L̃. Since LBI = (LIB)T , the matrix L̃ is
symmetric and therefore ω̃ij = ω̃ji holds.

To show that the expression Fx = L̃xB has the form stated in (5) we have to
check that all row sums in L̃ equal 0. Let 1 denote the vector where all entries are
1, equivalently 0 denotes the vector that contains only zeros as entries. Since each
of the last n − k rows of L sums up to 0, we have LII1 + LIB1 = 0; and hence
−L−1

II LIB1 = 1. Plugging this expression into L̃1 = LBB1− LBIL
−1LIB1 shows

that L̃1 = LBB1 + LBI1, which equals 0. ut

Notice that the ω̃ values are independent of the location of the boundary face
and depend only on the stress ω. From this point of view we can use the complete
graph Kk on the boundary vertices with stress ω̃ as substitution for the embedding
G(p) with stress ω to express the vectors Fi. For this reason we call the stresses
ω̃ substitution stresses. With help of the substitution stresses we can simplify the
problem how to locate the boundary face. A feasible position can be found by
solving the non-linear system consisting of the 2k equations of (5) plus the 2k
equations

∀i ∈ B : ωi,suc(i)(pi − psuc(i)) + ωi,pre(i)(pi − ppre(i)) = −Fi, (6)

where suc(i) denotes the successor of vi and pre(i) denotes the predecessor of
vi on fb in cyclic order. Since the equations are dependent the system is under-
constrained. Later we fix some boundary coordinates to obtain a unique solution.
An important property of the substitution stresses was observed in [12].

Lemma 2 ([12]). If the stress ω is positive, then for every i, j ∈ B the induced
substitution stress ω̃ij is positive.

4 Constructing and Controlling an x-Equilibrium Stress

Let x1, . . . , xn be given as x-coordinates of G(p). We are interested in a positive
equilibrium stress that will give these x-coordinates in the barycentric embedding.
In particular, we are looking for a positive stress ω such that

∀i ∈ I
∑

j:(i,j)∈E

ωij(xi − xj) = 0. (7)

We call a positive stress that fulfills condition (7) a (positive) x-equilibrium stress.
Since we consider in this paper only positive x-equilibrium stresses we omit the
term “positive” in the following. As pointed out in [1], an x-monotone stress ex-
ists when every interior edge lies on some x-monotone path, whose endpoints are
boundary vertices. Let us assume that we selected the x-coordinates such that the
latter holds. Furthermore, we pick for every edge e some x-monotone path Pe.

We follow the approach of [1] to construct an x-monotone stress. The construc-
tion is based on assigning a cost c{i,j} > 0 to every interior edge (i, j) of G. If the
costs guarantee

∀i ∈ I
∑

j:(i,j)∈E:xi<xj

c{i,j} =
∑

(i,k)∈E:xi>xk

c{i,k}, (8)
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we can define an x-equilibrium stress by

ωij =
c{i,j}

|xi − xj |
. (9)

We start with c{i,j} ≡ 0 and increase the costs successively. Let e = (i, j) be an
edge with c{i,j} = 0. We increase the costs of the edges of Pe by 1. In (8) both sides
of the equation increase by 1 if vi lies on Pe, otherwise nothing changes. Hence,
(8) still holds. We repeat this procedure until every interior edge is assigned with
a positive cost. The total cost for an edge is an integer smaller than 3n− 3.

We show now how to modify an x-monotone stress to obtain helpful properties
for the substitution stresses induced by ω. Our goal is to get a substitution stress
that is maximal on an edge we picked. More precisely, let vs and vt be two non-
incident vertices on the boundary of G and let α > 1 be a constant that we fix
later. The stress ω should guarantee that for all pairs of boundary vertices vi,vj

we have ω̃st > αω̃ij , unless {i, j} = {s, t}. The idea how to achieve this is the
following: We pick an x-monotone path Pst from vs to vt. Then we determine a
suitable (large) number K and add K to the costs of every edge which is on Pst.
The stress induced by the increased costs is still an x-equilibrium stress for our
choice of x-coordinates. But if we think of the stresses as spring constants, we have
increased the force that pushes vs and vt away from each other. Our hope is that
this will reflect in the substitution stresses and makes ω̃st the dominant stress.

First, let us bound all substitution stresses form above and then prove a lower
bound for the stress ω̃st.

Lemma 3. Let L = {lij} be the Laplace matrix derived from a positive stress ω,
and ω̃ the corresponding substitution stress. For any i, j ∈ B we have

ω̃ij < min{lii, ljj}.

Proof. Since uTLu =
∑

(i,j)∈E ωij(ui − uj)2, which is non-negative for any vector
u, the Laplace matrix is positive semidefinite. Let L̃ = {l̃ij} = LBB −LBIL

−1
II LIB

denote the Schur complement of LII in L. Due to [22, page 175] we know that
LII − L̃ is positive semidefinite. Therefore, all principal submatrices are positive
semidefinite and we have lii ≥ l̃ii. As a consequence of the substitution lemma,
we know that

∑
j∈B:i 6=j ω̃ij = l̃ii, and hence

∑
j∈B:i6=j ω̃ij ≤ lii. Since each of the

ω̃ij ’s is positive, each summand has to be smaller than lii. By the same argument
we can show that ω̃ij ≤ ljj and the lemma follows. ut

The next lemma proves a lower bound for ω̃st and determines the number K that
guarantees that ω̃st becomes the dominant stress.

Lemma 4. Let ω be an x-equilibrium stress obtained from the edge costs c{i,j} for
x1, . . . , xn that is increased along an x-monotone path from vs to vt, by increment-
ing the edge costs for edges on the path by K. The substitution stresses and the
matrix L are obtained from ω as usual. Then

ω̃st >
K − 3n2(1 + (k − 2)∆x)

xt − xs
,
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where k denotes the number of boundary vertices and ∆x the largest distance be-
tween two x-coordinates. Let α > 0 be a parameter that will be fixed later. For
K ≥ 3n2(1 + (α+ k − 2)∆x) we obtain for any ω̃ij that is not ω̃st

ω̃st > αω̃ij .

Proof. Before bounding ω̃st we show an upper bound for the other substitution
stresses. Let ω̃ij be such a stress. By Lemma 3, ω̃ij is less than lrr (r ∈ {i, j}∩{s, t}).
Since lrr is a diagonal entry of the Laplace matrix it equals

∑
k:(r,k)∈E ωrk, which

is a sum of at most n − 1 summands. We can assume that the path Pst uses no
boundary edge. In this case each summand in

∑
k:(r,k)∈E ωrk is smaller than 3n−3

and we obtain
∀ij 6= st ω̃ij < max

r∈B\{s,t}
{lrr} < 3n2. (10)

Let F x
t be the x-component of Ft. We combine (10) and (5) and obtain as upper

bound for F x
t

ω̃st(xt − xs) + (k − 2)3n2∆x > F x
t .

On the other hand we can express F x
t by (4). The cost of one edge (k, t), with

xk < xt, was increased by K. All other costs are in total less than 3n2. Thus,

F x
t =

∑
k:(k,t)∈E

ωkt(xt − xk) =
∑

k:xk<xt

(k,t)∈E

c{t,k} −
∑

k:xk>xt

(k,t)∈E

c{t,k} > K − 3n2.

Combining the two bounds for F x
t leads to the bound for ω̃st stated in the lemma.

Setting K ≥ 3n2(1 + (α+ k − 2)∆x) yields

ω̃st >
3n2(α+ k − 2)∆x − 3n2(k − 2)∆x

xt − xs
=

3n2α∆x

xt − xs
≥ 3n2α > αω̃ij .

ut

As last part of this section we show that we can even enforce a set of substitution
stresses to be dominant. Let vt1 , vt2 be two vertices that are both nonincident to vs

and let xt1 = xt2 . We can increment a given x-equilibrium stress by first increasing
the edge costs c{i,j} along an x-monotone path from vs to vt1 by K and then do
the same for an appropriate path from vs to vt2 .

Lemma 5. Assume the same as in Lemma 4, but this time consider two paths:
from vs to vt1 and from vs to vt2 . Assume further that xt1 = xt2 . For K ≥ 3n2(1+
(α+ k − 2)∆x) we have for any ω̃ij with {i, j} 6⊂ {s, t1, t2}

ω̃st1 > αω̃ij , and ω̃st2 > αω̃ij .

Proof. Lemma 4 relies on the fact that we can bound
∑

j 6=s ω̃jt(xt − xj) because
by (10) the ω̃′s in this sum are small. We cannot use this bound for ω̃t1t2(xt1−xt2)
anymore, but this summand cancels anyway, since xt1 = xt2 . Following the steps
of the proof of Lemma 4 with first choosing t = t1 and then choosing t = t2 shows
the lemma. ut

Notice that the bounds for K are very rough. Better bounds can be obtained easily,
but they would have a more complicated expression. Since for our purpose the fact
that we can always find a valid number K is more important than the actual size
of K, we presented a simple bound for K.
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5 The Embedding Algorithm

5.1 The Algorithm Template

In this section we present as main result of this paper

Theorem 2. Let G be a 3-connected planar graph. G admits an embedding as
3-polytope inside a 2(n− 2)× 2× 1 box under the vertex resolution rule.

We prove Theorem 2 by introducing an algorithm that constructs the desired
embedding. The number of vertices on the boundary face plays an important role.
The smaller this number is, the simpler is it to construct an embedding. For this
reason we choose as boundary face fb the smallest face of G. Due to Euler’s formula
fb has at most 5 vertices. Depending on the size of fb we obtain three versions of
the algorithm which all follow the same basic pattern.

Our goal is to construct a planar embedding of G that has a positive stress and
whose x-coordinates are distinct integers. The corresponding lifting of such an em-
bedding fulfills the vertex resolution rule independently of its y and z-coordinates.
Hence, we can scale in direction of the y and z-axis without violating the vertex
resolution rule. The basic procedure is summarized in Algorithm 5.1.

Algorithm 1 Embedding algorithm as template.
1: Choose the x-coordinates.
2: Construct an x-equilibrium stress ω.
3: Choose the boundary y-coordinates.
4: Embed G as barycentric embedding with stress ω in the plane.
5: Lift the plane embedding.

Steps 1,4, and 5 are mostly independent of the size of fb and will be dis-
cussed first. We start with some strictly convex plane embedding of G – called pre-
embedding. Let x̂1, . . . , x̂n and ŷ1, . . . , ŷn be the coordinates of the pre-embedding
which we compute as barycentric embedding. We assume that in the pre-embedding
all x-coordinates are different. If this is not the case we can perturb the stresses
of the (pre)-embedding to achieve this. Since the pre-embedding is strictly convex
[19] every edge lies on some x-monotone path. As done in Section 4, we fix for
every interior edge e such a path Pe. The x-coordinates of the pre-embedding in-
duce a strict linear order on the vertices of G. We denote with bi the number of
vertices with smaller x-coordinate compared to vi in the pre-embedding. The x-
coordinates of the (final) embedding are defined as xi := bi. Thus, no two vertices
get the same x-coordinate and the largest x-coordinate is less than n. We observe
that the paths Pe remain x-monotone. Therefore, they can be used to define an
appropriate x-equilibrium stress ω. For technical reasons we might choose the same
x-coordinate for some of the boundary vertices. In this case we check the vertex
resolution rule for these vertices in the final embedding by hand. Step 4 and 5 can
be realized as straight-forward implementations of the barycentric embedding and
Maxwell’s lifting. Notice that the value of the (extended) stress on the boundary
edges is not needed to compute the lifting, because we can place an interior face
in the xy-plane and then compute the lifting using only interior edges.
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Steps 2 and 3 are the difficult parts of the algorithm. We have to choose the
stress ω and the y-coordinates such that an extension of the stress to the boundary
is possible. Moreover, the boundary coordinates have to yield a convex boundary
face. We continue with the three different cases and discuss step 2 and 3 of the
algorithm template for each of them separately.

5.2 Graphs with Triangular Face

The case where fb is a triangle is the easiest case because we can extend every stress
to the boundary for every location of the outer face (see Section 3). This case was
already addressed by Chrobak, Goodrich and Tamassia [1]. The discussion in this
section will prove the following statement:

Proposition 1. Let G be a 3-connected planar graph and let G contain a triangu-
lar face. G admits an embedding as 3-polytope inside an (n− 1)× 1× 1 box under
the vertex resolution rule.

Let us compute the pre-embedding with the boundary coordinates x1 = 0, x2 =
1, and x3 = 0. We use the x-monotone paths Pe to compute a suitable x-equilibrium
stress ω as discussed in Section 4. Next we compute the barycentric embedding
with boundary coordinates p1 = (0, 0)T ,p2 = (n − 1, 0)T , and p3 = (0, 1)T . As
result we obtain interior y-coordinates in the interval (0, 1). Any two vertices have
distance at least 1, since their x-coordinates differ by at least 1. (This is not true
for v1 and v3, but their distance is y3 − y1 = 1.)

5.3 Graphs with Quadrilateral Face

Let us assume now that G contains a quadrilateral but no triangular face. In this
case it is not always possible to extend an equilibrium stress ω to the boundary. The
observations of Section 3 help us to overcome this difficulty. We use as boundary
coordinates for the pre-embedding x̂1 = 0, x̂2 = 1, x̂3 = 1, and x̂4 = 0. The x-
coordinates induced by the pre-embedding give x2 = x3 = n− 2. We redefine the
boundary x-coordinates by setting x2 = n− 2 and x3 = 2(n− 2). Notice that this
preserves the x-monotonicity of the paths Pe, but makes it easier to extend the
stress to the boundary as we will see in the following.

Let ω be the x-monotone stress for the obtained x-coordinates. We can express
the influence of the stressed edges of G on the boundary with help of the substitu-
tion stresses ω̃. We modify ω with the technique described in Lemma 4 to assure
that ω̃13 > ω̃24. Let us now discuss how to extend the stress ω to the boundary.
To solve the non-linear system given by (5) and (6) we fix some of the boundary
y-coordinates to obtain a unique solution. In particular, we set y1 = 0, y2 = 0, and
y4 = 1. As final coordinate we obtain1

y3 =
ω̃24

2ω̃13 − ω̃24
.

Since ω̃13 > ω̃24, we can deduce that 0 < y3 < 1. Hence, all y-coordinates are
contained in [0, 1]. Furthermore, we know that the only two vertices with the same
1 The solution of the non-linear system was obtained by computer algebra software.
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x-coordinate, namely v1 and v4, have the distance y4 − y1 = 1. Therefore the
vertex resolution rule holds. If we scale the induced lifting such that the largest
z-coordinate equals 1 we obtain:

Proposition 2. Let G be a 3-connected planar graph and let G contain a quadri-
lateral face. G admits an embedding as 3-polytope inside a 2(n − 2) × 1 × 1 box
under the vertex resolution rule.

5.4 The General Case

The most complicated case is the case where we have to use a pentagon as boundary
face. However, the basic pattern how to construct the embedding remains the same.
We choose as x-coordinates for the pre-embedding x̂1 = 0, x̂2 = 1, x̂3 = 1, x̂4 = 0,
and x̂5 = −ε, for ε > 0 small enough to guarantee that all interior vertices get a
positive x-coordinate in the pre-embedding. We change the induced x-coordinates
on the boundary without changing the monotonicity of the paths Pe. In particular,
we set x1 = 0, x2 = n− 2, x3 = n− 2, x4 = 0, and x5 = −(n− 2). The stress ω is
constructed such that the substitution stresses guarantee

ω̃25 > 3ω̃13, ω̃25 > 3ω̃14, ω̃25 > 3ω̃24, ω̃35 > 3ω̃13, ω̃35 > 3ω̃14, ω̃35 > 3ω̃24. (11)

In other words the substitution stresses ω̃25 and ω̃35 dominate all other substitution
stresses on interior edges by a factor 3. Since x3 = x2, we can construct a stress ω
that induces a substitution stress that fulfills (11) by the observations of Lemma 5.

Appropriate boundary y-coordinates can be obtained by solving the non-linear
system given by (5) and (6). As done in the previous case we fix some y-coordinates
to obtain a unique solution. This time we set y1 = −1, y4 = 1, and y5 = 0. This
yields for the two remaining y-coordinates

y2 = −2− 2
ω̃24ω̃13 − ω̃2

13 − ω̃35ω̃14 − 2ω̃13ω̃35

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
,

y3 = 2 + 2
ω̃24ω̃13 − ω̃2

24 − ω̃14ω̃25 − 2ω̃24ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
.

We have to check two things: fb has to be convex and y3 − y2 should be large
enough to guarantee the vertex resolution rule. First we show that −2 < y2 and
y3 < 2, which would imply that fb is convex if y3 > y2. The inequalities −2 < y2
and y3 < 2 hold, iff

ω̃24ω̃13 − ω̃2
13 − ω̃35ω̃14 − 2ω̃35ω̃13 < 0 and

ω̃24ω̃13 − ω̃2
24 − ω̃14ω̃25 − 2ω̃25ω̃24 < 0.

Both inequalities are true, because as a consequence of (11) the only positive
summand ω̃24ω̃13 is smaller than ω̃35ω̃13 and smaller than ω̃25ω̃24. The difference
y3 − y2 equals

4 + 2
2ω̃24ω̃13 − ω̃2

13 − ω̃2
24 − ω̃35(ω̃14 + 2ω̃13)− ω̃25(ω̃14 + 2ω̃24)

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
.

Due to (11) we know that ω̃14 + 2ω̃24 < ω̃35 and ω̃14 + 2ω̃13 < ω̃25. Thus

y3 − y2 > 4 + 2
2ω̃24ω̃13 − ω̃2

13 − ω̃2
24 − 2ω̃35ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
> 2.
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The estimation holds since (again due to (11)) ω̃24ω̃35 > ω̃2
24 and ω̃25ω̃13 > ω̃2

13,
and hence the fraction is greater −1.

We multiply all y-coordinates by 1/2. This yields y4 − y1 = 1 and y3 − y2 > 1.
The z-coordinates are scaled such that they lie between 0 and 1. Clearly, the vertex
resolution rule holds for the computed embedding.

We finish this section with some remarks on the running time of the embedding
algorithm. As mentioned in [1] the x-monotone stress can be computed in linear
time. The barycentric embedding (which we use twice, once for the pre-embedding
and once for the intermediate plane embedding) can be computed by the linear
system (3). Since the linear system is based on a planar structure, it can be solved
with nested dissections (see [9,10]) based on the planar separator theorem. As a
consequence a solution can be computed in O(M(

√
n)) time, where M(n) is the

upper bound for multiplying two n × n matrices. The current record for M(n) is
O(n2.325), which is due to Coppersmith and Winograd [2]. The computation of the
lifting can be done in linear time. In total, we achieve a running time of O(n1.1625).

6 Additional Properties of the Embedding

6.1 Induced Grid Embedding

Besides the small embedding under the vertex resolution rule, the constructed
embedding has several other nice properties which we discuss in this section. Since
the computed y and z-coordinates are expressed by a linear system of rational
numbers, they are rational numbers as well. Thus, we can scale the final embedding
to obtain a grid embedding. We first prove a technical lemma.

Lemma 6. Suppose that all x and y-coordinates as well as all stresses ω are in-
tegers. Let the difference between two x-coordinates be less than ∆x and let the
difference between two y-coordinates be less than ∆y. Then the height zi of any
point pi in the lifting is an integer and it can be bounded by

0 ≤ zi ≤ |ω12| ·∆x ·∆y,

where ω12 is a stress on an arbitrary boundary edge.

Proof. Since by (2) all heights can be expressed as additions and multiplications
of integers, the heights are integral. Moreover, all heights are invariant under rigid
motions of the plane embedding. Hence, we can assume that y1 = y2 = 0, x1 = 0,
and and all y-coordinates are nonnegative. The lifted polytope lies between the
planes that contain the faces adjacent to the edge (1, 2). One of these faces is the
face fb, which lies in the plane z = 0. Let the other face be f1. We denote by pmax

the vertex that attains the maximal height zmax in the lifting. For the homogenized
vertex p′max we have 〈p′max,q1〉 ≥ zmax. Due to (2) q1 = ω12(0,−x2, 0)T , and
hence |ω12| ·∆x ·∆y ≥ 〈p′max,q1〉 and the lemma follows. ut

Theorem 3. The embedding computed with Algorithm 5.1 can be scaled to integer
coordinates such that

0 ≤ xi ≤ 2(n− 2),
0 ≤ yi, zi ≤ 2O(n2 log n).



12 André Schulz

Proof. We analyze the case where the boundary face is a pentagon. Convince
yourself that this case needs in fact the largest grid. We multiply the computed
stress ω by n! and obtain an integral stress ω′. Let L′ be the Laplace matrix induced
by the scaled stress. The substitution stresses ω̃ are defined as off diagonal entries
of L′BIL

′
II
−1
L′IB . Since we have integral stresses ω′ the entries of L′ are integral

as well. Due to the adjoint formula for the inverse of a matrix, the substitution
stresses are rational numbers and multiples of 1/ detL′II .

The y-coordinates of the embedding are computed by yI = −L−1
II LIByB . We

multiply the vector yB by (ω̃24ω̃35+ω̃25ω̃13+2ω̃25ω̃35)(detL′II)2 to make it integral.
Notice that scaling the stress leaves the barycentric embedding unchanged. Due to
Cramer’s rule and (3) we have for every interior vertex vi

yi =
detL′II(i)

detL′II

,

where L′II(i) denotes the matrix L′II with row i substituted by yB . Since detL′II(i)
is integral the interior y-coordinates are multiples of 1/ detL′II . Thus multiplying
yB (again) by detL′II gives integer y-coordinates. In total we scale by (ω̃24ω̃35 +
ω̃25ω̃13 + 2ω̃25ω̃35)(detL′II)3, which is clearly dominated by (detL′II)3. Let us now
discuss how to bound detL′II . Since L′ is positive semidefinite, L′II as principal
submatrix is positive semidefinite as well. Therefore, we can bound the determinant
by Hadarmard’s inequality (see [22, page 176]) and obtain

detL′II ≤
n∏

i=4

l′ii.

Each entry l′ii equals the sum of stresses ω′ incident to vi. Without scaling the
stresses are in O(n3) (a rough estimation gives K ≤ 42n3 + 3n2). Hence, every
stress ω′ij is in O(n!) and so is l′ii. This implies that (detL′II)3 is bounded by
2O(n2 log n).

We continue with the analysis of the lifting with help of Lemma 6. Let us
first discuss how to bound ω12. Remember that the x-monotone stress was con-
structed by incrementing costs on some x-monotone paths. Instead of considering
x-monotone paths one can use cycles to define the appropriate stresses. Such a
cycle consists of the old x-monotone path and closes this path by a path over the
boundary. The x-monotone increasing path of the cycle adds a +1 to the total
costs of its edges – the x-monotone decreasing path adds a −1 to the costs of its
edges. Notice that we have to route only one of the cycles via the edge (1, 2). This
implies that ω′12 = −n!/|x1 − x2|. Applying Lemma 6 leads to the bound for the
largest z-coordinate of O(n! · 2n · (detL′II)3) = 2O(n2 log n). ut

Compared to the grid embedding presented in [12], we were able to reduce the
size of the x-coordinates (from 2n · 8.107n to 2(n− 2)) at the expense of the y and
z-coordinates.

6.2 Spread of the Embedding

The spread of a point set is the quotient of the longest pairwise distance (the
diameter) and the shortest pairwise distance. The smaller this ratio is, the more
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densely the point set is packed. A small spread implies that the points are “evenly
distributed”. We define as spread of an embedding of a polytope the spread of its
points.

Theorem 4. The spread of a 3-polytope embedded by Algorithm 5.1 is smaller
than 2n. There are infinitely many polytopes without an embedding with spread
smaller than (n− 1)/π.

Proof. Let us first analyze the spread of the constructed 3-polytope. The diameter
of its point set depends on the size of the boundary face. It can be checked that
in all cases it is smaller than 2n. Since the smallest distance is larger than 1 the
spread is less than 2n.

We discuss now how large the spread of a 3-polytope can be. We assume that
the embedding is scaled such that the smallest pointwise distance equals 1. Let
G be the graph of a 3-dimensional pyramid. In any realization as 3-polytope the
perimeter of its (n − 1)-gonal base is larger than n − 1. Since for convex sets the
perimeter is smaller π times the diameter [17], we have that the spread of the
(n− 1)-gon (and hence the spread of the pyramid) is larger than (n− 1)/π. ut

Notice that in the 2d setting the points of the intermediate plane embedding
of G have also a spread smaller than n. Following the arguments of the proof of
Theorem 4, a convex drawing of an n-gon needs a point set of spread n/π. Thus,
for convex 2d drawings, the intermediate plane embedding of our algorithm has a
spread that differs from the best possible only by a constant multiplicative factor.

7 An Example

We show as example how to realize a dodecahedron with help of Algorithm 5.1. The
graph G of the dodecahedron is particular suitable for a good example, because
every face of G is a pentagon. Thus we have to apply the more complicated part of
the algorithm. Due to the symmetry of G it does not matter which face we select
as the boundary face. We follow our convention and name the vertices such that
p1, . . . ,p5 belong to fb in cyclic order.

We start with a plane drawing (the pre-embedding) of G with strictly convex
faces and no vertical edges. Figure 1 shows our choice. The pre-embedding induces
an ordering of the vertices which we use to define the x-coordinates, namely

x = (0, 18, 18, 0,−18, 6, 3, 12, 13, 11, 15, 4, 7, 17, 14, 16, 5, 9, 10, 8)T .

Notice that the boundary x-coordinates are selected according to the algorithm.
Next we construct the stress ω. We select some x-monotone paths and compute
the induced costs for the interior edges. The stresses ω induce the matrix L̃ which
includes the substitution stresses as off-diagonal entries (multiplied with -1). In
our example we obtain

L̃ =


0.234791 −0.0769685 −0.0815444 −0.0354125 −0.0408658

−0.0769685 0.410969 −0.264196 −0.0401058 −0.02969
−0.0815444 −0.264196 0.506504 −0.108953 −0.05181
−0.0354125 −0.0401058 −0.108953 0.215884 −0.031412
−0.0408658 −0.02969 −0.05181 −0.031412 0.153786

 .
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Fig. 1. The pre-embedding of the dodecahedron.

It can be observed, that the entries l̃35 and l̃25 are not the dominating entries. But
for the correctness of the algorithm this is needed. Indeed, for our choice of sub-
stitution stresses right now, we would obtain the embedding shown in Figure 2(a).
The figure illustrates that the too small substitution stresses ω̃25 and ω̃35 cause a
non-convex boundary face fb. Fortunately, we can fix the problem by picking two

(a) (b)

Fig. 2. Embedding without (a) and with (b) making ω̃25 and ω̃35 dominant.

x-monotone paths P25 and P35 and increment the costs on its edges by K. We
choose K according to Lemma 5. Since in our case n = 20, ∆x = 36, and k = 5,
it suffices to set K = 260 400 (notice that we need to pick α = 3). The modified
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stress ω gives now

L̃ =


0.319465 −0.151322 −0.0666023 −0.00126453 −0.100277
−0.151322 7.1641 −2.97443 −0.0515457 −3.9868
−0.0666023 −2.97443 7.22698 −0.144387 −4.04156
−0.00126453 −0.0515457 −0.144387 0.275482 −0.0782853
−0.100277 −3.9868 −4.04156 −0.0782853 8.20693

 .

We observe that both ω̃35 and ω̃25 are greater than 3ω̃14, 3ω̃24 and 3ω̃13. Therefore,
we can continue with the algorithm and choose yB as described in Section 5.4. The
induced barycentric embedding is shown in Figure 2(b) and the corresponding
lifting is depicted in Figure 3(a). We did not execute the final scaling to obtain
a more illustrative picture. Notice that every face is still drawn as strictly convex
polygon. However, since we chose the value for K that high some faces become
almost collinear. A more ”spherical” embedding could be obtained by lowering the
value for K and check if this leaves y3 − y2 > 1. Such a drawing (for K = 10) is
shown in Figure 3(b).

(a) (b)

Fig. 3. The final embedding (a) and the induced embedding for K = 10 (b).
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