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Abstract

Lifting planar embeddings with equilibrium stress is a well known method
that dates back to the 19th century. We discuss the known theory about
liftings and develop a framework that allows us to apply the lifting tech-
nique easily. In this thesis we apply the lifting method to different geo-
metric problems.

As a first application we show how to embed 3-polytopes with small
integer coordinates. Our method improves the upper bound for the size
of the largest coordinate from O(218n2

) to O(27.55n). A new generalized
version of Tutte’s spring embedding assures that a planar 2d-embedding
contains an equilibrium stress and is therefore liftable. We point out con-
nections between the size of the integral embedding and the number of
maximal spanning forests a planar graph can have.

The second field of applications for the lifting technique are topics
about pseudo-triangulations. Our main observation shows how to model
regular triangulations as linear programs over the polytope of pointed
pseudo-triangulations. We introduce an equivalent of the Delaunay tri-
angulation for pointed pseudo-triangulations of simple polygons. Our ap-
proach is motivated by the paraboloid lifting of the Delaunay triangula-
tion and the generalization of linear programs that compute the Delaunay
triangulation in special cases. We also investigate the so-called canoni-
cal pointed pseudo-triangulation and study some of its geometric proper-
ties. Our observations lead to a new characterization of pointed pseudo-
triangulations as embeddings of minimal rigid graphs that can balance a
given load with positive edge weights.

The thesis contains also results on pseudo-triangulation problems that
were not obtained with help of liftings. We show that a sequence of super-
polynomial many convexifying flips exists that transform a lifted pseudo-
triangulation into a maximal locally convex surface. This is obtained by
constructing a simple polygon that realizes an improving flip sequence
of length nΘ(log n) between two of its pointed pseudo-triangulation. Fur-
thermore we show that (1) it is NP-hard to decide if a graph contains a
pseudo-triangulation and (2) it is NP-hard to decide if a graph can be ex-
tended to a pseudo-triangulation with small vertex degree. Both decision
problems are studied in different incarnations. We obtain a new and easier
NP-completeness proof of the triangulation existence problem, one of the
classic NP-complete triangulation problems.
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Zusammenfassung

Das Heben von planaren Einbettungen mit Gleichgewichtsstress ist eine
Methode, die bereits im 19. Jahrhundert Anwendung fand. Wir stellen
diese Methode vor und erstellen Werkzeuge, welche es erlauben, das Heben
von planaren Einbettungen effektiv auszuführen. In der Dissertation wer-
den wir die Technik zum Heben planarer Graphen auf geometrische Pro-
blemstellungen anwenden.

Als erste Anwendung zeigen wir, wie man 3-Polytope mit kleinen ganz-
zahligen Koordinaten einbetten kann. Die vorgestellte Methode verbessert
die bisherige obere Schranke für die größte Koordinate von O(218n2

) auf
O(27.55n). Eine neue, verallgemeinerte Variante der Tutte-Einbettung
stellt sicher, dass die planare 2d-Einbettung einen Gleichgewichtsstress
besitzt und deshalb hochhebbar ist. Wir zeigen Zusammenhänge zwischen
der Größe der Einbettung und der maximalen Anzahl von Spannbäumen
auf planaren Graphen auf.

Das zweite Anwendungsgebiet für das Heben planarer Graphen sind
Fragestellungen über Pseudo-Triangulierungen. Unser Hauptresultat zeigt,
wie man reguläre Triangulierungen als lineares Programm über dem Poly-
top der gespitzten Pseudo-Triangulierungen modellieren kann. Wir führen
eine Entsprechung der Delaunay Triangulierung für gespitzte Pseudo-Tri-
angulierungen von einfachen Polygonen ein. Unser Ansatz basiert auf der
Parabolid-Abbildung, sowie auf Verallgemeinerungen von linearen Pro-
grammen, welche die Delaunay-Triangulierung für spezielle Szenarien be-
rechnen. Des Weiteren untersuchen wir die kanonische Pseudo-Triangu-
lierung und diskutieren einige ihrer geometrischen Eigenschaften. Un-
sere Erkenntnisse führen zur Charakterisierung von gespitzten Pseudo-
Triangulierungen als minimal starre Graphen, welche eine gegebene Last
mit positiven inneren Kantengewichten ausgleichen können.

Die Dissertation enthält außerdem Resultate über Pseudo-Triangu-
lierungen, welche nicht von der Hebe-Technik Gebrauch machen. Wir
zeigen, dass eine Sequenz von super-polynomiell viele Konvexitäts-erzeugen-
de Flips existiert, die eine polyedrische Pseudo-Triangulierung in eine lokal
konvexe Oberfläche zu überführt. Dies wird erreicht, in dem wir ein ein-
faches Polygon konstruieren, welches zwei gespitzte Pseudo-Triangulierung-
en besitzt, zwischen denen eine verbessernde Flipsequenz der Länge nΘ(log n)

existiert. Des Weiteren zeigen wir, dass es erstens NP-schwer ist zu entschei-
den, ob ein geometrischer Graph eine Pseudo-Triangulierung enthält und
zweitens, dass es ebenfalls NP-schwer ist zu entscheiden, ob sich ein ge-
ometrischer Graph zu einer Pseudo-Triangulierung mit kleinem Knoten-
grad erweitern lässt. Beide Probleme werden in verschiedenen Varianten
untersucht. In diesem Zusammenhang erhalten wir auch einen neuen,
vereinfachten Beweis der NP-Vollständigkeit des Triangulierungs-Existenz
Problems.
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Chapter 1

Introduction

The concept of lifting is an established technique to study geometric objects.
Generally, a lifting takes a geometric object that is realized in d dimensions
and assigns to it an additional coordinate by a lifting map. The new, enhanced
object lives now in (d + 1)-dimensional space. Such an object can be for ex-
ample a polytope or an embedding of a graph. The orthogonal projection of
the enhanced object back into the lower dimensional space gives the original
object. Liftings are motivated by the fact that higher dimensional objects can
store more “information” than the non-lifted counterpart. The goal is to apply
existing techniques in the higher dimensional setting and trace back the results
to the lower dimensional object. In this thesis we study liftings of planar graphs
from R2 to R3.

Suppose we have a plane straight-line graph embedded in the xy-plane. We
specify a lifting by giving every vertex of the graph a certain height. All vertices
of a face have to lie on a common plane. The height of every point on a face that
is not a vertex is interpolated. It makes only sense to speak about liftings, if
we have a clear idea what we understand as faces of the plane geometric graph.
Therefore, we restrict ourselves to planar 3-connected graphs, which guarantee
a unique facial structure.

However, not all embeddings of planar graphs can be lifted in this way. The
graph shown in Figure 1.1(a) depicts a liftable graph. The lifting corresponds
to a tetrahedron with chopped off tip. It can be realized by giving the inner
vertices the height 1, while leaving the outer vertices in the xy-plane. On the
other hand, the same graph with a different plane realization is not liftable
(Figure 1.1(b)).

Interestingly, there exists a powerful characterization which embeddings
support a lifting. It was James Clerk Maxwell who observed in 1864 that
the plane realization of a graph has to fulfill an equilibrium criterion to become
liftable [58]. Assume that the edges of the plane graph correspond to springs.
More precisely, we have springs that try to push the vertices away and springs
that try to pull vertices together. The strength might differ from spring to
spring, but the induced force is proportional to the spring length (Hook’s law).
If there exists a set of springs for the edges of the geometric graph, such that
the forces meeting in every point cancel, we say the geometric graph supports
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(a) (b)

Figure 1.1: Realization of a combinatorial graph in the plane such that a lifting
exists (a) or not (b).

an equilibrium stress. The support of an equilibrium stress (not all stresses
zero) is equivalent to the “lifability” of the plane embedding. Moreover, the
computation of the lifting is easy if the configuration of springs is given.

Maxwell has not formally proved all of his observations. Nevertheless the
principles were applied in mechanical engineering all along. From the mathe-
matical point of view the ideas of Maxwell and others about liftings became
forgotten. In the early 1980s Walter Whiteley and Henri Crapo started to re-
discover Maxwell’s work [30, 31, 91]. They also completed Maxwell’s proofs.
Other people (e.g. Hopcroft and Kahn [49], Richter-Gebert [72]) used the lifting
method as powerful tool to solve and investigate geometric problems.

This thesis addresses geometric problems that are studied with help of the
lifting method. We start our investigation by explaining how to compute a
lifting. To obtain a clear formalism for the work with liftings we introduce
concepts like stresses in graphs and reciprocal diagrams. This preliminary part
is presented in Chapter 2. We recommend to (at least) browse through this
chapter if the reader is not familiar with the lifting technique.

In the following chapters we study different geometric problems, which we
group into two blocks. One block (Chapter 3 and 4) studies integer realizations
of convex bodies in the 3-dimensional space. The other block (Chapter 5)
describes how to characterize regular triangulations with help of linear programs
over the polytope of pointed pseudo-triangulations (short PPT-polytope). In
Chapter 6 we add some complexity theoretic observations, which are related
to Chapter 5 but are not related to liftings. In the final Chapter 7 we give a
short conclusion and discuss open problems. We continue with a more detailed
introduction of the studied geometric problems.

1.1 Convex 3-Polytopes with Integer Coordinates

Due to Steinitz’ seminal theorem [83] we know that any 3-connected planar
graph is the graph of a 3-polytope. The graph describes the combinatorial
structure of the polytope. Even though the original proof of Steinitz’ theorem
did not use liftings of planar graphs, the theorem can be proved with help of the
lifting method discussed above (see Richter-Gebert [72]). The lifting method
allows to compute the coordinates of the 3d realization easily. One can observe
that all coordinates are rational. Therefore, integer coordinates suffice to embed
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convex 3-polytopes.
What is known about the size of such an integral embedding? Richter-

Gebert analyzed the common divisor of the rational coordinates and observed
that a polytope with n vertices can be realized on a grid of size O(218n2

). For
simplicial 3-polytopes Richter-Gebert was able to prove a better bound. The
upper bound for these polytopes was only exponential in the size of n. Ribó [70]
showed that 3-polytopes with at least one quadrilateral face can be embedded
on an exponential sized grid as well. The question if an exponential bound
holds in general has been still open. The unsolved case boils down to find an
efficient embedding algorithm for polytopes whose smallest face is a pentagon
(due to Euler’s formula every planar 3-connected graph has to contain a face
with at most five vertices).

We solve this remaining open case in Chapter 3. The crucial part is to find
a liftable plane embedding. Tutte’s spring embedding method is a powerful tool
to construct plane embeddings in equilibrium. Unfortunately the equilibrium is
not “complete” for our purpose. The forces induced by the springs do not sum
up to zero at the boundary. We show how to apply Tutte’s method to obtain
an embedding where all vertices are in equilibrium. For a careful analysis we
need furthermore bounds on the number of spanning trees of a planar graph.

Related to the problem of embedding 3-polytopes on the grid is the realiza-
tion of order types in Z2. An (abstract) order type of a set of n points specifies
the orientation of any triple of points. Not all order types are realizable in
R2 (e.g. the famous non-Pappus configuration), but any realizable order type
can be realized with integer coordinates. As for the realization of 3-polytopes
we have a combinatorial object (a realizable order type instead of a planar 3-
connected graph) that supports a realization with integral coordinates. But
in contrast to our results it is known that there exist order types that require
integer coordinates doubly exponential in n [40].

1.2 Topics in Pseudo-Triangulations

In the second part of this thesis we address problems concerning pseudo-triangu-
lation. A pseudo-triangle is a convex polygon with three internal angles smaller
than π. We call the tiling of a domain into pseudo-triangles a pseudo-triangula-
tion (see Figure 1.2). Of special interest are pseudo-triangulations where every
vertex is incident to an angle greater than π – the so called pointed pseudo-
triangulations. The most prominent variant of pseudo-triangulations are trian-
gulations. Here every pseudo-triangle of the tiling is a triangle. Triangulations
are a well studied object with uncountable applications. The younger and more
general concept of pseudo-triangulations has many different applications, too.
We list some of the most important applications and redirect the interested
reader to the more comprehensive survey article by Rote, Santos and Streinu
[76].

In 1993 Pocchiola and Vegter introduced pseudo-triangulations to investi-
gate the visibility complex of convex objects in the plane [67, 68, 69]. Their
work was inspired by pseudo-line arrangements [66]. Before 1993 special pseudo-
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(a) (b) (c)

Figure 1.2: Example of a pseudo-triangle (a), a pseudo-triangulation (b) and a
pointed pseudo-triangulation (c).

triangulations of simple (vertex empty) domains were studied to perform ef-
ficient ray shooting operations in simple polygons [23, 41]. These so called
geodesic triangulations were built by tiling a polygon using non-crossing geodesic
paths between its vertices. Another interesting field of applications for pseudo-
triangulations are kinetic data structures [3, 15, 52]. Here pseudo-triangulations
have been successfully used to quickly detect collisions in a set of moving
objects. Also art gallery type problems can be solved with help of pseudo-
triangulations. The task here is to guard a polygonal domain with guards
whose “vision” is limited to an angle π. Speckmann and Tóth [82] showed that
in this case for a simple polygon with n vertices (k of them convex) b(2n−k)/3c
guards suffice to guard the polygon.

Pointed planar drawings on the sphere can be considered as spherical pseudo-
triangulations. Gaiane Panina used these structures to disprove A.D. Alexan-
drov’s uniqueness conjecture for convex bodies by constructing a saddle sur-
face that is based on a lifted pseudo-triangulation [64]. A spherical pseudo-
triangulation describes the normal fan of a virtual 3-polytope. If the spherical
pseudo-triangulation is furthermore pointed the induced fan belongs to a hy-
perbolic virtual 3-polytope [65]. Thus spherical pseudo-triangulations can be
used to visualize virtual 3-polytopes.

We conclude the list of applications with the popular carpenter-rule problem.
The problem asks if there is an unfolding for any simple planar polygonal chain.
A beautiful solution of this problem was given by Ileana Streinu [84]. It is
based on the fact that a pointed pseudo-triangulation with one convex hull edge
removed induces an expansive unfolding motion. A sequence of these motions
can be assembled to a global unfolding of the polygonal linkage. Interestingly,
a different solution for this problem by Connelly, Demaine and Rote [28] uses
liftings of planar graphs. Another (energy-driven) solution for this fascinating
problem is presented in [22].

The research on expansive mechanisms induced by pointed pseudo-triangu-
lations led to the description of the polytope of pointed pseudo-triangulations by
Rote, Santos, and Streinu [75]. The vertices of this high dimensional polytope
represent the pointed pseudo-triangulations that can be realized on a given
point set. Orden and Santos generalized this approach and found a polytope
that represents all pseudo-triangulations of a point set (not only the pointed
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ones) as its vertices [63].
Having a polytopal representation of all (pointed) pseudo-triangulations of

a given point set is useful, because it allows to perform linear optimization on
this set. We are interested in defining regular pseudo-triangulations as solutions
of linear programs. This question is addressed in Chapter 5. We show how
solutions of certain linear programs can be expressed as liftings of planar graphs.

The definition of a reasonable canonical pointed pseudo-triangulation for a
point set, that fulfills a certain optimality criterion, turns out to be a challeng-
ing question. It is desirable to have a local geometric criterion that tells if a
local modification brings us closer to the optimum or not. With help of this
information one can construct a canonical pseudo-triangulation by perform-
ing a sequence of local modifications. The existence of a canonical optimality
criterion makes the enumeration technique reverse search [13] applicable.

For non-pointed pseudo-triangulations minimal locally convex functions can
be used to define such a optimal pseudo-triangulation (see Aurenhammer et al.
[5, 6]). This approach is based on lifting planar graphs (in this case pseudo-
triangulations) into R3. A convex polyhedral surface can be constructed by
swapping all concave edges of the lifted surface. In the triangulation setting
the famous (weighted) Delaunay triangulation acts as canonical optimal trian-
gulation from this point of view. Unfortunately, the concept of minimal locally
convex functions cannot be used for pointed pseudo-triangulations, because
they only yield flat, degenerate convex liftings.

A promising idea to define a canonical pointed pseudo-triangulation was
proposed in [75]. Here the solution of a canonical linear program was sug-
gested as candidate for a canonical pointed pseudo-triangulation. We study
this special pointed pseudo-triangulation in this thesis and give a geometric
characterizations of it for convex point sets. This is achieved by transforming
the canonical linear program into a problem of constructing a convex polyhe-
dral surface. Again, we use the lifting technique to express the solution of the
linear program as a polyhedral surface. This makes it possible to apply the
framework developed by Aurenhammer et al. [5, 6].

The fact that the domain of the pseudo-triangulations is empty makes it
possible to use liftings. In this case (convex) liftings are not degenerate. How-
ever, for the general case we were not able to come up with a solution using
liftings.

Notice that Bereg [16] defined a canonical pointed pseudo-triangulation to
study the flip distance of O(n log n) for pointed pseudo-triangulations. However,
it is desirable to define a (different) canonical pointed pseudo-triangulation that
is based on the PPT-polytope. This might lead to an enumeration scheme sim-
ilar to the one of Bereg [17] and faster compared to the scheme of Brönnimann
et al. [21].

The investigation of linear programs over the polytope of pointed pseudo-
triangulations leads to new insights in pointed pseudo-triangulations. We were
able to characterize pointed pseudo-triangulations as minimal rigid frameworks
that can resolve external forces with positive interior stresses. Interestingly
for any generic set of forces exists a unique pointed pseudo-triangulation that
resolves it with positive stresses in the interior.



6 1. INTRODUCTION

Most recently different generalizations of pseudo-triangulations have been
studied. Maximal locally convex functions have been used to define an equiva-
lent in higher dimension [12] and for domains with holes [8]. We consider the
(classical) two-dimensional version of pseudo-triangulations in this thesis only.

In the last part of the thesis we study several complexity questions that
arise in the context of pseudo-triangulations. In particular, we present several
new NP-completeness results. We show that it is NP-hard to decide if a certain
geometric graph contain a (pointed) pseudo-triangulation and that it is NP
hard to decide if a geometric graph can be completed to a (pointed) pseudo-
triangulation with bounded vertex degree. Our observations lead to a simplified
proof of the NP-hardness of the triangulation existence problem, which asks if
a given geometric graph contains a triangulation.



Chapter 2

Stresses and Liftings of Planar
Graphs

The technique of lifting geometric graphs to R3 is used frequently in the thesis.
For this reason we discuss stresses on planar graphs and their induced liftings
in this preliminary chapter.

Throughout the thesis let G = (V,E) be a connected graph with vertex set
V = {v1, . . . , vn} and edge set E ⊆ V × V . The number of vertices is denoted
by n, the number of edges by m. We identify an edge by the indices of its
vertices and write (i, j) instead of (vi, vj).

An embedding of a graph G is a realization of G in Rn, where vertices
are mapped to distinct points in the plane and edges are mapped to Jordan
arcs connecting the points. A realization of G in the plane is called plane
embedding. Unless otherwise specified an embedding of a graph means for the
scope of this thesis a plane embedding. A graph G is called planar if it can be
embedded into the plane without crossings of the edges. We call a crossing free
embedding planar embedding. Furthermore, when all Jordan arcs are straight
line segments the planar embedding is named planar straight-line embedding.
Throughout the thesis we consider embeddings with straight lines only. For this
reason we omit the term “straight-line” in the following when we speak about
planar embeddings.

The order of the emanating edges for every vertex defines a combinatorial
embedding of the graph G. Combinatorial embeddings that can be realized
by a planar embedding are called planar maps. The cycles of edges induced
by a combinatorial embedding define the set of faces FG = {. . . , fi, . . .}. A
combinatorial embedding makes it possible to assign every directed edge (i, j)
a unique face fl, which lies left to it, and a unique face fr, which lies right to
it. We denote this situation by the ordered quadruple (i, j|l, r) called oriented
patch. Clearly, if (i, j|l, r) is an oriented patch then (j, i|r, l) is an oriented patch
as well.

A graph is 3-connected if one has to delete at least three vertices to split the
graph into two disconnected components. Notice that every planar 3-connected
graph has only two planar maps, where one planar map reverses the orientations
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of the other planar map (see Whitney [92]). The faces defined by these two
maps differ only in the orientation. The set of vertices that define a face is the
same. In this thesis we consider mostly planar graphs that are also 3-connected.
Since we are not interested in the orientation of the faces we can use any of the
planar maps without restriction. In other words, the unoriented description of
the faces depends in our setting only on the graph G.

We describe a straight-line embedding by an injective map p : V → R2.
The map p assigns to every vertex vi a two-dimensional vector p(vi) = (xi, yi).
We use the notation pi as abbreviation for p(vi). An embedding of G given by
p is denoted as G(p).

2.1 Equilibrium Stresses

Let G = (V,E) be a graph with not necessarily planar embedding p. A stress
on G is an assignment ω of scalars to the edges E. The stress ω(e) of an edge
e = (i, j) is denoted as ωij . The stresses have to respect symmetry and therefore
we have ωij = ωji. For convenience we set ωij = 0 if (i, j) is not in E.

Definition 2.1. Let G = (V,E) be a graph with stress ω and let G(p) be an
embedding of G. We say:

1. A point pi is in equilibrium, if∑
pj

ωij(pi − pj) = 0. (2.1)

2. The embedding G(p) is in equilibrium, if all of its vertices are in equilib-
rium.

If at least one of the stresses ωij is nonzero we call the stress non-trivial. We
say an embedding supports an equilibrium stress, if there exists some non-trivial
stress for which G(p) is in equilibrium.

Stresses on graphs are often interpreted as physical forces. We use this point
of view frequently in this thesis. The force induced by an edge (i, j) at pi equals
the vector ωij(pi − pj). In equilibrium all forces sum up to zero – we say they
resolve. If the forces do not sum up to zero (at a vertex) we call the forces
non-resolving .

Notice that the existence of a non-trivial equilibrium stress is not a property
of an (abstract) graph, but of its embedding in the plane. Figure 1.1 shows
two embeddings of the same graph. The embedding depicted in Figure 1.1(a)
supports an equilibrium stress, whereas the embedding in Figure 1.1(b) does
not. In the following section we give criteria for the existence of non-trivial
equilibrium stresses in embeddings of planar graphs.

2.1.1 Maxwell’s Reciprocal Diagrams

A tool for a better understanding of embeddings of planar graphs with equi-
librium stress is the concept of reciprocal diagrams introduced by James Clerk
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Maxwell in 1864 [58]. A reciprocal diagram of an embedding G(p) is the em-
bedding of the dual graph of G. The definition of a dual graph makes only sense
if G is planar. Therefore, reciprocal diagrams are only well defined for planar
graphs. The embedding, however, does not have to be necessarily planar.

Let G∗ denote the dual graph of G. Throughout the thesis we consider dual
graphs of 3-connected planar graphs only. In this case the dual graph is unique.
The vertex set of the reciprocal diagram is given by the set of faces FG. The
edges of the reciprocal correspond to adjacent faces of G.

Definition 2.2. An embedding G∗(r) is called reciprocal diagram of G(p) if
for every oriented patch (i, j|l, r) of G the vector pi − pj is orthogonal to the
vector rl − rr.

We have not forbidden that two vertices in the reciprocal diagram have the
same coordinates. However, such a setting is degenerated in the same sense
that a stress has the value zero. For this reason we call a reciprocal diagram
where every vertex has a distinct position non-trivial.

We can identify all embeddings of a planar graph G that support an equi-
librium stress by the following theorem.

Theorem 2.3 (Maxwell). An embedding G(p) of a planar graph G supports
a non-trivial equilibrium stress, if and only if a non-trivial reciprocal diagram
exists.

Proof. (sketch): Assume G(p) supports an equilibrium stress ω. As mentioned
before the vector ωij(pi − pj) can be seen as a force that affects pi and pj . In
equilibrium the forces meeting in every vertex sum up to zero. An example is
shown in Figure 2.1. Since the forces in every point sum up to zero, one can
rearrange the vectors of the forces such that they form a (face) cycle – a so
called polygon of forces1. See Figure 2.2(a) for an illustration of the polygons
of forces produced by the example shown in Figure 2.1. We observe that the

Figure 2.1: An example of an embedding with forces induced by the equilibrium
stress.

force induced by an edge (i, j) at pi is opposite to the force induced by the
same edge at pj . This implies that polygons of forces can be assembled to an

1The fact that the resolving forces form a polygon is a well known fact and was remarked
long before Maxwell [47, page 334].
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embedding G∗(r) (see Figure 2.2(b)). The edges of such an embedding G∗(r)
are parallel to the edges of G(p). Rotating by π/2 yields a Maxwell reciprocal.

(a) (b)

Figure 2.2: Constructing the Maxwell reciprocal.

On the other hand, if there exists a Maxwell reciprocal we can construct
resolving forces for G(p) by reversing the construction from above. This defines
an equilibrium stress.

A supported stress of G(p) can be directly read off Maxwell’s reciprocal.
Let G∗(r) be a reciprocal diagram of G(p) and (i, j|l, r) an oriented patch of G.
As a consequence of the proof of Theorem 2.3 the stress ωij can be expressed
as

ωij =
yl − yr

xi − xj
=

xr − xl

yi − yj
.

If xi = xj or yi = yj one of the above fractions is undefined but the other can
still be used to express ωij . We notice that G(p) is a reciprocal diagram of
every reciprocal diagram of G(p). Therefore, any reciprocal is in equilibrium
too. An equilibrium stress ω′ in the reciprocal diagram can be obtained by

ω′rl := 1/ωij ,

if (i, j|r, l) is an oriented patch of G.
Other criteria for the existence of equilibrium stresses for special types of

graphs can be found in [91]. We refer to [31] for a survey on Maxwell reciprocals.
Notice that a reciprocal diagram of a non-crossing embedding does not have

to be necessarily crossing free. Moreover, embeddings with convex faces might
result in a non-convex boundary of the reciprocal. An example is shown in
Figure 2.3. The dual of the icosahedron is the dodecahedron. One can observe
that the boundary vertices produce non-convex faces. Furthermore, the em-
bedding is not crossing free. Crossing free embeddings that have a crossing free
reciprocal can be characterized by the sign pattern of the stress and the shape
of the faces [62].

2.1.2 Stresses on K4

Any embedding of the complete graph with four vertices K4 supports a non-
trivial equilibrium stress. The equilibrium stress is unique up to scaling with a
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(a) (b)

Figure 2.3: An embedding of the graph of the icosahedron and a reciprocal
diagram with crossings of it.

constant. We show how to compute this stress in terms of the coordinates of
the embedding K4(p)2.

Let [i, j, k] denote the signed area of the triangle spanned by pi,pj and pk.
If the three points are in clockwise order the area will be negative, otherwise
positive. We can compute [i, j, k] as

1
2

det

 xi xj xk

yi yj yk

1 1 1

 .

Proposition 2.4. Let K4(p) be a plane embedding of the K4 with no three
points on a line. We define the stress for any edge (i, j) ∈ E as

ωij :=
1

[i, j, k][i, j, l]
,

where pk,pl are the remaining two vertices. This stress is an equilibrium stress
on K4(p).

Proof. By symmetry it suffices to show that p1 is in equilibrium. This is true
if

p1 − p2

[1, 2, 3][1, 2, 4]
+

p1 − p3

[1, 3, 2][1, 3, 4]
+

p1 − p4

[1, 4, 2][1, 4, 3]
= 0.

We multiply with [1, 2, 3][1, 2, 4][1, 3, 4] and obtain as equivalent statement

(p1 − p2)[1, 3, 4] + (p3 − p1)[1, 2, 4] + (p1 − p4)[1, 2, 3] = 0.

We notice that [1, 3, 4]− [1, 2, 4] + [1, 2, 3] equals the signed area [2, 3, 4]. Thus
we can rephrase the last expression as

p1[2, 3, 4]− p2[1, 3, 4] + p3[1, 2, 4]− p4[1, 2, 3] = 0.

2The equilibrium stress on the K4 (in the form we introduced it) is also mentioned in [75].
The proof presented there is different from ours.
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Keep in mind that the last line includes two conditions, one for the x and one for
the y-coordinates of K4(p). We can express each of in form of a determinant,
namely

det


x1 x2 x3 x4

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1

 = 0, det


y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

1 1 1 1

 = 0.

The expansion by the first rows yields that both determinants are zero.

2.2 Lifting of Equilibrium Stressed Graphs

The technique of lifting equilibrium stressed embeddings is applied in several
constructions in this thesis. This section explains the basic procedure of the
lifting process. The construction of liftings with equilibrium stresses goes back
to Crapo and Whiteley [30, 91] and was also addressed by Hopcroft and Kahn
[49] and Richter-Gebert [72].

Maxwell observed that there is a correspondence between embeddings with
equilibrium stress and projections of 3d polyhedra. We call an embedding of a
planar 3-connected graph to R3 spatial if the vertices of every face of the graph
lie on a common plane. There exist different versions of Maxwell’s theorem.
For the scope of the thesis the following formulation is the most suitable.

Theorem 2.5 (Maxwell, Whiteley). Let G be a planar 3-connected graph
with embedding G(p) and designated face f1. There exists a correspondence
between

A.) equilibrium stresses ω on G(p),

B.) spatial embeddings of G in R3, where face f1 lies in the xy-plane and the
orthogonal projection of the spatial embedding in the xy-plane along the
z-axis gives G(p).

The proof that A induces B is due to Walter Whiteley [91]. For this reason
we call the Theorem 2.5 Maxwell-Whiteley Theorem. The Italian mathemati-
cian Luigi Cremona set Maxwell’s work in a clearer form [32]. This is why
Theorem 2.5 is also known as the Maxwell-Cremona correspondence. Cremona
also introduced slightly different reciprocal diagrams. The difference is that
in the Maxwell reciprocals corresponding edges are perpendicular, whereas in
the Cremona reciprocals they are parallel. We refer to [90] for a survey of
Cremona’s work.

There exists stronger versions Theorem 2.5, which include also a connection
between the sign of the ωij stresses and curvature of the lifted edge (i, j).
This important condition is studied by us separately later in this section (see
Observation 2.8).

In the thesis we apply the direction of Theorem 2.5 proved by Whiteley
frequently. We therefore give a brief constructive proof of this direction. In
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particular, we show that every plane embedding of a planar 3-connected graph
with an equilibrium stress can be lifted to a 3d-polyhedron. Furthermore we
show how to compute this polyhedron.

Other proofs of the reverse direction of the Maxwell-Whiteley Theorem were
obtained by Hopcroft and Kahn [49] and Richter-Gebert [72]. The following
proof is a modification of Richter-Gebert’s proof. It emphasizes the connection
between reciprocal diagrams and the lifting.

The lifting of an embedded graph G(p) is characterized by a set of planes
in R3. Every face fi ∈ FG is associated with a plane Hi. The lifted face fi is
the orthogonal projection onto Hi along the z-axis. We express a plane Hi by
the equation

Hi : p 7→ zi(p) = 〈p,ai〉+ di.

We use the reciprocal diagrams to define the gradients ai of the planes Hi.
Notice that even for a fixed equilibrium stress there is no unique reciprocal
diagram. Any translation and scaling of a reciprocal diagram produces another
valid reciprocal diagram. To obtain a unique definition of the lifted planes for a
fixed equilibrium stress we fix one reciprocal diagram as the reciprocal diagram
G∗(r) for a given equilibrium stress ω. The rotation of a vector p = (x, y)T by
π/2 is denoted by p⊥ := (−y, x)T . We set

r1 := (0, 0)T

and for any oriented patch (i, j|l, r) we assume

rl − rr = ωij(pi − pj)⊥. (2.2)

Notice that the condition (2.2) holds for every edge in the reciprocal diagram
constructed in the proof for Theorem 2.3. Thus there exists a reciprocal diagram
G∗(r) that fulfills these conditions.

Let the planes Hi be defined by the following equations:

ak := rk,

d1 := 0,

dl := ωij〈pi,p⊥j 〉+ dr (i, j|l, r) is oriented patch of G.

(2.3)

Lemma 2.6. The set of parameters ai and di is well defined.

Proof. The gradients ai are uniquely defined since we fixed a reciprocal diagram
G∗(r). The inductive definition of the scalars di needs deeper investigation.

The value of di can be computed by selecting a sequence of face transitions.
Let Fk := (r, l) be a face transition in G from face fr to face fl. A face transition
(r, l) is valid if there exists an oriented patch (i, j|l, r) for some edge (i, j). For
a face transition Fk, defined by the oriented patch (i, j|l, r), we denote the
associated oriented edge (i, j) by tk.

Let F1, F2, . . . Fu be sequence of face transition with F1 = (1, ·) and Fu =
(·, i). If for any k < u holds that Fk = (·, θ) induces Fk+1 = (θ, ·) the se-
quence can be used to calculate di. In general such a sequence is not unique.
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Therefore, we have to show that, no matter which sequence one chooses for the
computation of di, the obtained value for di is always the same.

Assume we have two sequences of face transitions starting from f1 and
ending at fi. We reverse one of the sequences and link both together. This
leads to a sequence of faces that induce a cycle in the dual graph. Let this cycle
be

C := F1, . . . FK .

If two face transition sequences lead to different values for di then the sum∑
tk=(i,j):k≤K ωij〈pi,p⊥j 〉 would be nonzero. Therefore, it is sufficient to show

that for any face cycle C ∑
tk=(i,j):k≤K

ωij〈pi,p⊥j 〉 = 0 (2.4)

holds.
The cycle C separates the graph into two components which we call I and O.

First we assume that I contains only one vertex with name p1 (this situation
is depicted in Figure 2.4(a)). We can deduce∑

tk=(i,j):k≤K

ωij〈pi,p⊥j 〉 =
∑

(1,j)∈E

ω1j〈p1,p⊥j 〉

=

〈
p1,

∑
(1,j)∈E

ω1jp⊥j

〉

= −

 ∑
(1,j)∈E

ω1j

 〈p1,p⊥1 〉

= 0.

Thus condition (2.4) holds.
In general I contains more than one vertex. In this case we decompose C

into smaller circles Ci with i ∈ I. A circle Ci traverses around pi in the same
orientation as C. We notice that ωij〈pi,p⊥j 〉+ ωij〈pj ,p⊥i 〉 = 0. Thus the edges
with both end points in I “cancel” when summing over all small circles. In
particular we have ∑

tk=(i,j):k≤K

ωij〈pi,p⊥j 〉 =
∑
i∈I

∑
(i,j)∈E

ωij〈pi,p⊥j 〉.

See Figure 2.4(b) for an example. Since we know that for any fixed i the sum∑
(i,j)∈E ωij〈pi,p⊥j 〉 equals zero, the sum induced by the larger cycle is also

zero, which proves the lemma.

After showing that the definition (2.3) gives a set of well defined planes Hi

we still have to prove that the lifting yields a consistent spatial embedding.

Theorem 2.7. For an embedding G(p) with equilibrium stress ω the lifting
specified in (2.3) gives a lifting to a polyhedron.
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p1

(a) (b)

Figure 2.4: The sets I (dots) and O (crosses) for two situations discussed in the
proof of Lemma 2.6. The arrow indicates the cycle C.

Proof. We have to show that for any oriented patch (i, j|l, r) of G the lifted
edge (i, j) is contained in the planes Hl and Hr. It is sufficient to prove this for
the points pi and pj .

We know that dl − dr = ωij〈pi,p⊥j 〉 due to equation (2.3). The rules given
in (2.3) induce furthermore that the difference al − ar equals the vector rl − rr

in the reciprocal diagram G∗(r). Due to condition (2.2) this vector equals
ωij(pi − pj)⊥. We deduce

zl(pi)− zr(pi) = 〈al,pi〉 − 〈ar,pi〉+ dl − dr

= 〈al − ar,pi〉+ (dl − dr)
= 〈ωij(pi − pj)⊥,pi〉+ ωij〈pi,p⊥j 〉
= 0

Evaluating zl(pj)− zr(pj) leads to the same result.

Throughout the thesis we construct liftings incrementally. As a first step
we fix the plane H1 for a designated face f1 by determining a1 and d1. The
iterative step is the following: We select a face fl that is incident to an already
lifted face fr. Let (i, j|l, r) be an oriented patch of G. As a result of (2.3) we

fr

fl

pi

pj

pt

Figure 2.5: Lifting face by face. The shaded area has already been lifted – the
next face to lift is fl.

can calculate

al = ωij(pi − pj)⊥ + ar, (2.5)
dl = ωij〈pi,p⊥j 〉+ dr. (2.6)
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In this way all planes can be computed incrementally. We end with the complete
lifting of G(p).

The signs of the equilibrium stress contain information about the curvature
of the edges in the spatial embedding. Let (i, j) be an edge in the lifting.
Assume that we have the situation depicted in Figure 2.5. For simplicity we
set pi = ar = (0, 0)T . This assumption implies that dl = dr = 0. The height of
the lifted point pt on the plane Hl can be expressed as

zl(pt) = 〈ωij(pi − pj)⊥,pt〉,

= ωij

〈(
yj

−xj

)
,

(
xt

yt

)〉
,

= 2 ωij [t, j, i].

The sign of [t, j, i] is negative. Thus a positive stress ωij produces a negative
z-coordinate for pt. Since fr is located in the xy-plane we can deduce that fl

lies “below” this plane. We identify all edges with ωij > 0 as mountains and
all edges with ωij < 0 as valleys. See Figure 2.6 for an illustration. Knowing

mountain valley

Figure 2.6: The dependence of the sign of ωij and the curvature of the lifting.

the sign pattern for the stresses on all edges allow us to predict the curvature.

Observation 2.8. Let G(p) be an embedding of a planar 3-connected graph
G with equilibrium stress. If the stresses on the boundary edges are negative
and all other stresses positive then the spatial lifting induced by the equilibrium
stress results in a convex 3-polytope.

Stresses and equilibrium stresses in geometric graphs are used intensively
in rigidity theory. We leave this important part out of the chapter because it
is not relevant for the scope of the thesis. We recommend the survey article of
Connelly [27] for the reader interested in this topic.



Chapter 3

An Upper Bound for Realizing
3-Polytopes on the Integer Grid

3.1 Overview

Due to Steinitz’ famous theorem [83] we know that the edge graphs of convex
3-polytopes are 3-connected and planar. Conversely, any 3-connected planar
graph is the edge graph of some 3-polytope. Hence, 3-connected planar graphs
can be seen as combinatorial description of 3-polytopes.

Assume we have given the combinatorial description of a 3-polytope by its
graph G = (V,E). Let n be the number of vertices of G. It is known that
G can be realized as 3-polytope with integer coordinates only. Furthermore,
Richter-Gebert showed that coordinates not larger than O(218n2

) suffice for an
integer embedding [72].

In the following we improve the bound of Richter-Gebert and show that
G can be realized as 3-polytope with integer coordinates not greater than
O(27.55n). This implies that for any 3-polytope a combinatorially equivalent
polytope can be stored with O(n) bits per vertex.

Integer realizations with at most exponentially large coordinates in terms of
n were previously known for polytopes whose graph contains a triangle [72]. For
stacked polytopes a better upper bound exists [95], but it is still exponential.
Recently Ribó showed that also polytopes with at least one quadrilateral face
can be embedded with exponentially large integer coordinates [70].

Embedding a planar 3-connected graph in the plane can be done very effi-
ciently. For a convex free embedding of a planar graph an O(n) × O(n) grid
is sufficient [33, 79]. This is also true if the embedding has to be convex [19].
A strictly convex drawing can be realized on an O(n2) × O(n2) grid [14]. In
higher dimension it is known that there are 4-polytopes that cannot be realized
with rational coordinates. Moreover a 4-polytope that can be realized on the
grid might require coordinates that are doubly exponential in the number of its
vertices [72, 73].
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Road map for an algorithm. In the following we present an embedding
algorithm to realize G as integral 3-polytope. The algorithm works in three
stages. In the first stage we construct a two-dimensional non-crossing embed-
ding of G. The 2d embedding is chosen in such a way that it supports an
equilibrium stress. In the second stage of the algorithm we lift the plane em-
bedding to R3. This is based on the observations made in Chapter 2. Finally,
in the last stage, we compute appropriate scaling factors and scale the embed-
ding such that it uses integer coordinates only. A careful analysis of the whole
algorithm gives the improved upper bound for the integer coordinates.

3.2 Constructing a Plane Embedding

The objective of the first stage of the algorithm is to embed G in the xy-plane.
The embedding should be non-crossing and it should support an equilibrium
stress. An embedding that supports no equilibrium stress is useless for any
approach that follows the road map of our algorithm. As a consequence of the
Maxwell-Whiteley Theorem such a plane embedding cannot be lifted to R3.

We use the spring embedding method of Tutte [86, 87] to construct a non-
crossing convex embedding that supports an equilibrium stress. We first de-
scribe the spring embedding method as black box. The spring embedding needs
four ingredients: the graph G, a specified outer face f0, the coordinates for the
vertices of f0, and finally a positive stress ω for any edge that is not on the
outer face. It only makes sense to place the outer face as convex polygon. The
coordinates of f0 have to respect this fact. Tutte’s method processes these in-
puts and produce the coordinates for all interior vertices. The embedding is
non-crossing convex and every interior point is in equilibrium with respect to
the stress ω. Therefore, the spring embedding seems to be the right method to
embed G in the plane. Notice that the equilibrium stress is only partial. The
vertices of the face f0 are not in equilibrium. The good news is that we have
not specified the stresses on the edges of f0 yet. Our hope is to find appropriate
stresses for these edges such that all vertices are in equilibrium. Unfortunately,
this is not always possible. It depends on the location we gave the boundary
vertices. Only certain positions for the vertices of f0 result in an embedding
that can be extended to an equilibrium embedding.

To obtain a strategy that gives a complete equilibrium embedding we take
a closer (and more formal) look at the spring embedding. Let k be the number
of vertices in f0. For simplicity we want k as small as possible. Euler’s formula
implies that k is at most 5. We assume that the vertices in G are labeled in such
a way that the first k vertices belong to f0 in cyclic order. Let B := {1, . . . , k}
be the index set of the boundary points and let I := {k + 1, . . . , n} denote the
index set of the interior points. The edges of f0 are called boundary edges, all
other edges interior edges. Tutte’s spring embedding works with any positive
stress for the interior edges. For simplicity we set all stresses on interior edges
to 1.

Let A be the adjacency matrix of G without the boundary edges and let D
be the diagonal matrix of row sums of A. We subdivide A and D into block
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matrices indexed by the vertex sets I and B. The matrix DI − AII is called
the reduced Laplacian matrix L̄ of G.

The location of the boundary face is given by the vectors xB = (x1, . . . , xk)T

and yB = (y1, . . . , yk)T . As a consequence of the spring embedding the position
of the of the interior points xI = (xk+1, . . . , xn)T and yI = (yk+1, . . . , yn)T can
be computed with help of the equilibrium condition (2.1). In particular,

xI = L̄−1AIBxB,

yI = L̄−1AIByB.
(3.1)

So far we can guarantee equilibrium for the inner vertices:

∀i ∈ I
∑
pj

ωij(pi − pj) = 0. (3.2)

For the boundary vertices we define the vectors F := {F1, . . . ,Fk} as the non-
resolving forces which arise at the boundary vertices and cannot be canceled
by the interior stresses:

∀i ∈ B
∑
pj

ωij(pi − pj) =: Fi. (3.3)

The forces F depend on the location of the boundary points and the combi-
natorial structure of G. Notice that changing the coordinates of the boundary
face changes the forces F . The following lemma helps to express this depen-
dence.

Lemma 3.1 (Substitution Lemma). There are nonnegative weights ω̃ij =
ω̃ji, for i, j ∈ B, independent of p, such that the resulting forces at the boundary
vertices i ∈ B are obtained by

Fi =
∑

j∈B:j 6=i

ω̃ij(pi − pj). (3.4)

The weights ω̃ are multiples of 1/ det L̄.

Proof. Let Fx denote the vector (F x
1 , . . . , F x

k )T , where F x
i is the x-coordinate

of the force Fi. Let A and D be defined as in the definition for the reduced
Laplacian matrix. We rephrase (3.3) as Fx = DBxB − ABIxI . With help of
(3.1) we substitute xI and obtain

Fx = DBxB −ABI L̄
−1AIBxB

= DBxB −ABI(DI −AII)−1AIBxB

=: ÃxB.

For the y-coordinates, we obtain a similar formula with the same matrix Ã.
We define ω̃ij as the entries ãij of Ã. Since ABI = (AIB)T , the matrix Ã is
symmetric and therefore ω̃ij = ω̃ji holds.

To show that the expression Fx = ÃxB has the form stated in (3.4) we have
to check that all row sums in Ã equal 0. Let 1 denote the vector where all entries
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are 1. We know that AII1+AIB1 = DI1 and therefore (DI−AII)−1AIB1 = 1.
Plugging this expression into Ã1 = DB1 − ABI(DI − AII)−1AIB1 gives us
Ã1 = DB1−ABI1, which equals (0, . . . , 0)T .

The matrix Ã can be written as a rational expression whose denominator
is the determinant of DI − AII = L̄, and thus the weights ω̃ are multiples of
1/ det L̄.

Notice that the ω̃ values are independent of the location of xB and yB, they
only depend on the combinatorial structure of G. In other words, the stresses
ω̃ij store all the necessary information about the combinatorial structure of G
we need. Thus, we have a compact (constant) description of the structure of
G that is responsible for the forces F . We name the stresses ω̃ substitution
stresses to emphasize that they are used as a substitution for the combinatorial
structure of G.

For the later analysis of the grid size it is necessary to bound the substitution
stresses.

Lemma 3.2. Any substitution stress ω̃ij is bounded by

0 ≤ ω̃ij < n− k.

Proof. The substitution stresses are independent on the location of f0. There-
fore, we can choose the positions for the boundary points freely. We place
vertex pi at position (0, 0)T . Let the x-coordinate of all other boundary ver-
tices be 1. The stress ω̃ij is the x-part of Fj and therefore by (3.3) we have
ω̃ij =

∑
k∈I ωjk(xj − xk). This sum consists of |I| positive summands all less

than 1 (remember that all ω’s are 1). Thus we have 0 ≤ ω̃ij < n− k.

Next we decide how to locate the boundary face such that the forces F can
be canceled out by some stress on the boundary edges. The boundary stresses ω
can be expressed as a linear equation system (Fi = 0, i = 1, . . . , k). This system
is over constrained and therefore we regard it as a system where the coordinates
xB and yB appear as variables too. The extended non-linear system consists
of the 2k equations given in (3.4) plus the following 2k equations

∀i ∈ B : ωi,suc(i)(pi − psuc(i)) + ωi,pre(i)(pi − ppre(i)) = −Fi, (3.5)

where suc(i) denotes the successor of vi and pre(i) denotes the predecessor of
vi at f0 in cyclic order. The system is now under constrained. To solve it, we
fix as many boundary coordinates as necessary to obtain a unique solution. We
continue with a case distinction on k to guarantee the convexity of the outer
face.

Case 1: G contains a triangular face

The triangular case is easy: we can position the boundary vertices at any
convenient position. We choose:

p1 =
(

0
0

)
,p2 =

(
1
0

)
,p3 =

(
0
1

)
. (3.6)
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Lemma 3.3. If the smallest face of G is a triangle and we place the boundary
vertices as stated in (3.6) then the boundary forces can be resolved.

Proof. We embed G as spring embedding and calculate the substitution stresses.
After setting ω12 = −ω̃12, ω23 = −ω̃23, ω13 = −ω̃13 all points are in equilibrium.

Case 2: G contains a quadrilateral but no triangular face

If f0 is a quadrilateral we have to fix some coordinates of the boundary vertices
such that it is possible to cancel the forces F . A unique solution can be obtained
by setting

p1 =
(

0
0

)
,p2 =

(
1
0

)
,p3 =

(
2
y3

)
,p4 =

(
0
1

)
. (3.7)

Under this assumption, we obtain

ω12 = −2ω̃13 − ω̃12,

ω23 = ω̃24 − 2ω̃13 − ω̃23,

ω34 = − ω̃24

2
− ω̃34,

ω14 =
ω̃24ω̃13

ω̃24 − 2ω̃13
− ω̃14,

y3 =
ω̃24

2ω̃13 − ω̃24
.

(3.8)

We assume that ω̃13 ≥ ω̃24. (Otherwise we cyclically relabel the vertices of
f0.) Thus y3 > 0 and f0 forms a convex face.

Notice that the substitution stresses ω̃ij between adjacent vertices (on the
boundary) are irrelevant. The forces resulting by the boundary stresses ω̃ij

can be directly canceled by the corresponding stresses ωij . This can also be
observed by looking at the solution (3.8) of the corresponding equation system:
Boundary stresses do not appear in the solution for y3 and furthermore the
sum ω̃ij +ωij for boundary edges (i, j) does not depend on any other boundary
stress either.

Lemma 3.4. If the smallest face of G is a quadrilateral and we place the
boundary vertices as stated in (3.7) and (3.8), then f0 forms a convex polygon
and the boundary stresses in (3.8) cancel the forces F .

Case 3: G contains no triangular and no quadrilateral face

The case if the smallest face of G is a pentagon is more complicated. We have(
5
2

)
= 10 substitution stresses ω̃ij , but the adjacent ones do not count (by the

same reasons given in the previous case). So we are left with five “diagonal”
substitution stresses ω̃ij .

Like in the previous cases we determine a unique solution of the equation
system by fixing some of the coordinates of the boundary face. However, we
have to make more effort to guarantee the convexity of f0. The following lemma
helps us here:
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Lemma 3.5. We can relabel the boundary points for any stress (ω̃ij)1≤i,j≤5

such that
ω̃35 ≥ ω̃24 and ω̃25 ≥ ω̃13.

None of the interior stresses ω̃ij is zero.

Proof. Without loss of generality we assume that the largest stress on an interior
edge is ω̃35. If ω̃25 ≥ ω̃13 we are done. Otherwise we relabel the vertices by
exchanging p3 ↔ p5 and p1 ↔ p2. To see that none of the interior ω̃ values is
zero take a look at the proof of Lemma 3.2. As a consequence of the construction
there, ω̃ij can only be zero if there is no interior edge incident to i in G. In this
case (remember G is 3-connected) the triangle spanned by pi, pi−1 and pi+1 is
contained in G. This contradicts the assumption that the smallest face of G is
a pentagon.

For the rest of this section we label the vertices such that Lemma 3.5 holds.
The way we embed the f0 depends on the substitution stresses ω̃ij .
Case 3A:
We assume that

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 > ω̃35ω̃25. (3.9)

In this case we assign

p1 =
(

0
0

)
,p2 =

(
1
0

)
,p3 =

(
1
1

)
,p4 =

(
0
1

)
,p5 =

(
x5

y5

)
.

p1 p2

p3p4

p5

p1

p2

p3

p4

p5

(a) Case 3A (b) Case 3B

Figure 3.1: Placement of the boundary vertices.

Figure 3.1 (a) illustrates the location of the points. Together with the
equations (3.4) and (3.5) we obtain as solution for p5:

x5 =
(ω̃13 − ω̃25 − ω̃24)(ω̃35 + ω̃13 − ω̃24)

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25
,

y5 =
ω̃35 + ω̃13 − ω̃24

ω̃35 + ω̃25
.
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The boundary stresses ωij are more complicated expressions they are not nec-
essary for further computations. For completeness we have listed them in Ap-
pendix A.

We have to check that f0 forms a convex polygon. Clearly, y5 > 0, since the
ω̃ij ’s are greater zero and ω̃35 ≥ ω̃24. Moreover y5 < 1, because ω̃25 ≥ ω̃13. The
numerator of x5 is negative and due to (3.9) the denominator of x5 is positive.
Therefore, x5 < 0 and f0 forms a convex polygon.
Case 3B:
We assume the opposite of (3.9), namely

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 ≤ ω̃35ω̃25. (3.10)

The coordinates for the boundary vertices are chosen as

p1 =
(

0
−1

)
,p2 =

(
1
y2

)
,p3 =

(
1
y3

)
,p4 =

(
0
1

)
,p5 =

(
−1
0

)
.

See Figure 3.1(b) for an illustration. This leads to the solution

y2 = −2
ω̃24ω̃13 + ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35 − ω̃2

13 − 2ω̃13ω̃35 − ω̃35ω̃14

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
,

y3 = 2
ω̃24ω̃13 + ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35 − ω̃2

24 − 2ω̃24ω̃25 − ω̃14ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
.

The boundary stresses ωij are again complicated expressions and listed only in
the Appendix.

The outer face is convex if −2 < y2 < y3 < 2. The inequalities −2 < y2 and
y3 < 2 are equivalent to

−ω̃2
13 − ω̃13ω̃35 − ω̃35ω̃14 + ω̃13(ω̃24 − ω̃35) < 0 and

−ω̃2
24 − ω̃24ω̃25 − ω̃14ω̃25 + ω̃24(ω̃13 − ω̃25) < 0.

Both inequalities hold, because we add only negative summands on the left
side. It remains to check if y2 − y3 < 0. First we get rid of the denominator
and bring all negative summands on the right side. This leads to the equivalent
inequality

ω̃2
13 + ω̃2

24 + 2ω̃13ω̃35 + 2ω̃24ω̃25 + ω̃25ω̃14 + ω̃35ω̃14 < 2ω̃24ω̃35 + 2ω̃25ω̃13

+ 4ω̃25ω̃35 + 2ω̃24ω̃13.

(3.11)

We observe that ω̃2
13 ≤ ω̃25ω̃13 and ω̃2

24 ≤ ω̃24ω̃35. Because of the assumption
for case 3B we have 4ω̃35ω̃25 > 2ω̃13ω̃35 + ω̃24ω̃25 + ω̃25ω̃14 + ω̃35ω̃14. Therefore,
the right side of (3.11) is greater than its left side, which shows that y2 < y3

and f0 forms a convex pentagon. This completes the case distinction and we
conclude with:

Lemma 3.6. If the smallest face of G is a pentagon and we place the boundary
vertices as discussed above, then the outer face will be embedded as a convex
polygon and the computed boundary stresses cancel the forces F .
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We defined four different ways to embed G. The selected embedding depends
on the combinatorial structure G. If G contains a triangular face we say it is
of type 3. If it contains a quadrilateral but no triangular face G is of type 4.
Otherwise the embedding depends on the substitution stresses induced by the
combinatorial structure of G. If (3.9) holds (case 3A) G is of type 5A otherwise
(case 3B) we say G is of type type 5B.

3.3 Lifting the Plane Embedding

We continue with the second stage of the algorithm and lift the plane embedding
of G to R3. The technique how to lift an embedding with equilibrium stress is
described in Chapter 2. We compute a plane Hi for every face fi iteratively.
The planes Hi are determined by a gradient ai and a scalar di. We have

Hi : zi(p) := 〈ai,p〉+ di.

Since the embedding of f0 is convex, the boundary stresses must necessarily
be negative, since otherwise the boundary vertices could not be in equilibrium
with all interior stresses being positive. Thus we need not explicitly check the
sign of the boundary stresses. The sign pattern of the stress implies that the
lifting of the plane embedding gives a convex polytope (see Observation 2.8).

We begin the lifting by fixing the plane H1, which contains an interior face
f1. For simplicity we set a1 = (0, 0)T and d1 = 0. We compute the remaining
planes face by face by using equation (2.5) and (2.6). Notice that it is sufficient
to compute the height of every vertex only once. Thus, it is not necessary to
compute the parameters of H0 since we can determine the heights of p1, . . .pk

by some plane Hi of an interior face. Therefore, it is sufficient to use stresses on
interior edges to compute the lifting. This simplifies the later analysis because
all interior stresses are 1, whereas the boundary stresses are more complicated
expressions.

3.4 Scaling to Integrality

In the third stage of the algorithm we compute scaling factors such that the
embedding will have integer coordinates. We use different scaling factors for the
x-direction and y-direction. Let Sx be the scaling factor for the x-coordinates
and Sy be the scaling factor for the y-coordinates.

Lemma 3.7. If the plane embedding consists of integer coordinates only, the
z-coordinates of the lifted embedding are integral as well.

Proof. The computation of the lifting starts with the face f1. The gradient a1

and the value d1 are integers. The parameters ai, di of the other planes Hi can
be computed with help of equation (2.5) and (2.6). By an inductive argument
it can be observed that (for interior faces) these parameters are integral as well.
Evaluating the functions zi(p) boils down to multiply and add integers. Hence
all z-coordinates are integral.
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As a consequence of Lemma 3.7 it is sufficient to scale to integer x and
y-coordinates. Furthermore we observe:

Lemma 3.8. If the boundary points are integral, the spring embedding yields
coordinates that are multiples of 1/ det L̄.

Proof. The interior plane coordinates are a result of equation (3.1). By Cramer’s
rule every coordinate can be expressed as

xi = det L̄(i)/ det L̄,

where det L̄(i) is obtained from L̄ by replacing the i-th column of L̄ by AIBxB.
Since det L̄(i) is integral, det L̄ is the denominator of xi. The same holds for
yi.

It remains to scale the plane embedding such that the boundary vertices
get integer coordinates. Let SB

x be the scaling factor that gives integer bound-
ary x-coordinates and SB

y be the scaling factor that gives integer boundary
y-coordinates. Due to Lemma 3.8 Sx := SB

x det L̄ and Sy := SB
y det L̄ yield

valid scaling factors. Since we choose integral scaling factors SB
x and SB

y no
integer coordinate is scaled to a non-integer.

Let us now observe which factors are necessary to scale to integer boundary
coordinates. Clearly the scaling factors depend on the type of G. If G is of
type 3 then we need not to scale, since all boundary coordinates are either 0 or
1. If G is of type 4 we have to scale the y-coordinates only. We multiply with
SB

y := (2ω̃13−ω̃24) det L̄, which cancels the denominator of the only non-integer
coordinate y3. Notice that due to the Substitution Lemma SB

y is an integer and
therefore all integer boundary vertices remain integers.

If G is of type 5A we have to scale such that x5 and y5 become integral.
This is achieved by

SB
x = (ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25)(det L̄)2

SB
y = (ω̃35 + ω̃25) det L̄.

It can be easily checked that these factors are integral as well as SB
x x5 and

SB
y y5.

It remains to introduce scaling factors when G is of type 5B. Since the only
non-integer boundary coordinates are y2 and y3, we need to scale in y-direction
only. We choose

SB
y = (ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)2.

Again we observe that due to the Substitution Lemma Sy is integral as well as
Syy2 and Syy3.

For every type of G there is a pair scaling factors such that the scaled
boundary points are integral. Table 3.1 summarizes the discussion and lists the
final scaling factors depending on the type of G.
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type of G scaling factors

Sx = det L̄
3

Sy = det L̄

Sx = det L̄
4

Sy = (2ω̃13 − ω̃24)(det L̄)2

Sx = (ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25)(det L̄)3
5A

Sy = (ω̃35 + ω̃25)(det L̄)2

Sx = det L̄
5B

Sy = (ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)3

Table 3.1: The scaling factors Sx and Sy for the different types of G.

3.5 Analysis of the Grid Size

To bound the size of the coordinates of the integer embedding it is crucial to
obtain a good bound for det L̄. There exists a connection between the number
of spanning trees in G and det L̄. Let us first define:

Definition 3.9. Let B a subset of vertices of G. A subgraph of G is called
spanning B-forest if

• it consists of |B| vertex disjoint trees covering all vertices of G,

• the roots of the trees are the vertices B.

In the following we use the set of boundary vertices B for the set B. Let
FB(G) denote the number of spanning B-forests of G and T (G) the number of
spanning trees of G. A generalization of the Matrix-Tree-Theorem is given in
[70]. It states that the number of spanning B-forests of G is precisely det L̄.
Moreover we can bound FB(G) by T (G).

Lemma 3.10. Let G be a planar graph with a distinguished face and let B
be the set of vertices of this face. The number of spanning B-forests of G is
bounded from above by

FB(G) ≤ T (G).

Proof. Every spanning B-forest can be turned into a spanning tree by adding all
boundary edges except (1, 2). No two distinct spanning B-forests are associated
with the same spanning tree. Therefore, the number of spanning trees exceeds
the number of spanning B-forests.

Notice that the bound of Lemma 3.10 holds only if the vertices B are the
vertices of a single face, which is true in our setting.

It is easy to give an exponential upper bound for T (G):
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Proposition 3.11 (Ribó Mor [70]). 1. The number of spanning trees in
a graph is bounded by the product of all vertex degrees:

T (G) ≤
∏

i

deg(vi).

2. For a planar graph, we have
∏

i deg(vi) < 6n.

Proof. 1. Pick an arbitrary vertex v1. Consider all directed graphs that are
obtained by choosing an outgoing edge in G out of every vertex except v1.
The number of these directed graphs is given by

∏
i6=1 deg(vi). By ignoring the

edge orientations, one obtains all spanning trees (and many graphs that are not
spanning trees).

2. This follows from the arithmetic-geometric-mean inequality and the fact
that

∑
i deg(vi) < 6n, which is a consequence of Euler’s formula.

Sharper bounds for T (G) have been given by Ribó Mor [70], see also Rote
[74]. These bounds take into account whether G contains triangular or quadri-
lateral faces:

if G is of type 3: FB(G) ≤ 5.3̄n,

if G is of type 4: FB(G) ≤ 3.529988n,

if G is of type 5A/5B: FB(G) ≤ 2.847263n.

Since we know upper bounds for the ω̃ values (by Lemma 3.2) and det L̄
(by the previous discussion) we can bound the size of the integer coordinates of
the embedding of G. We start with bounding the x and y-coordinates. Let ∆x
denote an upper bound for the difference between the largest and the smallest
x-coordinate. ∆y is defined in the same way for the y-coordinates.

Again we have to discuss the 4 cases separately. If G is of type 3 then clearly
∆x = ∆y = det L̄. If G is of type 4 the largest x-coordinate is 2Sx and the
smallest zero. Thus we have ∆x = 2det L̄. The largest y coordinate is obtained
at y4 (remember ω̃13 ≥ ω̃24), therefore ∆y = (2ω̃13 − ω̃24)(det L̄)2. Let us now
assume G is of type 5A. The value of ∆x is given by x2 − x5. Evaluating this
expression leads to

∆x = (ω̃25(ω̃13 + ω̃14) + ω̃35(ω̃14 + ω̃25)− (ω̃13 − ω̃24)2)(det L̄)3.

Since the smallest y-coordinate is zero we have ∆y = y3, which equals (ω̃35 +
ω̃25)(det L̄)2. It remains to discuss the case if G is of type 5B. Before the
scaling the coordinates fulfill −1 ≤ x ≤ 1 and −2 < y < 2. Combining these
inequalities with the scaling factors yields ∆x = 2det L̄ and ∆y = 4(ω̃24ω̃35 +
ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)3. We sum up the results for ∆x and ∆y in Table 3.2
and Table 3.3.

We finish the analysis of the necessary grid size by calculating the size of the
z-coordinates. We observe that all z-coordinates are negative. Thus it suffices
to compute the smallest z-coordinate.
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type of G ∆x

3 det L̄

4 2 det L̄

5A (ω̃25(ω̃13 + ω̃14) + ω̃35(ω̃14 + ω̃25)− (ω̃13 − ω̃24)2)(det L̄)3

5B 2 det L̄

Table 3.2: The values ∆x depending on the type of G.

type of G ∆y

3 det L̄

4 (2ω̃13 − ω̃24)(det L̄)2

5A (ω̃35 + ω̃25)(det L̄)2

5B 4(ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35)(det L̄)3

Table 3.3: The values ∆y depending on the type of G.

Lemma 3.12. Let G(p) be an integral embedding of a graph with n points with
equilibrium stress ω and let the stress on all interior edges be 1. The difference
between two x-coordinates is less than ∆x and the difference between two y-
coordinates less than ∆y. Then we have an integral lifting with

0 ≤ zi < 2n∆x∆y

for all z-coordinates zi.

Proof. Due to Lemma 3.7 we know that there exists an integral lifting for the
setting described in the lemma. We place an interior face f1 in the xy-plane and
compute the lifting by using the stress on interior edges. We choose as face f1

a face that shares an edge with the outer face f0. Furthermore we assume that
the boundary point farthest away from the line that contains f1 ∩ f0 is located
in the origin (let this point be p1). This is no restriction since a translation
of the embedding does not interfere with the lifting. The lifted polytope lies
between the planes H0 and H1 and all its z-coordinates are negative. We notice
that the smallest z-coordinate is realized at p1.

Let fk be an interior face that containes p1. The z-coordinate of p1 equals
zk(p1), which is given as

z1 = zk(p1) = 〈ak,p1〉+ dk = dk.

The value dk can be computed with help of the equation (2.6). Let C be a
set of interior edges that are crossed by “walking” from f1 to fk. Due to Euler’s
formula G has at most 2n−4 triangles. No face is entered twice and thus every
face is providing exactly one edge (the edge where the “walk” leaves the face)
to the set C. This implies that C includes at most 2n− 3 edges. We ignore the
orientation of the edges at this place since it does not matter for bounding dk.
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We deduce

−dk ≤
∑

(i,j)∈C

|〈pi,p⊥j 〉|

≤ 2n max{|〈pi,p⊥j 〉| |1 ≤ i, j ≤ n}.

For two points pi,pj we have

〈pi,p⊥j 〉 = |xiyj − xjyi| = det

 xi xj 0
yi yj 0
1 1 1

 = 2[i, j, 1].

Thus 〈pi,p⊥j 〉 equals two times the negative area of the triangle spanned by
pi,pj and p1. This triangle is contained inside the embedded outer face f0 and
also inside a rectangle with edge lengths ∆x and ∆y. A rectangle has at least
twice the area of an inscribed triangle. To see this, observe that an inscribed
triangle with the largest area must have one of the rectangle edges as base and
the other as height. Thus 2[i, j, 1] > −∆x∆y and the smallest z-coordinate is
larger than −2n∆x∆y. Translating the polytope such that all z-coordinates
become positive yields the bound of the lemma.

By applying Lemma 3.12 we compute the bounds for the z-coordinates using
the values of ∆x and ∆y listed in Table 3.2 and 3.3. We conclude with the main
theorems of this chapter.

Theorem 3.13. Every 3-polytope with n vertices whose graph contains at least
a triangle can be realized on an integer grid with

0 ≤ xi, yi < 5.3̄n,

0 ≤ zi < 2n 28.4̄n.

Theorem 3.14. Every 3-polytope with n vertices whose graph contains at least
one quadrilateral face can be realized on an integer grid with

0 ≤ xi < 2 3.531n,

0 ≤ yi < 2n 12.462n,

0 ≤ zi < 8n2 46.381n.

For the most general theorem we have to combine the analysis for the cases
5A and 5B. We rotate the embedding if G is of type 5B by exchanging the x
and y-coordinates to obtain a better bound. The largest absolute z-coordinate
is realized in case 5A.

Theorem 3.15. Every 3-polytope with n vertices can be realized on an integer
grid with

0 ≤ xi < 16n2 23.083n,

0 ≤ yi < 2n 8.107n,

0 ≤ zi < 16n4 187.128n.
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Notice that we can improve the constant factor of the z-coordinate by a more
careful analysis. This can be achieved by placing the face f0 in the xy-plane
and then compute the lifting using the interior edges but also one boundary
edge. As mentioned before the structure of the stresses on the boundary edges
is more complicated. Since the improvement would only be a constant factor
we decided to present the easier analysis with help of Lemma 3.12. The more
complicated analysis can be found at [71].

We see that exponentially large coordinates suffice to embed G as 3-polytope.
The exponential growth of the size of the coordinates is determined by (det L̄)5.

Corollary 3.16. Every 3-polytope with n vertices can be realized with integer
coordinates of size O(27.55n).

3.6 An Example: The Dodecahedron

The regular dodecahedron is one of the five Platonic solids. It has 20 vertices,
30 edges and 12 faces that are regular pentagons. Figure 3.2 shows the graph
and a 3-dimensional realization of the dodecahedron. This example is moti-
vated by the fact that all faces of the dodecahedron are 5-gons. Thus we have
to apply the more involved methods for an integer embedding. Since the do-

Figure 3.2: The dodecahedron and its graph.

decahedron is symmetric it makes no difference which face we choose as the
outer face. We start the computation with calculating the ω̃ values. We obtain
for all the stresses ω̃13, ω̃14, ω̃24, ω̃25 and ω̃35 the value 36/449. The fact that all
these stresses have the same value is again due to the symmetry of the dodec-
ahedron. Because the outer face is a 5-gon, we have to check if the graph of
the dodecahedron is of type 5A or 5B. Evaluating (3.9), shows that the graph
is of type 5A. With help of the ω̃ values we compute the coordinates of the
boundary vertices. We obtain

p1 =
(

0
0

)
,p2 =

(
1
0

)
,p3 =

(
1
1

)
,p4 =

(
0
1

)
,p5 =

(
−1/3
1/2

)
.

We apply Tutte’s method to compute the coordinates of the interior points. The
result is depicted in Figure 3.3. Next, we scale the 2d-embedding as described
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Figure 3.3: The plane embedding of the dodecahedron.

plane Hi ai/(det L̄) di/(det L̄)2

i = 2 (15192,−563283072)T 0
i = 3 (15192,−1545537024)T 31754305760256
i = 4 (0,−2108820096)T 68173936063488
i = 5 (−2520,−1289499264)T 34719614060544
i = 6 (2592,−1054410048)T 20087475047424

Table 3.4: The planes Hi defining the lifting of the dodecahedron.

in Section 3.4. We obtain det L̄ = 403202. This imples the scaling factors

S̄x = 1 264 158 727 403 904,

S̄y = 26 069 428 512.

We continue with the lifting of the plane embedding to R3. The faces are
lifted incrementally as described in Section 3.3. It is sufficient to lift the five
faces f2, . . . , f6 marked in Figure 3.3. All vertices are incident to one of these
faces. Lifting the faces in increasing order yields the planes described in Ta-
ble 3.4. Finally, we compute the coordinates of the polytope by plugging
the 2d-coordinates into the equation for the corresponding plane. The result
is shown in Figure 3.4. We have scaled the z-coordinates down to obtain an
illustrative picture. We observe that the highest absolute coordinate is

z3 = −11 083 163 098 782 678 334 820 352.

Notice that |z3| is approximately 283.19, which is indeed quite large, but smaller
than the bound 2151 of Corollary 3.16.

The computed embedding allows a smaller integer realization. Due to the
fact that the greatest common divisor of the x-coordinates is 938499426432 and
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Figure 3.4: Two pictures of the dodecahedron embedded with our algorithm
with scaled z-axis. The right picture includes also the equilibrium stressed
plane embedding.

the greatest common divisor of the y-coordinates equals 29030544, scaling down
by these factors gives a smaller integer embedding. We obtain an integral plane
embedding on the [−27, 1347]× [0, 898] grid. The corresponding z-coordinates
range between zero and −406497.



Chapter 4

Towards a Lower Bound for Grid
Embeddings of 3-Polytopes

4.1 Lower Bound for Integer Grid Embeddings

In the previous chapter we showed how to embed a planar 3-connected graph G
with n vertices as 3-polytope with integer coordinates. Our algorithm produces
coordinates exponential in n. Are exponential coordinates really necessary or
can we do better and realize the polytope with coordinates polynomial in the
size of n? We discuss the question in the following. Based on experiments we
provide several arguments for the conjecture:

Conjecture 4.1. There is a family of planar 3-connected graphs that cannot
be realized as 3-polytopes with integer coordinates polynomial in the size of the
number of vertices of the graph.

Before we talk about the reasons which let us believe that Conjecture 4.1
is true, we study provable lower bounds. Actually the best known lower bound
is based on a 2d problem. The orthogonal projection of the polytope into any
plane has to be a strictly convex embedding of G. Due to Acketa and Žuńıć
[1, 2] we know that embedding a simple polygon strictly convex on the grid
requires coordinates of size Ω(n3/2) (see also Thiele [85]). It is also possible to
have one coordinate in O(n) at the expense of the other (e.g. the n-gon can be
also realized on a O(n)×O(n2) grid).

Consider the graph depicted in Figure 4.1. The graph contains two convex
(n/2)-gons. Since the two large faces touch each other they have to lie on
planes with different gradient in the 3d embedding. Only one face of the large
faces can be aligned orthogonally to the xy-plane. The orthogonal projection
of the other large face into the xy-plane has to be a 2d integral realization.
Thus, the xy-coordinates are bounded by Ω(n3/2). On the other hand, the
same argument holds for the yz-plane and therefore also the yz-coordinates
are bounded by Ω(n3/2). This implies that at least one coordinate has to be
in Ω(n3/2). Furthermore, we can deduce that if one coordinate is bounded by
O(n3/2) the other coordinates must be bounded by Ω(n3/2). As in the 2d setting
one can improve the size of one coordinate at the expense of another.
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Figure 4.1: Lower bound example that requires a coordinate of size Ω(n3/2)
when embedded as 3-polytope on Z3.

4.2 Experimental Results

To justify Conjecture 4.1 we introduce a family of graphs with large z-coordinates
for some of their natural embeddings. We denote the graphs of the family by
Γk = ({v1, . . . , vk}, Ek), where the parameter k indicates the number of vertices
of the graph. We define the graphs Γk inductively. Γ4 is the complete graph on
four vertices K4. For any k > 4 we define Γk by its set of edges

Ek :=

{
Ek−1 \ {(1, k − 1)} ∪ {(1, k), (2, k), (k, k − 1)} k is odd,
Ek−1 \ {(2, k − 1)} ∪ {(1, k), (2, k), (k, k − 1)} k is even.

See the graph Γ10 as example shown in Figure 4.2.

1 2

3

10

4

Figure 4.2: The graph Γ10.

Our goal is to find small grid embeddings of the graphs Γk for small values
of k. We proceed as follows: We choose two natural plane embeddings of Γk by
giving every vertex vi a coordinate xi and yi. Then we compute the smallest
integral lifting of the plane embedding by solving a linear integer program (IP).

Before we show how to set up an IP-formulation for the lifting we introduce
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two natural embeddings for Γk. We give the first three vertices the coordinates:

x1 = −2k , y1 = −k,

x2 = 2k , y2 = −k,

x3 = 0 , y3 = 0.

The coordinates of the first embedding are chosen as

xk = (−1)k, yk = −k.

The coordinates of the second embedding are chosen as

xk = −b(i− 3)/2c, yk = −k.

Convince yourself that these embeddings are strictly convex by looking at the
examples in Figure 4.3.

embedding 1 embedding 2

Figure 4.3: The two natural embeddings for Γ7.

The computation of the minimal integer lifting is done by the following IP.
The variables in the program are the z-coordinates of the vertices and a special
variable called zmax. Our objective is to minimize zmax under the constraint
that all other z-coordinates are not greater than zmax and positive. Further-
more, we have to model the fact that all edges of the lifted surface are convex.
An edge (i, j) results in a convex edge, if the oriented tetrahedron spanned by
the oriented patch (i, j|l, r) has positive volume. The oriented volume can be
expressed as follows (we make use of the square bracket notation introduced in
Chapter 2):

zi[j, k, l]− zj [i, k, l] + zk[i, j, l]− zl[i, j, k]. (4.1)

It can be observed that (4.1) is integral. Therefore it is at least 1/6 if it is
greater zero. For any of the quadrilateral faces the volume spanned by the
corresponding tetrahedron has to be zero. Plugging everything together gives
the following IP-formulation:

zmax → min,

zi ≤ zmax 3 < i ≤ n,

0 ≤ zi 3 < i ≤ n,

zi[j, k, l]− zj [i, k, l] + zk[i, j, l]− zl[i, j, k] ≥ 1/6 (i, j|k, l) oriented patch,

zi[j, k, l]− zj [i, k, l] + zk[i, j, l]− zl[i, j, k] = 0 (i, k, j, l) quadri. face,
z1, z2, z3 = 0.
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height of the lifting (zmax)
Γk first embedding second embedding

k = 6 161 417
k = 7 15.525 949
k = 8 40.455 43.252
k = 9 346.155 17.330
k = 10 99.888.789 657.882
k = 11 26.288.093 40.596.825
k = 12 199.280.705 8.981.680

Table 4.1: Height of the minimal integer lifting of Γk.

The IP-formulation allows us to compute optimal liftings for small values
of k by computer software. We used CPLEX 10.200 as IP-solver is based on a
branch and bound technique. Solving the IP for Γ13 lasted approximately 32
hours on a dual P4 Xeon 2,6 GHz processor system with 2 GB main memory.
We list the results in Table 4.1. One can observe that even though the 2d-
coordinates are small, the necessary z-coordinates are very large. Notice that
the growth is not monotonic.

Figure 4.4 shows the logarithmic plot of the values listed in Table 4.1. We
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1e+09

6 7 8 9 10 11 12 13

first embedding

second embedding

k

zmax

Figure 4.4: Plot of the experimental results.

depict the optimal solutions for Γ10 in Figure 4.5. Notice that the pictures
are scaled down to get a reasonable illustration. Interestingly, the obtained
embeddings look different. In the first embedding the highest vertex is v4,
whereas in the second embedding vertex v7 defines the peak value.

Since we have only looked at two special plane embeddings, our results are
only a weak evidence for Conjecture 4.1. We believe that the graphs Γk are
candidates for graphs that do not have a polynomial sized integer embedding
as 3-polytope.
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embedding 1 embedding 2

Figure 4.5: The two lifted optimal embeddings for Γ10.





Chapter 5

Optimizing over the Polytope of
Pointed Pseudo-Triangulations

5.1 Introduction to Pseudo-Triangulations

5.1.1 Classification of Pseudo-Triangulations

Pseudo-triangulations are geometric and combinatorial objects. They have con-
nections and applications in many areas like rigidity theory, motion planning
and visibility. They are widely used as data structures for algorithms in com-
putational geometry and topology. We refer to the introduction chapter for a
motivation for the investigation of pseudo-triangulations.

Most generally, a pseudo-triangulation is defined for an augmented polygon,
which is roughly speaking a polygon that might contain interior points. More
formally:

Definition 5.1 (Augmented polygon1, Domain). Let P be a set of n points
in the plane and let D denote a simple polygon whose vertices are a subset of P
and no vertex of P lies outside D. We call the pair (D,P ) augmented polygon.
The set D is called the domain.

A point pi in P has the coordinates xi and yi. If D is not specified, we use
the convex hull of P as domain.

Definition 5.2 (Pseudo-triangle). A pseudo-triangle is a polygon with ex-
actly three vertices whose interior angle is less than π.

See Figure 5.1 for examples of pseudo-triangles. We call a vertex that re-
alizes an angle smaller than π in the interior of a polygon a corner of the
polygon. Every other vertex is named non-corner . The definition of a pseudo-
triangle can be naturally extended for any pseudo-k-gon. Thus, a pseudo-
quadrilateral denotes a polygon with exactly four interior angles smaller than
π.

1The term pointgon is also used for augmented polygon.
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Figure 5.1: Three examples of pseudo-triangles.

Definition 5.3 (Pseudo-triangulation). A pseudo-triangulation of an aug-
mented polygon (D,P ) is a tiling of D into pseudo-triangles, such that every
point in P is a vertex in at least one pseudo-triangle.

If all pseudo-triangles in a pseudo-triangulations are triangles, we obtain a
triangulation. Triangulations are a subclass of pseudo-triangulations.

(a) (b) (c)

Figure 5.2: The same augmented polygon with a pointed pseudo-triangulation
(a) a triangulation (b) and a pseudo-triangulation that is neither pointed nor a
triangulation (c).

There exists another interesting subclass within the set of all pseudo-triangu-
lations. These are the so-called pointed pseudo-triangulations, which have the
property that every vertex of the planar region is incident to an angle greater
than π. If a vertex contains such a big angle it is called pointed . One can
see triangulations and pointed pseudo-triangulations as anti-poles of the set
of all pseudo-triangulation. In the following we abbreviate the term pointed
pseudo-triangulations with ppt. Figure 5.2 shows different examples of pseudo-
triangulations.

If the domain D of the augmented polygon (D,P ) equals the convex hull of
P , we consider the pseudo-triangulation of (D,P ) as the pseudo-triangulation
of the point set P . On the other hand, if the vertices of D equal P we say that
the pseudo-triangulation of (D,P ) is the pseudo-triangulation of the simple
polygon D. In this thesis we study either pseudo-triangulations of point sets or
of simple polygons.
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5.1.2 Properties of Pseudo-Triangulations

We list some properties of pseudo-triangulations for point sets briefly. For a
comprehensive discussion we redirect the interested reader to the survey written
by Rote, Santos and Streinu [76].

Due to Euler’s formula we know that a triangulation with n vertices has
3n− 3− k edges if the outer face is a k-gon. By a counting argument one can
show that a ppt has 2n− 3 edges [84]. Furthermore, a ppt is an embedding of
a minimal rigid graph (also [84]). Conversely any planar minimal rigid graph
can be embedded as ppt [45].

Pseudo-triangulations can be transformed by local operations called (edge
exchanging) flips. A flip exchanges an edge of the pseudo-triangulation. Re-
moving an edge of a pseudo-triangulation creates a pseudo-quadrilateral. There
is exactly one new position for an edge to decompose the pseudo-quadrilateral
into two new (different) pseudo-triangles. See Figure 5.3 for an example of an
edge-exchanging flip. Notice that there exist other types of flips (see [6, 5]).
Throughout the thesis we consider the edge-exchanging flip only and omit the
term edge-exchanging in the following.

Any two pointed pseudo-triangulations can be transformed into each other
by using at most O(n log n) flips [16]. Triangulations can also be transformed
into each other by flips, but in contrast to pointed pseudo-triangulations O(n2)
flips might be necessary. The number of flips that is needed is known as the
flip distance.

Figure 5.3: The edge exchanging flip.

5.1.3 Spatial Embedding of Pseudo-Triangulations

A pseudo-triangulation can represent two-dimensional polyhedral terrains in
R3. We study this phenomenon in the following section. We restrict ourselves
to pseudo-triangulations of simple polygons. The tools discussed here work also
for the general setting with points in the interior of the domain. However, for
our purposes the simple polygon setting is sufficient.

Assume that we have given some height assignment of the points in P . Let
h : P → R be a function that describes this assignment. We write hi for h(pi).

We say that a function f : D → R is locally convex, if f is convex on every
line segment interior in D. For every h we define the function f∗h as follows:

Definition 5.4. For a given h : P → R let the function f∗h : D → R denote the
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maximal locally convex function over D that fulfills the condition

f∗h(pi) ≤ hi, (5.1)

for every pi of P .

Observe that f∗h is unique, because it is the pointwise maximum over all
locally convex functions. It was observed in [6] that f∗h defines a polyhedral
terrain, which we name F∗

h . In the same paper it is shown that the projection of
the non-linearities of F∗

h onto D produces a (subset) of a pseudo-triangulation.
We call this graph PT h.

A pseudo-triangulation that can be represented as PT h is called regular .
Notice that not all pseudo-triangulations are regular. For example two triangles
sharing an edge, where one triangle is contained inside the other, give a pointed
pseudo-triangulation that cannot be represented by a surface F∗

h . Also within
the class of triangulations we have regular and non-regular triangulations. If
we want to emphasize that PT h corresponds to a triangulation we write Th

instead of PT h.
An example of a regular pseudo-triangulation is shown in Figure 5.4. If

the restrictions defined by (5.1) hold with equality (i.e. f∗h(pi) = hi), we call
the vertex pi complete vertex, otherwise, if f∗h(pi) < hi, we call pi incomplete
vertex. Because F∗

h is piecewise linear, the height f∗h(pi) of an incomplete vertex

Figure 5.4: A regular pseudo-triangulation.

is given by a plane that is spanned by three other vertices pa,pb and pc (under
a generic assumption). It was observed in [6] that the incomplete vertex has to
be on a concave chain on the pseudo-triangle with the three corners pa,pb and
pc.

If all vertices of P are complete the pseudo-triangulation induced by F∗
h be-

comes a triangulation. This can be obtained by a set of heights hi whose lower
convex hull in R3 contains the lifted point set P completely. Regular triangu-
lations are also known as the dual of power diagrams, or weighted Delaunay
triangulations [11].

5.1.4 Overview of the Results

In this chapter we present a series of smaller independent results. In Section 5.2
we show that a greedy strategy to construct F∗

h by flips needs superpolynomial



5.2. Improving Flip Sequences 43

many flips, even when every flips brings us “closer” to F∗
h . The results there are

obtained for pseudo-triangulations of simple polygons. In Section 5.3 we intro-
duce two polytopes that can be used to study pointed pseudo-triangulations of
point sets. We use these polytopes in the remaining part of the chapter. In Sec-
tion 5.4 we apply the lifting technique to obtain an relation between pointed
pseudo-triangulations in the two polytopes. The observation in this section
leads to further results which we present in Section 5.5–Section 5.7. Section 5.5
and Section 5.6 study pointed pseudo-triangulations of point sets, the results in
Section 5.7 are obtained for pointed pseudo-triangulations of simple polygons.

5.2 Long Improving Flip Sequences in Simple
Polygons

In the previous section we have studied convex terrains that corresponds to
pseudo-triangulations. We sketch now how to construct not necessary convex
polyhedral terrain as spatial embeddings of pseudo-triangulations. Let (D,P )
define a simple polygon and PT a fixed pseudo-triangulation of it. Let h̄ be
a height assignment for the corners of D. For each choice of h̄ exists a unique
polyhedral terrain F̄h̄ above the domain D that respects h̄ and whose edges
project vertically to (a subset of) the edges of PT [6, Surface Theorem]. Let h
be the extension of h̄ that fulfills

hi :=

{
h̄i if pi is a corner in D

maxj{h̄j} else
.

Due to construction the maximal locally convex function given by (D,P ) and
h defines all non-corners of D as incomplete vertices. Therefore, in F∗

h , every
vertex is incident to an angle greater π and hence PT h is pointed.

The terrain F̄h̄ is not necessarily convex, but it can be transformed to F∗
h

by a sequence of flips. Flipping an edge in PT that is concave at F̄h̄ creates
a pseudo-triangulation PT ′. The newly added edge in F ′

h̄
is convex, but other

convex edges might become concave after the flip. Flipping away all concave
edges result in a sequence of pseudo-triangulations. This process terminates
and the last generated pseudo-triangulation coincides with PT h [6, Optimality
Theorem]. A flip sequence that constantly removes concave edges is called
improving flip sequence. In general flipping to optimality requires more flip
types than the edge-exchanging flip. But if we start with a pointed pseudo-
triangulation PT edge exchanging flips suffice to flip to PT h. For triangulations
the improving flip sequence can be built out of edge exchanging flips as well.

Any improving flip sequence between regular triangulation has length at
most O(n2). This is due to the fact that no edge reappears in the flip sequence.
We know that this bound is sharp, even for convex polygons (see Edelsbrunner
[34]).

In the pseudo-triangulation setting an edge might reappear in an improving
flip sequence towards PT h [5]. We show that this phenomenon results in fact
in long sequences. As a consequence, flipping away any concave edge greedily
is not a good strategy to construct PT h.
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Theorem 5.5. There exists a simple polygon that provides an improving flip
sequence of length nΘ(log n).

The proof of the theorem is given by the following construction. We in-
troduce a polygon as building block. This polygon is called elevator since it
adjusts the height of a distinguished vertex pt. See Figure 5.5 for an illustration.
The elevator contains m vertices. The vertices on the bottom (p1 and p2) are
in opposition to the points on the convex chain (p3, . . . ,pm−1). Furthermore,
(p1,p2) should be nearly parallel to (p3,pm−1) and the bending of the convex
chain should be small. By construction all vertices will become complete ver-

p6

p2p1

pt

p5p4p3

Figure 5.5: The elevator used for the height adjustment of pt.

tices, except pt. This can be achieved by setting ht = maxj≤m{hi}. A flipping
sequence for the elevator is shown in Figure 5.6. We name the sequence from
(a) to (d) flipping to the right and the mirrored sequence from (d) to (a) flipping
to the left. Throughout the construction we will only consider flipping to the
right and left. It depends on the height assignment of the vertices p1, . . . ,pm,
if flipping to the right or to the left is an improving sequence.

Lemma 5.6. For an elevator polygon let hi be always 0, except for h1 < 0 and
h2 < 0. Assume that the elevator polygon is pseudo-triangulated, and contains
the pseudo-triangle spanned by p1,p2,pi,pt, the triangle pi−1,pi,p1 and the
triangle pi,pi+1,pt (for some i). For any δ > 1 we can embed the elevator
polygon such that:

A.) If h2 < δh1, then the edge (1, i) is concave.

B.) If h1 < δh2, then the edge (t, i) is concave.

(a) (d)(b) (c)

Figure 5.6: Flipping in elevator from Figure 5.5.
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pipi−1
pi+1

pt

p2p1

Figure 5.7: An illustration of the conditions of Lemma 5.6.

Proof. Let us first work out the conditions of the lemma. We have the elevator
polygon with a pseudo-triangulation that appears in the flipping sequence left to
right, or right to left. The particular situation is shown in Figure 5.7. We show
that if condition A holds, then (1, i) is concave. On the other hand condition
B implies that (t, i) is concave.

Let us prove the Lemma for some value δ > 1. We discuss later how
the value of δ can be made arbitrarily close to 1. We start with the proof of
statement A. The edge (1, i) is concave if p2 lies below the plane spanned by
pi,pi−1 and p1. This is true, if the signed volume of the tetrahedron2 spanned
by pi,pi−1,p2 and p1 is positive. We use the square bracket notation to denote
the signed area of a triangle. The signed volume of a tetrahedron equals (we
ignore the factor 1/6):

hi[i− 1, 2, 1]− hi−1[i, 2, 1] + h2[i, 1, i− 1]− h1[i, 2, i− 1].

Since hi = hi−1 = 0, the signed volume of the tetrahedron can be simplified to

−h1[i, 2, i− 1] + h2[i, 1, i− 1].

Both triangle areas are negative, because the vertices are in counter clockwise
orientation. Thus, (1, i) is concave if

h2 < h1
[i, 2, i− 1]
[i, 1, i− 1]

. (5.2)

We choose

δ := max
3<j<m

{
[j − 1, j, 2]
[j − 1, j, 1]

,
[j, j − 1, 1]
[j, j − 1, 2]

}
.

(After the discussion of the second part of the lemma it will be clear why we
select δ in this particular way.) The assumption of statement A leads to

h2 < δh1 ≤ h1
[i, 2, i− 1]
[i, 1, i− 1]

.

Thus (5.2) holds and therefore the edge (1, i) is concave.

2see page 50 for a definition.
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We continue with the proof of statement B. The edge (t, i) is concave, if the
signed volume of the tetrahedron spanned by pi,p2,p1,pi+1 is positive. The
signed volume equals

−h2[i, 1, i + 1] + h1[i, 2, i + 1].

Both triangle areas used in the last equation are negative. Thus (t, i) is concave
if

h1 < h2
[i, i + 1, 1]
[i, i + 1, 2]

. (5.3)

Assuming h1 < δh2 implies (5.3) and therefore we have that in this case the
edge (t, i) is concave.

The value δ depends on the embedding of the elevator polygon. δ is the
maximum over a set of quotients of triangle areas. These quotients have the
form [j − 1, j, 2]/[j − 1, j, 1] and [j, j − 1, 1]/[j, j − 1, 2] for 3 < j < m. We
assumed that the embedding of the elevator polygon realizes the convex chain
between p3 and pm−1 such that every segment on the chain is nearly parallel
to the segment (p1,p2). This assures that the triangle areas [j, j − 1, 2] and
[j, j − 1, 1] are nearly the same (the base of both triangles is (pj ,pj−1) and the
heights are approximately the same due the assumption of parallelism). Thus
all quotients (and therefore δ) are close to 1.

For the later construction the following observation is helpful. An affine
transformation Ap + t changes triangles areas by a multiplicative constant of
det(A). In the definition of δ this factor cancels.

Observation 5.7. We consider an embedding of the elevator polygon that guar-
antees statement A and B in Lemma 5.6 for some value δ′. Any affine transfor-
mation of the polygon results in an embedding of the elevator polygon for which
statement A and B in Lemma 5.6 hold with δ = δ′.

Now we are able to construct an improving sequence for the elevator. Let
us assume that we set all heights to zero except h1 = −1 and h2 = −2− δ. In
this case flipping to the left yields an improving sequence. The value of δ is a
constant, which depends on the embedding of the elevator only. We observe
further that the height of the incomplete vertex pt decreases after every flip.

Flipping to the left or right takes m − 3 flips if the elevator has m ver-
tices. If we lower the height of the vertices p1 and p2 alternately k times, it is
possible to flip from left to right repeatedly. Let h1(0), h1(1), h1(2), . . . , h1(k)
be the decreasing sequence of heights assigned to p1. Equivalently we name
h2(0), h2(1), h2(2), . . . , h2(k) the sequence for p2. We use sequences for h1 and
h2 that guarantee for any i

h1(i) > h2(i) > h1(i + 1) > h2(i + 1).

Assume that the elevator polygon is embedded such that its value δ used in
Lemma 5.6 is less that h2(i)/h1(i) and h1(i + 1)/h2(i) (for all i ≤ k). In the
beginning the height of h2(0) is smaller than h1(0). This enables an improving
sequence to the left. Now we reduce the height of p1 to h1(1). This activates
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Figure 5.8: Assembling three elevators to obtain a quadratics improving flip
sequence.

an improving sequence from left to right. We can repeat this procedure 2k + 1
times without violating the conditions of Lemma 5.6. In the end we have an
improving sequence of (m− 3)(2k + 1) flips.

The adjustment of the heights for p1 and p2 can be realized by two new
elevators (see Figure 5.8). Notice that we have to add additional edges (for
example the dashed edges in the Figure) to make the resulting polygon con-
nected. The construction yields an improving flip sequence of length 2m2 +3m.
We choose m = bn/3c and obtain an improving sequence of length Θ(n2). It
is necessary to scale the heights of the outer elevators, such that the sequence
induced by pt constructs a sequence of lowering heights with an appropriate
“jump” size.

We observe that inner-most elevator lowers the height of its vertex pt Θ(m2)
times. Therefore, we can use two copies of this enhanced elevator and connect
them to a new elevator. In the new elevator we are able to flip Θ(m2) times
form left to right and back. Choosing m = bn/7c results in a cubic improving
sequence. Notice that it might be necessary to scale and shift the heights of
the outer-most elevators further.

Most generally, we can connect r elevators sequentially in a “row”. The
numbers of necessary elevators grows exponentially. Therefore, we have only
m = bn/(2r−1)c vertices for each elevator. The resulting flip sequence consists
of Θ(nr/(2r − 1)r) flips. We choose r = blog

√
nc to obtain an improving

sequence of length nΘ(log n). We omit the details how to embed the elevator
polygons. Observation 5.7 enables us to shrink and turn the elevators. Thus,
we are able to assemble them as described in the previous discussion. The
appropriate scaling of the elevator heights works as follows: First we consider
the inner-most elevator. We have to adjust the heights of the elevator of the
second row, such that the step size of their vertices pt enables repeatedly the
flipping sequences for the inner-most elevator. In this way (from inside to the
outside) we continue the scaling. In particular the next scaling process adjusts
the heights of the elevators in the third row, then the fourth row, and so on. It
can be observed that there is no cyclic dependence between these heights.

In contrast to our result we know that there exists (for a vertex empty
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domain) also a short improving flip sequence of length O(n2) [5]. This sequenze
can be found efficiently.

5.3 Representing Pseudo-Triangulations as Vertices
of Polytopes

Representing geometric or combinatorial objects as vertices of high dimensional
polytopes is a common technique to investigate these objects. We are interested
in finding optimal pseudo-triangulations with the help of linear programs. In
this section a polytope that represents pointed pseudo-triangulations of point
sets and a polytope that represents regular triangulations. In the remaining
part of the chapter we use both polytopes frequently to investigate pointed
pseudo-triangulations.

5.3.1 The PPT-Polytope

The PPT-polytope, which was introduced in [75], represents all pointed pseudo-
triangulations of a point set as its vertices. The polytope is a natural exten-
sion of the well-known associahedron [54]. The construction of the polytope is
based on motions induced by pointed pseudo-triangulations. A one degree of
freedom motion occurs if a convex hull edge is removed from a ppt. Up to lin-
ear transformations this motion is unique. During the motion all edge lengths
are preserved, whereas all other pointwise distances increase. Motions with
such a property are called expansive. Expansive motions induced by pointed
pseudo-triangulations can be used to straighten polygonal arcs in 2d [84]. The
set of expansive motions defined by a point set defines a high dimensional poly-
hedral cone. Applying involved perturbation techniques deforms this cone to
a new polyhedron. The vertices of the polyhedron correspond to the pointed
pseudo-triangulations that can be realized on the point set. The rays of the
polyhedron represent the expansive motions. The polyhedron can be restricted
to a face that contains all the vertices of the polyhedron but none of its rays.
The constructed polytope is called PPT-polytope.

We continue with the formal description of the PPT-polytope. We assume
that P is in general position (no three points on a line). Let conv(P ) denote the
convex hull of the point set P . The PPT-polytope represents all pointed pseudo-
triangulations of the domain conv(P ) as its vertices. We use the notation [i, j, k]
introduced in Chapter 2 as abbreviation for the signed area of the triangle
spanned by pi,pj and pk. If a zero appears in the square brackets, we refer
to the point (0, 0)T := 0, for example the expression [0, i, j] denotes the signed
area of the triangle given be 0,pi and pj .

For every pair of points in P let fij be the perturbation parameter of this
pair. Throughout the thesis we use as perturbation parameters

fij := [i, j, 0]2.

Notice that there are other valid choices for the fij values that give the same
(combinatorial) polytope. For example for any point q 6∈ P the parameter set
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f ′ij = [q,pi,pj ]2 is valid as well. Moreover, it is possible to obtain a formulation
of the PPT-polytope without perturbation parameters [75].

We define the PPT-polytope by the following set of inequalities in the un-
knowns v1, . . . ,vn:

〈vi − vj ,pi − pj〉 ≥ fij ∀i, j ≤ n,

〈vi − vj ,pi − pj〉 = fij if (i, j) convex hull edge,
(5.4)

plus three necessary normalizing conditions, which can be formulated as

n∑
i=1

vi = 0, (5.5)

n∑
i=1

〈p⊥i ,vi〉 = 0. (5.6)

The two dimensional vectors vi correspond to (infinitesimal) velocities induced
by the expansive motion. The normalizing conditions pin down the (triv-
ial) rigid motions of the expansion. Other variants to “normalize” the PPT-
polytope are possible as long as they factor out the translations and rotations
of (vi)i≤n. The PPT-polytope is defined in the space R2n. As observed in [75]
it has dimension 2n − 3. Hence, a vertex of the polytope is given by a set of
2n − 3 tight inequalities. The tight inequalities define the set of edges of the
ppt that is associated with the vertex of the polytope. If two vertices of the
PPT-polytope are adjacent, their induced pointed pseudo-triangulations differ
only by an edge. Therefore, an edge in the PPT-polytope represents a flip.

Related to the PPT-polytope is the polytope of non-crossing graphs [63],
which extends the PPT-polytope. The polytope represents all pseudo-triangula-
tions of a point set as its vertices. Furthermore, it can deal with points in
non-general position, whereas the PPT-polytope assumes that no three points
of P are on a line.

5.3.2 The Secondary Polytope

The secondary polytope represents all regular triangulations of a point set as
vertices. It can be defined as follows (see also [18, 39]): Let ∆ be a triangulation
of P . We denote by vol∆,i the sum of the areas of all triangles in ∆ containing
pi. The vector φ∆ is defined as (vol∆,1, vol∆,2, . . . , vol∆,n)T . We define as
secondary polytope SP

SP := conv{φ∆ | ∆ is a triangulation of P}.

The vertices of SP correspond to the regular triangulations of P .
If P is in convex position (the vertices numbered in cyclic order) SP is

clearly equivalent to the PPT-polytope. This equivalence is not only combi-
natorial, but also affine, which is pointed out in [75]. In particular a map
between the secondary polytope and the PPT-polytope is known. Let dij :=
fij−〈vi−vj ,pi−pj〉 be the slack variables of the constraints (5.4). As described
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in [75] we can express a point a = (a1, . . . , an) in the secondary polytope as

ai = − di−1,i+1

[i− 1, i, i + 1]
+ [i− 1, i, i + 1]. (5.7)

Notice that the slack variables of type di−1,i+1 are sufficient to define a point
in the secondary polytope for convex point sets.

We finally remark that regular pseudo-triangulations can be also represented
as vertices of a polytope similar to the secondary polytope, the so-called poly-
tope of regular pseudo-triangulations [5].

5.4 Regular Triangulations in the PPT-Polytope

For point sets in convex positions all triangulations are regular, and more-
over pointed pseudo-triangulations. Regular triangulations are defined by their
height assignment h. On the other hand we can identify a pointed pseudo-
triangulation by its coordinates in the PPT-polytope. We study the problem
how the height assignment h and the coordinates of the PPT-polytope are
related. In particular, we address the problem how to identify a regular trian-
gulation as solution of a linear program over the PPT-polytope. Our intention
for an expression of Th as LP formulation is primarily the better understanding
of the PPT-polytope. The following observations work also as an easy scenario
for more complicated settings. Let us remark, that there exist efficient methods
to compute Th by its height vector (this can be done for convex polygons in
linear time [4]). Thus the algorithmic aspect for the computation of Th as LP
is less interesting. Our studies lead to two (independent) LP formulations for
Th which we present in Theorem 5.13 and Theorem 5.14.

We restrict ourselves in this section to convex point sets. Assume further
that the convex point set P = {p1, . . . ,pn} is labeled in cyclic order and that
P is in general position. Furthermore, an index shift from i to i − 1 or i + 1
is always considered modulo n. Notice that not all lemmata in this section use
the convexity assumption of the point set P . In particular, Lemma 5.9 with
Corollary 5.10 hold also for non-convex point sets and are used in later sections
in this general setting.

We know that Th defines a piecewise linear convex function over the lifted
point set. The corresponding concave function results in a different triangula-
tion, which we name T−h. We address also the problem how to compute T−h.
Once we have a linear program for Th an LP formulation for T−h needs only
slight modifications.

For a convenient formalism we extend the square bracket notation for tetra-
hedra. We consider a set of 3-dimensional vertices that is given by the two
dimensional point set P and some height assignment h. The term [i, j, k, l]
denotes the signed volume of the tetrahedron spanned by the four lifted ver-
tices pi,pj ,pk, and pl. It is a well known fact that the signed volume can be
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computed by3

[i, j, k, l] :=
1
6

det

 pi pj pk pl

hi hj hk hl

1 1 1 1

 .

In the following we investigate linear optimization programs over the PPT-
polytope. Most generally, the objective function is given by a set of n two-
dimensional vectors (di)i≤n:

n∑
i=1

〈vi,di〉. (5.8)

We restrict ourselves to objective functions whose parameter set (di)i≤n fulfills
additional properties.

Definition 5.8 (moment-free objective function). We say the objective
function

∑n
i=1〈vi,di〉 is moment-free (with respect to the set P ) if and only if

(1)
∑n

i=1 di = 0,

(2)
∑n

i=1〈di,p⊥i 〉 = 0.

The intuition behind a moment-free objective function is the following: If
we interpret the vectors di as forces acting on P a moment-free parameter set
(di)i≤n, produces neither a linear momentum (1) nor an angular momentum
(2).

Lemma 5.9. Let
∑n

i=1〈vi,di〉 be a moment-free objective function over the
PPT-polytope given by (5.4)–(5.6). The solution of the induced linear program
corresponds to a pseudo-triangulation of P with (non-equilibrium) stress uij on
its edges. For every vertex pi holds

n∑
i=1

uij(pi − pj) = di.

The stress uij is non-negative on every interior edge.

Proof. We consider the linear program specified in the lemma as primal pro-
gram. As dual program we obtain:∑

0<i<j≤n
fijuij → max,∑n

j=1 uij(pi − pj) + t + rp⊥i = di 1 ≤ i ≤ n,

uij ≥ 0 i < j, (i, j) interior edge.

Due to complementary slackness in linear programming duality we know that
the non-tight inequalities refer to a dual variable which is zero. This means in
our setting that every non-edge (i, j) in the primal solution induces uij = 0 in

3Notice that usually a positive sign of the volume reflects the right-hand orientation of
the four points. We use the left-hand system.
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the solution of the dual program. Hence, the positive values uij are realized on
(a subset of) the edges of the primal solution.

In the dual program appear variables that result from the normalizing con-
ditions of the PPT-polytope. Condition (5.5) produces the two-dimensional
variable t and condition (5.6) the variable r. We show that these variables
vanish if the objective function is moment-free.

We have n restrictions of the form

n∑
j=1

uij(pi − pj) + t + rp⊥i = di. (5.9)

Adding up all these equations cancels the uij values and gives

nt + r

(
n∑

i=1

pi

)⊥
=

n∑
i=1

di. (5.10)

Because the objective function is moment-free the last equation equals zero.
We take the scalar product of both sides of equation (5.9) with p⊥i . This gives
n equations of the form

−
n∑

j=1

uij〈p⊥i ,pj〉+ 〈p⊥i , t〉+ r‖pi‖2 = 〈p⊥i ,di〉. (5.11)

We sum up all these equations and obtain〈(
n∑

i=1

pi

)⊥
, t

〉
+ r

n∑
i=1

‖pi‖2 =
n∑

i=1

〈p⊥i ,di〉. (5.12)

Again this equation is zero because the objective function is moment-free.
The variables t and r can be computed by solving a homogeneous linear

equation system with three equations (5.10) and (5.12). It remains to show
that t = 0 and r = 0 is the only solution of this system. We can rephrase
(5.10) to express t as

t = − r

n

(
n∑

i=1

pi

)⊥
.

If r = 0 then t = 0 and we get the trivial solution. Therefore, let us assume
that r is nonzero. We plug this result into equation (5.12) and obtain

− r

n

〈(
n∑

i=1

pi

)⊥
,

(
n∑

i=1

pi

)⊥〉
+ r

n∑
i=1

‖pi‖2 = 0.

Further simplifications give

n∑
i=1

‖pi‖2 − 1
n

∥∥∥∥∥
n∑

i=1

pi

∥∥∥∥∥
2

= 0. (5.13)
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Let p̄ := 1
n

∑n
i=1 pi denote the center of gravity of P . We deduce

‖pi‖2 = ‖p̄ + pi − p̄‖2

= ‖p̄‖2 + 2〈p̄,pi − p̄〉+ ‖pi − p̄‖2.

Plugging this equivalence into equation (5.13) leads to

n∑
i=1

(‖p̄‖2+ 2〈p̄,pi−p̄〉+ ‖pi−p̄‖2)− n‖p̄‖2 = n‖p̄‖2+
n∑

i=1

‖pi − p̄‖2 − n‖p̄‖2

=
n∑

i=1

‖pi − p̄‖2

We observe that the last expression is strictly positive as long as not all pi are
the same, which is not allowed in our case. Hence, there is no other solution of
the homogeneous system and the lemma follows.

We can also show a more general result of the last lemma. Let us assume
we have a set of edges (which we call constraints) that have to appear in the
pseudo-triangulation. Any set of non-crossing pointed edges can be completed
to a pointed pseudo-triangulation [84]. Based on the PPT-polytope we can
define a polytope that contains all pseudo-triangulations with these constraints
by making the corresponding inequalities

〈vi − vj ,pi − pj〉 ≥ fij

of the PPT-polytope tight. In particular, the modified polytope is a face of the
PPT-polytope.

Corollary 5.10. Let
∑n

i=1〈vi,di〉 be a moment-free objective function over a
face of the PPT-polytope given by (5.4)–(5.6) and some edge constraints. The
solution of the induced linear program corresponds to a pseudo-triangulation of
P with (non-equilibrium) stress uij on its edges. For every vertex pi holds

n∑
i=1

uij(pi − pj) = di.

The stress uij is non-negative on every interior edge that is not part of the
constraints.

Proof. We mimic the proof of Lemma 5.9 and study the dual of the linear
program stated in the lemma. For any equation in the primal program we
have no information about the sign of the corresponding dual variable. The
constraints behave like boundary edges. All other edges are not affected by
restricting the PPT-polytope to a face. Hence, the arguments of the proof of
Lemma 5.9 hold and the lemma follows.

The observations made so far have not used the convexity of P . Thus
everything we did so far holds for any point set in general position. We now
come back to the computation of Th and need the convexity of P from now on.



54 5. OPTIMIZING OVER THE PPT-POLYTOPE

We introduce a geometric construction that assures that the heights of the
regular triangulation are exactly hi. To determine the heights we “span” all
points in P by a pyramid-shaped shell. We assume for now that none of the pi

lies in the origin. This assumption is valid since translating the point set does
not affect the lifting.

Lemma 5.11. Given a convex polygon (P,E) with height assignment h for
its vertices. Let p0 6= pi be an additional point in the origin. Consider
the geometric graph G = (P ∪ {p0}, E ∪ {(0, i)|i ≤ n}). The lifting of G to
{(xi, yi, hi)|i ≤ n} ∪ {(0, 0, 0)T } corresponds to the stresses

ω0i :=
[0, i− 1, i, i + 1]

[0, i− 1, i][0, i, i + 1]
.

Proof. Assume that no y-coordinate is zero (otherwise shift the point set). The
stress of an edge (0, i) can be computed by the gradients of the two faces that
share this edge. The explicit formula is given by (2.5), in our case we have

al − ar = ω0ip⊥i ,

where al denotes the gradient of the triangle fl left of (0, i) and ar the gradient
of the triangle fr right of (0, i). The situation is depicted in Figure 5.9. We

z = 0

pipi−1

pi+1
p0

fl fr

Figure 5.9: The local situation responsible for the stress ω0i.

can determine the gradients al and ar by the solution of the following linear
equation system

〈pi−1,al〉 = hi−1,

〈pi,al〉 = hi,

〈pi,ar〉 = hi,

〈pi+1,ar〉 = hi+1.

We observe that it suffices to calculate the x-coordinate ax
l , ax

r of the gradients.
We obtain

ax
l =

hi−1yi − hiyi−1

[0, i− 1, i]
,

ax
r =

hiyi+1 − hi+1yi

[0, i, i + 1]
.
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The stress ω0i equals (ax
r − ax

l )/yi. We substitute ax
l and ax

r and obtain

ω0i =
hiyi+1

yi[0, i, i + 1]
− hi+1

[0, i, i + 1]
− hi−1

[0, i− 1, i]
+

hiyi−1

yi[0, i− 1, i]

The following identity helps to simplify the expression for ω0i further:

yi−1

yi
[0, i, i + 1] +

yi+1

yi
[0, i− 1, i] = [0, i− 1, i + 1].

We end with the expression for the stress ω0i:

ω0i =
[0, i− 1, i, i + 1]

[0, i− 1, i][0, i, i + 1]
.

Executing the same operations with the y-coordinates of the gradients leads to
the same stress for ω0i.

The placement of the point p0 is not restricted to the origin. One can show
that every choice for p0 is valid. However, assuming p0 = 0 simplifies the
computations. The pyramid-shaped shell gives us an appropriate lifting for set
P . The lifting is only in equilibrium at the point p0. At any point of P the
forces are not resolving. In particular, we have the resulting force ω0ipi at each
pi. We use these vectors as parameters −di of our objective function.

Lemma 5.12. Let ω0i be defined as in Lemma 5.11. The objective function
(5.8) defined by

di ≡ −ω0ipi

is moment-free.

Proof. The stresses ω0i are constructed such that the additional vertex p0 is in
equilibrium. Therefore,

n∑
i=1

di = −
n∑

i=1

ω0ipi =
n∑

i=1

ω0i(p0 − pi) = 0.

The angular momentum
∑n

i=1〈piω0i,p⊥i 〉 equals zero as well.

The main result of this section is stated in the following theorem.

Theorem 5.13. Given a convex point set P (no point in the origin) and a
height assignment h for the vertices of P .

(1) The minimization of

−
n∑

i=1

〈vi,pi〉
[0, i− 1, i, i + 1]

[0, i− 1, i][0, i, i + 1]

over the PPT-polytope given by (5.4)– (5.6) gives the regular triangulation
Th.
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(2) The minimization of

n∑
i=1

〈vi,pi〉
[0, i− 1, i, i + 1]

[0, i− 1, i][0, i, i + 1]

over the PPT-polytope given by (5.4)– (5.6) gives the regular triangulation
T−h.

Proof. We first prove statement (1). Due to Lemma 5.12 the objective function
mentioned in statement (1) is moment-free. Therefore (by Lemma 5.9) the
solution of the linear program defined in (1) gives a non-negative stress uij

with resulting forces −[0, i− 1, i, i + 1]/([0, i− 1, i][0, i, i + 1])pi in every point
pi. We can cancel these forces by adding the pyramid-shaped shell defined
in Lemma 5.11. Since the graph given by the nonzero uij is outerplanar, the
addition of the edges (0, i) gives a planar graph. This graph is in equilibrium and
therefore the induced lifting gives a spatial embedding by the Maxwell-Whiteley
Theorem. We know that the “curvature” on the edges of the triangulation is
positive and hence the solution of the linear program stated in (1) gives Th.
The objective function mentioned in (2) differs only in the sign from (1). Hence
it is moment-free and the solution gives a non-equilibrium stress. We multiply
the stress with −1 such that the non-resolving forces match with the forces
resulting from the pyramid-shaped shell. As consequence the curvature is now
inverted and the solution of the linear program stated in (2) gives T−h.

We present two examples of the construction of Th. Both examples use the
point set Psc that contains 32 points on the semicircle with center 0 and radius
5. In Figure 5.10(a) the heights were chosen uniformly at random on the inter-
val [15, 20]. In Figure 5.10(b) they were computed by h(pi) = 10 + 2 cos(yi/2).
Notice that the constructed lifted surface might have self-intersections. In par-

(a) (b)

Figure 5.10: Two examples for the computation of Th by an LP over the PPT-
polytope. The pictures are scaled to obtain a nice illustration.

ticular, the pyramid-shaped shell might intersect the lifted triangulated sur-
face. However, this effect does not violate Theorem 5.13. See Figure 5.11
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(scaled down) for a self-intersecting surface given by Psc with height assign-
ment h(pi) = 1.5yi . Figure 5.12 shows T−h for the set Psc with the height

Figure 5.11: A lifted surface that intersects the pyramid-shaped shell.

assignment used for Figure 5.10(b).

Figure 5.12: An example of the upper convex hull computed as LP over the
PPT-polytope.

We continue with a different method for expressing Th and T−h as solutions
of linear programs over the PPT-polytope. This alternative approach make use
of the affine mapping between the secondary polytope and the PPT-polytope.

Every triangulation covers some volume between the corresponding lifted
surface and the plane triangulation. The triangulation Th minimizes this (signed)
volume. Thus, minimizing

∑n
i=1 aihi over the secondary polytope gives Th.

The corresponding maximization problem computes T−h. We use the affine
map (5.7) to obtain an LP over the PPT-polytope. The objective function
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∑n
i=1 aihi changes to

−
n∑

i=1

hi

(
di−1,i+1

[i− 1, i, i + 1]
+ [i− 1, i, i + 1]

)
. (5.14)

We can ignore the constant additive term [i−1, i, i+1] for the optimization prob-
lem. Remember that the variables dij are the slack variables in the description
of PPT-polytope given by (5.4): di−1,i+1 = fi−1,i+1−〈pi−1−pi+1,vi−1−vi+1〉.
Plugging this expression into the objective function (5.14) leads to

n∑
i=1

hi

(
− fi−1,i+1

[i− 1, i, i + 1]
+
〈pi−1 − pi+1,vi−1 − vi+1〉

[i− 1, i, i + 1]

)
.

Since the term hifi−1,i+1/[i − 1, i, i + 1] is a constant we simplify the last ex-
pression further to

n∑
i=1

hi
〈pi−1 − pi+1,vi−1 − vi+1〉

[i− 1, i, i + 1]
.

We now put the last equation in a form similar to (5.8).

Theorem 5.14. For a point set P in convex position the minimization of the
linear function

n∑
i=1

〈
vi,

hi+1(pi − pi+2)
[i, i + 1, i + 2]

+
hi−1(pi − pi−2)
[i− 2, i− 1, i]

〉
(5.15)

over the PPT-polytope given by (5.4) – (5.6) leads to a solution that corresponds
to the triangulation Th.

Corollary 5.15. Maximizing (5.15) over the PPT-polytope given by (5.4) –
(5.6) leads to a solution that corresponds to the triangulation T−h.

We interpret the linear program stated in Theorem 5.14 geometrically. We
make again use of Lemma 5.9.

Proposition 5.16. The objective function (5.15) is moment-free.

Proof. We have

di =
hi+1(pi − pi+2)
[i, i + 1, i + 2]

+
hi−1(pi − pi−2)
[i− 2, i− 1, i]

.

We reorder the summands of
∑n

i=1 di by pi and obtain

n∑
i=1

di =
n∑

i=1

pi

(
hi+1

[i, i + 1, i + 2]
+

hi−1

[i− 2, i− 1, i]
−

hi+1

[i, i + 1, i + 2]
− hi−1

[i− 2, i− 1, i]

)
= 0.
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Now we use the identity 〈pj ,p⊥i 〉 = −〈pi,p⊥j 〉 to evaluate the angular momen-
tum:

n∑
i=1

〈di,p⊥i 〉 =
n∑

i=1

(
− 〈pi+2,p⊥i 〉

[i, i + 1, i + 2]
− 〈pi−2,p⊥i 〉

[i− 2, i− 1, i]

)

=
n∑

i=1

(
− 〈pi+2,p⊥i 〉

[i, i + 1, i + 2]
−

〈pi,p⊥i+2〉
[i, i + 1, i + 2]

)
= 0.

Since the objective function (5.15) is moment-free we can apply Lemma 5.9
and obtain the following non-equilibrium stress condition for a stress uij .

n∑
j=1

uij(pi − pj) =
hi+1(pi − pi+2)
[i, i + 1, i + 2]

+
hi−1(pi − pi−2)
[i− 2, i− 1, i]

1 ≤ i ≤ n.

Setting

ωij :=

{
uij − hi+1/[i, i + 1, i + 2] if i + 2 = j,

uij otherwise,

defines an equilibrium stress. If ui,i+2 is nonzero we consider the stressed edge
(i, i + 2) as two edges whose projections in the xy-plane coincide. Neverthe-
less, we treat both edges separately, one edge gets the stress ui,i+2 and the
other hi+1/[i, i + 1, i + 2]. We can distinguish both edges by their different
corresponding oriented patches.

The graph induced by the nonzero stresses is not planar. However, planarity
is a necessary condition for lifting graphs with equilibrium stress. We apply
Bow’s trick, mentioned in [59] and also applied in [28], to planarize the graph.
This is achieved by introducing additional vertices at the crossing of the edges
(i, i+2). The remaining edges can be drawn in the outer face without producing
any crossing (see Figure 5.13). The old stresses are uniformly distributed on
the subdivided edges. This means that adding a point pk on an edge (i, j) leads
to a stress

ωik := ωij
‖pi − pk‖
‖pi − pj‖

,

ωkj := ωij
‖pk − pj‖
‖pi − pj‖

.

It is easy to check that a stress defined in this way is an equilibrium stress on
the planarized graph.

After the planarization we can apply the lifting technique of Chapter 2 to
obtain a geometric interpretation of the program stated in Theorem 5.14. We
construct the lifting by placing the convex polygon in the xy-plane and tilting
its corners up. The tilted planes are bent along the diagonals (i, i + 2). The
bends of different diagonals are superimposed. Since each bend lifts only a
single corner the obtained heights are exactly hi. Observe that we do not need
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Figure 5.13: The planarization technique for graphs with equilibrium stress.
For showing that the graph has a planar embedding the diagonals of the trian-
gulations can be drawn in the outer face.

any stress of an edge of the triangulation for the computation of the heights.
The lifted spatial embedding consists of a bowl-shaped shell in which the lifted
triangulation is placed. The tilting of one plane is depicted in Figure 5.14. The
convexity of the lifted triangulation follows by the (positive) sign of stresses uij .

Figure 5.14: Constructing a lifted point set by tilting along diagonals.

Let us remark that it is interesting that two different objective functions in
Theorem 5.13 and Theorem 5.14 over the PPT-polytope can be used to express
Th. The two different LP formulations are based on different approaches. One
approach relies on the pyramid-shaped shell and the other on a bowl-shaped
shell that is used to define the heights used for the lifting. Both objective
functions can be transformed into each other by adding a suitable linear com-
bination of the equations used in the definition of the PPT-polytope. We leave
out the explicit reformulation.

5.5 Load Resolving

The observations in the previous chapter have consequences for pseudo-triangula-
tions from a rigidity-theoretic point of view. Let us first define:

Definition 5.17 (Load, Moment-free Load). A set of two-dimensional vec-
tors (fi)i≤n is called a load. A load that fulfills

∑n
i=1 fi = 0 and

∑n
i=1〈p⊥i , fi〉

for a point set P = {p1, . . . ,pn} is called moment-free load for P .

We know that pointed pseudo-triangulations are (in a combinatorial sense)
minimal rigid graphs [84]. Minimal rigid graphs have the property that they
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are for any generic point set infinitesimal rigid [27]. This implies that they can
absorb any moment-free load (fi)i≤n on P . In other words, there exists a unique
set of stresses ωij on the edges of the minimal rigid graph such that

∀pi ∈ P
∑

j

ωij(pi − pj) = fi.

Notice that as a consequence of Newton’s law a load that is not moment free
cannot be resolved by any framework.

We have no control over the sign of the stresses that resolve the load. How-
ever, there are applications where it is desirable to allow only positive stresses
on interior edges. We cannot guarantee that a pointed pseudo-triangulation can
resolve a load with positive interior stresses only. But with help of Lemma 5.9
we can compute for a given load a pointed pseudo-triangulation with this prop-
erty.

Theorem 5.18. Given a moment-free load (fi)i≤n for a point set P . There
exists a pointed pseudo-triangulation on P that resolves the load (fi)i≤n with
non-negative interior stresses. The pseudo-triangulation can be computed by
minimizing the objective function

∑n
i=1〈vi, fi〉 over the PPT-polytope given by

(5.4)–(5.6).

Proof. The existence of a pseudo-triangulation that resolves the load is a direct
consequence of Lemma 5.9.

For most of the loads there is a unique pointed pseudo-triangulation that
cancels the load with positive stresses. To see this consider the normal fan of
the PPT-polytope (the definition of normal fan can be found in [96]). Since the
PPT-polytope is simple, every 2n−3-dimensional cone in the fan refers to a set
of vectors, whose optimization lead to a distinct pseudo-triangulation. Selecting
an objective function from the interior of a 2n−3-dimensional normal cone gives
therefore a unique pseudo-triangulation. A random objective function lies with
high probability in the interior of a 2n− 3-dimensional normal cone.

We can use appropriate loads to construct pseudo-triangulations such that
one of it small angles points to a prescribed direction.

Definition 5.19 (Pointed to a direction). We say a vertex pi of a pointed
pseudo-triangulation is pointed to a direction di ∈ R2 if the vector −di with
point of application pi lies inside an angle smaller than π at pi.

See Figure 5.15 for examples of points pointed to a direction. If every point
pi is pointed to a direction di we say the set (pi)i≤n is pointed to the directions
(di)i≤n.

Assume we have for every interior vertex a prescribed direction di where
it should point to. We can find a pointed pseudo-triangulation that fulfills all
these pointedness conditions. This can be deduced by the following argument.
Suppose we have a pointed pseudo-triangulation with positive interior stresses
ωij . The force at pi equals fi :=

∑n
i=1 ωij(pi − pj). Therefore, fi lies inside

the reflection of the cone defined by the outermost edges incident to pi. The
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p1

p2

d2

d1

Figure 5.15: Vertex p1 is not pointed to direction d1 whereas vertex p2 is
pointed to direction d2.

fi

pi

Figure 5.16: Possible force fi induced by positive stresses at pi.

“feasible area” for fi is depicted in Figure 5.16 as shaded cone. Clearly, the
vector −fi with point of application pi lies inside a small angle at pi. Hence,
pi is pointed to direction fi. By the same construction it follows that in a
pointed pseudo-triangulation that resolves the load (di)i≤n with positive interior
stresses, each pi is pointed to direction di. We can find such a pointed pseudo-
triangulation with help of Theorem 5.18. However we have to guarantee that the
load is moment-free. This can be achieved by assigning appropriate vectors di

to the boundary vertices. Assume that the convex hull vertices are p1, . . . ,pk.
Let the sum of the interior load be (dx, dy)T and let drot :=

∑n
i=k+1〈di,p⊥i 〉.

One possible way to construct a moment-free load is given by the following
assignment (under the assumption that y1 6= y2):

d′i :=


((drot − dyx1 + dxy2)/(y1 − y2),−dy)T if i = 1,

((drot − dyx1 + dxy1)/(y2 − y1), 0)T if i = 2,

0 if 2 < i ≤ k,

di if k < i ≤ n.

(5.16)
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If y1 = y2 we can find a similar assignment (in this case x1 6= x2 holds). We
conclude with

Theorem 5.20. Let P be a point set in general position with convex hull ver-
tices p1, . . . ,pk. We can construct a pointed pseudo-triangulation that is pointed
to the directions (di)k<i≤n by minimizing

n∑
i=1

〈d′i,pi〉

over the PPT-polytope given by (5.4)–(5.6), where (d′i)i≤n is obtained from
(di)k<i≤n by equation (5.16).

Let us look at an example for Theorem 5.20. We study the electric field
given by two infinitely long line charges perpendicular to the xy-plane with
opposite polarities. One line charge intersects the xy-plane at the point (2, 0)T

the other one at (−2, 0)T . The resulting gradient field in the xy plane is depicted
in Figure 5.17. Our goal is to compute the pseudo-triangulation that is pointed

−4

−2

0

2

4

−4 −2 0 2 4

Figure 5.17: The gradient field used is in the example.

to the directions induced by the electric field. The point set P is given by
150 points, randomly picked from the interval [−5, 5] × [−5, 5]. The solution
of the linear program described in Theorem 5.20 gives us the desired pseudo-
triangulation. It is shown in Figure 5.18. The tiny gray line segments indicate
the (normalized) directions di.

We finish this section with an application of load resolving. It is well known
that not every triangulation is regular. The most prominent example is the
projection of Schönhardt’s polyhedron. This implies that there exist embed-
dings whose equilibrium stress is always negative on some edges. However, an
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4

Figure 5.18: A pseudo-triangulation pointed to the directions given by the
gradient vector field shown in Figure 5.17.

equilibrium stress that is positive on every interior edge is desirable for many
applications.

Laplace operators can be used to model diffusion processes (and other phys-
ical dependencies). The discretized version of it (the discrete Laplace operator)
is basically a stressed graph in equilibrium. The equilibrium models the fact
that no energy/matter is lost when time progresses. Negative stresses are in
this setting unnatural. They would model a reverse diffusion process, which
has no equivalent in the real world. We refer to [89] for a discussion of desirable
properties for discrete Laplace operators.

Imagine that we model a physical process that results in a realization of a
non-regular triangulation Tnr. Clearly we can take any regular triangulation on
the points set of Tnr and use this mesh as model instead. This approach might
change Tnr very much. An edge can appear between two points whose graph
theoretic distance in Tnr is very large. In other words, the new triangulation
behaves well but it does not have much in common with the original model.

We propose an approach to solve this problem that is based on load re-
solving. We explain it by example. Figure 5.19(a) shows the triangulation
Tnr. The embedding of Tnr is non-regular – 2 edges with negative stresses are
unavoidable. A possible pair of edges with negative stress is drawn dashed in
Figure 5.19(a). We begin to construct a new mesh by throwing out the edges
with negative stress. The new embedding T− is not in equilibrium anymore.
On the other hand, the original stresses on the remaining edges cancel the load
that is given by the removed edges. This load is moment-free and hence we can
compute a pointed pseudo-triangulation that resolves it with positive interior
stresses (Theorem 5.20). Figure 5.20 depicts this pseudo-triangulation. The
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(a) (b)

Figure 5.19: A non regular-triangulation (a) and a regular triangulation on the
same point set. Edges with negative edges are draw dashed.

direction of the load is indicated by gray arrows. The union of T− with the
pointed pseudo-triangulation gives an equilibrium stressed graph with positive
interior stresses (Figure 5.19(b)). If we are interested in a planar embedding
we have to apply Bow’s trick [59] mentioned at page 59.

Our approach presents only a rough idea how to transform a non-regular into
a regular triangulation. We have no estimates over the similarity between the
regular and the non-regular triangulation. In general the interaction between
regular and non-regular triangulation is not well understood and leaves place
for further studies. We mention some related problems in Chapter 7.

Figure 5.20: The pseudo-triangulation that cancels the load induced by the
negative stresses of the triangulation in Figure 5.19(a). The direction of the
load is indicated by the tiny gray arrows.

5.6 The Pseudo-Triangulation of the Canonical
Objective Function

The canonical pointed pseudo-triangulation (short cppt) was introduced in [75]
as the solution of a linear program that minimizes the canonical objective func-
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tion
n∑

i=1

〈pi,vi〉 (5.17)

over the PPT-polytope given by the conditions (5.4) – (5.6). The pointed
pseudo-triangulation that corresponds to the solution of the analogous maxi-
mization problem is called max-cppt . See Figure 5.21 for a cppt and max-cppt
of a point set with 64 points.

cppt max-cppt

Figure 5.21: Examples of canonical pointed pseudo-triangulations.

Lemma 5.21. If we remove condition (5.6) in the LP formulation of the canon-
ical pointed pseudo-triangulation the solution corresponds still to the cppt. The
analogous statement holds for the max-cppt.

Proof. The condition (5.6) restricts the PPT-polytope to a hyperplane Hrotate.
This hyperplane is given by the normal vector

nrotate = (p⊥1 , . . . ,p⊥n )T .

All other hyper-(half-)planes of the PPT-polytope have a normal vector of the
form

nij = (. . . , (pi − pj), . . . , (pj − pi), . . .)T .

Due to the identity 〈pj ,p⊥i 〉 = −〈pi,p⊥j 〉 we have

〈nrotate,nij〉 = 〈(pi − pj),p⊥i 〉+ 〈(pj − pi),p⊥j 〉
= 〈−pj ,p⊥i 〉 − 〈pi,p⊥j 〉
= 0.

Therefore, Hrotate is orthogonal to all hyperplanes given by (5.4). The PPT-
polytope without condition (5.6) is a cylinder. The vector of the canonical
objective function is contained in Hrotate. Thus all supporting hyperplanes of
the PPT-polytope are orthogonal to it. Figure 5.22 shows a low-dimensional
illustration of this situation. Relaxing normalizing condition (5.6) creates no
new optima. We observe that the polytope becomes unbounded but the ray
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Hrotate

Figure 5.22: Location of the vector of the generic objective function relative to
the PPT-polytope.

that passes through the optimum provides no improvement for the objective
function. Notice that normalizing condition (5.5) is not orthogonal to Hrotate,
but since it is an equation it does not matter.

In the rest of this section we ignore the normalizing condition (5.6).

Theorem 5.22. The canonical pointed pseudo-triangulation is invariant under
affine transformations. This holds also for the max-cppt.

Proof. Let a : R2 → R2 be an affine transformation of the form a(p) := Ap +
t (det(A) 6= 0). Notice that we do not have to modify the parameters fij .
These parameters stay valid for any affine transformation (a consequence of
the observations made in [75]). This can also be observed by noticing that the
normal fan of the PPT-polytope remains unchanged.

We first study the influence of the translation by t. Adding a translation
vector to every point in P has no effect for the conditions (5.4) defining the
PPT-polytope. Because the normalizing condition (5.5) holds we have

n∑
i=1

〈pi + t,vi〉 =
n∑

i=1

〈pi,vi〉+ 〈t,
n∑

i=1

vi〉 =
n∑

i=1

〈pi,vi〉.

and therefore the objective function is unchanged.
Let us now study how the transformation a(p) := Ap changes the linear

program. We know that

〈Api,vi〉 = (Api)Tvi = pT
i (ATvi) = 〈pi, A

Tvi〉.

As a consequence we can rephrase the constraints given by (5.4):

〈a(pi)− a(pj),vi − vj〉 ≤ [0, a(pi), a(pj)]2

as
〈pi − pj , A

Tvi −ATvj〉 ≤ det(A)2fij .
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Let us substitute the variables of the PPT-polytope by

ṽi :=
1

det(A)2
ATvi.

Since
∑

i〈vi, a(pi)〉 =
∑

i〈Atvi,pi〉 we obtain the following linear program for
the transformed point set:

det(A)2
∑

i〈ṽi,pi〉 → min. s.t.
〈ṽi − ṽj ,pi − pj〉 ≥ fij ∀i, j ≤ n,

〈ṽi − ṽj ,pi − pj〉 = fij if (i, j) convex hull edge,∑
vi = 0

(5.18)

This program has the same solution as the canonical program before the affine
transformation because of two reasons: (1) The objective functions differs only
by a constant multiplicative factor. (2) The normalizing condition

∑
i ṽi is

equivalent to (5.5), which means that if A is nonsingular:∑
i

ṽi =
1

det(A)2
AT
∑

i

vi = 0 ⇔
∑

i

vi = 0.

Since the cppt is invariant under translation we assume for the rest of this
section that the center of gravity of P lies in the origin. Under this assumption
the canonical objective function is obviously moment-free. This makes the
techniques of Section 5.4 applicable. We can deduce by Theorem 5.20:

Observation 5.23. Let p̄ be the center of gravity of P . In the canonical pointed
pseudo-triangulation every point pi ∈ P is pointed to the direction pi − p̄.

Observation 5.24. Let p̄ be the center of gravity of P . In the maximal canon-
ical pointed pseudo-triangulation every point pi ∈ P is pointed to the direction
p̄− pi.

5.6.1 Convex Point Sets

We continue with the analysis of the cppt for convex point sets. Our goal is
to specify the heights hc, for which Thc gives the cppt. As mentioned before,
the canonical objective function (5.17) is moment-free. By Lemma 5.9 we know
that the cppt supports a non-equilibrium stress of the following type:∑n

j=1 uij(pi − pj) = pi 1 ≤ i ≤ n,

uij ≥ 0 i < j, (i, j) interior edge.

We can transform this stress to an equilibrium stress by adding a point
p0 = 0 to P . Furthermore, we connect every point pi with an edge of stress −1
with p0. By construction all points pi are in equilibrium. Also the new point
p0 is in equilibrium since the center of gravity lies in the origin. Notice that
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the construction is similar to the one used in Lemma 5.11. For convenience we
multiply all stresses with −1.

We compute the heights hc in clockwise order. The plane spanned by the
three points pi,pi+1 and p0 is named Hi. Since all planes contain p0 (the
origin) we can express Hi by the equation

Hi : zi(p) := 〈ai,p〉.

We place plane H1, spanned by the points p0,p1 and pn, in the xy-plane. In
the next step we compute the plane H2 with help of the equation (2.5). Since
p0 lies in the origin and the stress ω01 equals +1 we obtain

a2 = p⊥1 .

In this manner we determine the gradients of all planes Hi in clockwise order.
We have for any k ≤ n:

ak =
∑

1≤i<k

p⊥i .

The heights of the lifted vertices can be obtained by evaluating zi(pi) = 〈ai,pi〉.
Figure 5.23 shows an example of the lifting discussed above. Due to the stress
signs, the cppt corresponds to the lower convex hull of the lifted point set.
The formulation for max-cppt results in different stress signs of the diagonals.
Therefore, it corresponds to the upper convex hull given by P and hc.

Figure 5.23: A lifting of points in convex position whose lower convex hull
realizes the cppt.

The computation of the lifting made an arbitrary choice by placing H1 in
the xy-plane. We can obtain a more symmetric and more canonical lifting by
the following construction. Assume we place the plane Hl in the xy-plane and
compute the remaining planes starting form Hl in clockwise order. Let al

k be
the gradient of the plane Hk when Hl is placed in the xy-plane. Clearly,

al
k =

∑
l<i≤k

p⊥i −
∑

k≤i<l

p⊥i .
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In this fashion we can specify n different liftings that result all in the same lower
convex hull (combinatorially). Therefore, the arithmetic mean of all those lifting
gives an accumulated lifting whose lower convex hull has the same combinatorial
structure. Let δij denote the number of points between pi and pj in clockwise
order (δij := (j − i) mod n). The average of all liftings can be expressed as

z∗i (p) :=
1
n

∑
l≤n

〈al
i,pi〉.

The height h∗i of the points in the accumulated lifting is therefore

h∗i = z∗i (pi) =
1
n
〈pi,

∑
j≤nδijp⊥j 〉.

Figure 5.24 shows an example of the accumulated lifting.

cppt max-cppt

Figure 5.24: The accumulated lifting for the cppt and max-cppt.

The heights of the accumulated lifting have a geometric interpretation. We
call m(pi) := 1/n

∑
j≤n δijpj the weighted mean of pi. Furthermore, we observe

that

m(pi)−m(pi+1) =
1
n

∑
j≤n

δijpj −
∑
j≤n

δi+1,jpj


=

1
n

(1− n)pi +
∑

j≤n:j 6=i

pj


= −pi.

Thus the weighted points m(pi) form a polygon whose boundary segments are
given by the vectors p1, . . . ,pn and whose center of gravity lies at the origin.
We call this polygon weighted mean polygon. The accumulated lifting assigns
to every point pi the height h∗i = 〈pi,m(pi)⊥〉. Since pi = m(pi+1)−m(pi) we
can express the heights h∗i as

h∗i = 〈m(pi+1)−m(pi),m(pi)⊥〉 = 〈m(pi+1),m(pi)⊥〉.
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Theorem 5.25. Let P be a convex point and let h∗i be the area of the triangle
spanned by m(pi+1),m(pi) and 0, where m(·) denote the coordinates of the
weighted mean polygon of P .

(1) The cppt of P coincides with regular triangulation given by Th∗.

(2) The max-cppt of P coincides with regular triangulation given by T−h∗.

See Figure 5.25 for the geometric interpretation of the heights h∗. The left
side of the Figure shows the point set P . The polygon induced by the weighted
means of the points is depicted on the right side. The height of the vertex pi

equals the shaded area. Notice that we can modify Theorem 5.25 by replacing
the vertex 0 by any other vertex. However, the computations are easier if we
select the origin for our computations.

p1

0

p2

p3

m(p1)

m(p2)

0

Figure 5.25: A geometric construction of the heights h∗.

The construction of the heights h∗ is invariant under affine transformations
in the sense that Th∗ stays the same. An affine transformation on the original
point set corresponds to the same affine transformation (without translation)
of the weighted mean polygon. Therefore, the triangle areas change only by
a multiplicative constant. The affine independence is also a consequence of
Theorem 5.22.

As further consequence of Theorem 5.22 we notice that the cppt is locally
unstable. This means that the perturbation of the location of a single vertex
changes the coordinates of every vertex in the weighted mean polygon. There-
fore, the combinatorial structure of the cppt might change in parts that are far
away from the perturbed vertex.

5.7 Pointed Delaunay-like Pseudo-Triangulations
for Simple Polygons

Among the triangulations of a point set the Delaunay triangulation is one of
the most prominent. It provides many interesting properties and is widely used
for the design of geometric algorithms. We refer to [61] for a list of the most
important properties.
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Because the Delaunay triangulation fulfills many optimality criteria there
exist different ways to define it. For the scope of the thesis the following defi-
nition is the most suitable.

Definition 5.26. Let P be a point set in the plane and hd a lifting function
to the paraboloid given by hd(pi) = ‖pi‖2. The triangulation Thd is called
Delaunay triangulation of P .

Our goal is to find a pointed pseudo-triangulation that is similar to the
Delaunay triangulation. We cannot hope to find a ppt that shares all properties
of the Delaunay triangulation. For example, a convex lifting of a ppt with
vertices in the interior of the domain will be degenerated (flat) around theses
vertices. On the other hand, if the interior of the domain contains no vertices
a convex lifting of the ppt exists.

If P refers to a point set in convex position, every ppt is a regular triangu-
lation. In this case the pointed Delaunay pseudo-triangulation should coincide
with the Delaunay triangulation. In the following we generalize the above
definition such that it defines the pointed Delaunay pseudo-triangulation for
vertex-empty simple domains. For the rest of the section let P = {p1, . . . ,pn}
be the points of the domain D indexed in cyclic order. We assume that no
three points of P lie on a line. The boundary edges of the domain are given by
EB := {(i, i + 1)|1 ≤ i < n} ∪ {(n, 1)}.

The Delaunay triangulation for simple polygons was introduced in [55, 93].
A more general approach is the concept of constrained Delaunay triangulation
[24]. It allows to define a Delaunay-like triangulation under the restriction
that a prescribed set of edges has to be contained in the triangulation. If
the set of edges that has to appear in the constrained Delaunay triangulation
equals the set EB, the constrained Delaunay triangulation gives the Delaunay
triangulation of the simple polygon. Recently Shewchuk established the concept
of constrained regular triangulations, which extends the concept of constrained
Delaunay triangulation naturally [81]. A Delaunay triangulation of a simple
polygon can be computed in O(n) time [25].

We use the formalism introduced in Section 5.4 to define the Delaunay
triangulation of a simple polygon.

Definition 5.27. Let P denote the points of a simple polygon D in cyclic
order. The triangulation Thd defined by the maximal locally convex function
with respect to the heights hd on (D,P ) is called the Delaunay triangulation of
the simple polygon D.

See Figure 5.26(a) for an example of a Delaunay triangulation of a polygon
and Figure 5.26(b) for the associated lifting.

It is not hard to modify the above definition such that it defines a pointed
Delaunay pseudo-triangulation. We partition the vertices P into corners and
non-corners with respect to D. Since P is in general position a vertex can
either be a corner or a non-corner. All corners have their large angle between
the boundary edges. On the other hand, all non-corners have to realize an
angle greater π inside the polygon. This can only be guaranteed when all non-
corners are incomplete vertices. To achieve this, the specified upper bounds hi
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(a) (b)

Figure 5.26: A Delaunay triangulation of a simple polygon (a) and the corre-
sponding lifting (b).

are selected such that they lie above the lifted surface. This ensures that for
all non-corners of the domain f∗h(pi) < hi holds.

We define

h̃d(pi) :=

{
‖pi‖2 if pi is corner in P

maxpk
{‖pk‖2} otherwise

(5.19)

and obtain:

Definition 5.28 (pointed Delaunay pseudo-triangulation of a simple
polygon). Let P denote the points of a simple polygon D. The triangulation
Th̃d defined by the maximal locally convex function with respect to the heights
h̃d on (D,P ) is called the pointed Delaunay pseudo-triangulation of the simple
polygon D.

An example of a pointed Delaunay pseudo-triangulation is shown in Fig-
ure 5.27(a). It is the same polygon that was used as example for the Delaunay
triangulation in Figure 5.26. The lifted point set and the induced maximal
locally convex surface is shown in Figure 5.27(b). Notice that all non-corners
of the polygon are incomplete vertices. Thus every vertex that is incident to
an angle greater than π. Since we have a vertex-empty domain the pointed
Delaunay pseudo-triangulation can be constructed by a flip sequence of length
O(n2) [5]. The execution of a flip (with update of the heights of the incomplete
vertices) costs O(n3) in the worst case (see also [5]).

We show that the pointed Delaunay pseudo-triangulation of a simple poly-
gon whose corners lie on the convex hull of P can be efficiently computed as
linear program over the PPT-polytope. We call polygons with this property
pseudo-convex polygons. To obtain a linear program that computes the pointed
Delaunay pseudo-triangulation we use the observations made in Section 5.4. If
D represents a convex polygon one can compute Th for any height function h
by the linear program stated in Theorem 5.13.

We extend the observations of Theorem 5.13 in the following. Our goal is to
lift all corners onto the paraboloid. We have to assure that (1) all non-corners
will be pointed, (2) the edges EB appear in the ppt, and (3) the lifted surface is
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(a) (b)

Figure 5.27: A pointed Delaunay pseudo-triangulation of a simple polygon (a)
and the corresponding lifting (b).

locally convex. The corners of pseudo-convex polygons are exactly the convex
hull vertices. Thus we have to lift only these vertices onto the paraboloid.
We use the technique used in the proof of Theorem 5.13 to lift the corners.
This gives us the Delaunay triangulation of the convex hull of P . We have no
guarantee that the edges EB appear in this triangulation. But as mentioned
before in Section 5.4 we can enforce any (non-crossing and pointed) set of edges
to be part of the LP-solution by making the corresponding inequalities in the
PPT-polytope tight. Thus, we have additionally

〈vi − vj ,pi − pj〉 = fij ∀(i, j) ∈ EB, (5.20)

Let us finish with the formal LP description. We denote with Pc ⊆ P the
set of corners of D. The vertices Pc are labeled in cyclic order pc1 ,pc2 , . . .. The
square brackets notation [i, j, k] refers now to [pci ,pcj ,pck

], and [i, j, k, l] refers
to [(pci , h̃

d
ci

)T , (pcj , h̃
d
cj

)T , (pck
, h̃d

ck
)T , (pcl

, h̃d
cl
)T ].

Theorem 5.29. For a pseudo-convex polygon P (no vertex lies in the origin)
the maximization of ∑

pi∈Pc

〈vi,pci〉
[0, i− 1, i, i + 1]

[0, i− 1, i][0, i, i + 1]
(5.21)

over the facet of the PPT-polytope given by (5.20) and (5.4)–(5.6) gives the
pointed Delaunay pseudo-triangulation of the polygon P .

Proof. Due to Corollary 5.10 we know that the solution of the linear program
stated in the theorem corresponds to a non-equilibrium stress. Moreover, the
forces acting at the interior vertices sum up to zero. At every boundary vertex
pci the resulting force equals pci [0, i − 1, i, i + 1]/([0, i − 1, i][0, i, i + 1]). We
can apply Lemma 5.11 to construct an equilibrium stress. As consequence the
height of the boundary vertices is determined by the pyramid-shaped shell,
namely ‖pci‖2. All (unconstrained) edges of the pointed pseudo-triangulation
have positive stress and are therefore convex (see Corollary 5.10). Notice that
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the constrained edges might be concave if we consider the lifting with respect
to the domain conv(P ).

Notice that the pyramid tip in the lifting can be any point and is not re-
stricted to lie in the origin (we leave out the computations). Thus, if we have
a vertex pi = 0 we can modify the objective function by replacing 0 by some
vertex q not contained in P .

Theorem 5.29 can be easily modified for the computation of any regular
pseudo-triangulation of a pseudo-convex polygon. All we have to do is to adjust
the heights that appear in the volume of the tetrahedra in equation 5.21.

In [77] we introduced a different linear program to compute the pointed
Delaunay pseudo-triangulation for pseudo-convex polygons. The construction
there is based on the LP formulation of Theorem 5.14. The geometric interpre-
tation is given by the bowl-shaped shell. The method of Theorem 5.29 uses a
pyramid-shaped shell instead. Our approach has the advantage that we do not
have additionally to guarantee that the diagonals (i, i + 2) lie in the interior of
the simple polygon (as done in [77]).

The constructed pointed Delaunay pseudo-triangulation is “Delaunay-like”
for two reasons. First of all in the convex case it coincides with the Delaunay tri-
angulation. This follows by definition but is also a consequence of Theorem 5.29.
Second, if we start with a convex set, add new points on the boundary edges
and move the new vertices slightly into the interior of the convex hull the set of
diagonals defining the pointed Delaunay pseudo-triangulation stays the same.
This is due to the fact that the lifted surface remains convex if we make the
boundary edges concave such that they do not cross any interior diagonal of
the Delaunay triangulation. Thus also for these “nearly convex” polygons, the
pointed Delaunay pseudo-triangulations is equivalent to Delaunay triangulation
of its convex hull.





Chapter 6

NP-Complete Problems for
Pseudo-Triangulations

6.1 Preliminaries

In this section we show the NP-completeness of problems related to pseudo-
triangulations. For an introduction to NP-completeness we redirect the reader
to the classic book of Garey and Johnson [38] and Chapter 34 in the book of
Cormen et al. [29].

All following reductions make use of the NP-completeness of Planar 3-
Sat. For this reason we start our discussion with introducing this problem.

6.1.1 Planar 3-Sat

The problem Planar 3-Sat is a special version of the well known 3-Sat prob-
lem. As in 3-Sat we ask if a formula ϕ in conjunctive normal form with at
most three literals per clause is satisfiable. We denote the variables of ϕ by
x1, . . . , xn and the clauses of ϕ by c1, . . . , cm. If a (negated) variable appears
as literal in a clause we say the variable is part of the clause. For a formula ϕ
we define the combinatorial graph Gϕ = (Vϕ, Eϕ) by

Vϕ = {xi | 0 < i ≤ n} ∪ {cj | 0 < j ≤ m},
Eϕ = {(xi, cj) | xi is part of cj}.

We call a formula ϕ planar if its graph Gϕ is planar. Let us have a look at an
easy example. The formula

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄3 ∨ x4) ∧ (x3 ∨ x2 ∨ x̄4)

is in 3-CNF and planar, since the graph Gϕ can be drawn without crossings as
seen in Figure 6.1. We obtain as decision problem:
Planar 3-SAT
Input: A planar Boolean formula ϕ in 3-CNF with variables x1, . . . , xn.
Question: Is there a truth assignment to the variables x1, . . . , xn such that ϕ
is true?
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x1 x3 x2 x4

c3c1

c2

Figure 6.1: Drawing of Gϕ.

The test if a formula is in 3-CNF and planar can be done in polynomial time
(3-CNF is trivial, for planarity testing see Hopcroft and Tarjan [48]). Hence,
Planar 3-Sat is in NP. Due to Lichtenstein:

Theorem 6.1 (Lichtenstein [56]). Planar 3-Sat is NP-complete.

Lichtenstein’s proof implies also a stronger version of Planar 3-Sat. The
problem remains NP-complete, even if the planar formulas have to result in
embeddings where the vertices for the variables lie on a common straight line
and no edge crosses this line (this was observed by Knuth and Raghunathan
[53]).

6.2 The Existence of a Pseudo-Triangulation

We address the problem whether a given graph (embedded in the plane) con-
tains a pseudo-triangulation or not. In the following we call a graph with given
plane (straight-line) embedding geometric graph. Let G = (V,E) be a geomet-
ric graph. We say the graph contains a pseudo-triangulation if we can delete a
subset of edges, such that the remaining graph is a pseudo-triangulation. This
problem is closely related to the Triangulation Existence problem (Tri) that
asks the following:
Triangulation Existence (Tri)
Input: A geometric graph G = (V,E).
Question: Is there a subset E′ ⊆ E such that G′ = (V,E′) is a triangulation?
The NP-completeness of Tri was shown by Lloyd in 1977 [57]. The complete-
ness proof relies on a reduction from CNF-Sat. Even though the ideas in the
proof are elegant, the reduction is quite technical and the construction is hard
to verify. We give a new proof for the NP-completeness of Tri that is simpler
than the version of Lloyd. This is possible because we reduce from Planar 3-
Sat, which was not known to be NP-complete in 1977. The structure provided
by the instances of the planar version of 3-Sat helps to introduce a simple
reduction. In the following we modify the new reduction to obtain results for
two related problems.
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Pseudo-Triangulation Existence (P-Tri)
Input: A geometric graph G = (V,E).
Question: Is there a subset E′ ⊆ E such that G′ = (V,E′) is a pseudo-
triangulation?

Pointed Pseudo-Triangulation Existence (PP-Tri)
Input: A geometric graph G = (V,E).
Question: Is there a subset E′ ⊆ E such that G′ = (V,E′) is a pointed
pseudo-triangulation?

6.2.1 NP-Completeness of Tri

We observe that Tri is in NP, because the verification if a graph is a trian-
gulation can be done in polynomial time. This argument holds also for P-Tri
and PP-Tri. We prove the NP-completeness by the following reduction from
Planar 3-Sat.

Basic idea for the reduction: The reduction transforms a formula ϕ (planar
and in 3-CNF) into a geometric graph Gt

ϕ = (V,E). Gt
ϕ contains a triangulation

if and only if ϕ is satisfiable. The reduction starts with constructing a non-
crossing (straight-line) embedding of the graph Gϕ, which always exists for
planar graphs [35]. Furthermore, we know that an O(n)×O(n) grid suffices to
embed the graph (see [33, 79]). This guarantees that the representation of the
coordinates is not too large. In the next step we replace the edges and vertices
of Gϕ by larger graphs. These substitution pieces are called gadgets. Notice
that we have to blow up the linear sized grid embedding by a polynomial factor
to create some “space” for the placement of the gadgets.

We introduce four different types of gadgets: Wire, Split, OR and NOT.
The Wire-gadget represents the edges of Gϕ. The Split-gadget is used to realize
variable vertices with degree larger than two. Finally, we use the NOT and OR-
gadget as substitution for every vertex ci belonging to a clause. The wires have
two states: true and false. A variable vertex vi is replaced by a short wire. This
wire represents the truth assignment of the corresponding variable. The Split-
gadget has one input slot and two output slots. It assures that the output states
equal the input state. The NOT-gadget and OR-gadget check the clauses of
the formula ϕ. We construct these gadgets in such a way, that the NOT-gadget
will invert the state of a wire. The OR-gadgets leads to “yes”-instances of the
Graph Gt

ϕ if and only if the three input wires fulfill the logical OR (the state
of at least one of them is true). This approach is reused for later reductions in
this section. We continue with introducing the different gadgets.

Wire-gadget: As mentioned before the gadget stores and propagates the
truth assignment of a literal. Figure 6.2(a) shows the gadget. We call the in-
terior edges of the gadget diagonals. The gadget contains two triangulations
– depicted in Figure 6.2. The triangulation that uses solid diagonals (Fig-
ure 6.2(b)) represents the state true - the triangulation that uses the dashed
diagonals (Figure 6.2(c)) represents the state false. The selection of a single
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diagonal predetermines the state of the wire. Because there is no triangle in the
gadget that has a dashed and a solid diagonal, it is not possible to switch from
true to false or vice versa. Notice that it is no problem to enlarge the wire. It

(a) (b) (c)

Figure 6.2: The Wire-gadget for Tri (a), and its two triangulations (b) and
(c).

is also possible to perturb the vertex coordinates of the Wire-gadget slightly.
Therefore, we can realize bent wires as shown in Figure 6.3.

Figure 6.3: A bent Wire-gadget for Tri.

Split-gadget: The Split-gadget has three slots where wires can be attached.
Figure 6.4(a) shows the gadget. As in the Wire-gadget there is no triangle that
contains a solid and a dashed diagonal. Therefore, it is not possible to select
a solid diagonal once you picked a dashed one (and vice versa). Observe that
the gadget contains two triangulations (Figure 6.4(b) and (c)). Thus the three
connected wires have to provide the same state to allow a triangulation of the
Split-gadget.

(a) (b) (c)

Figure 6.4: The Split-gadget for Tri (a), and its two triangulations (b) and (c).
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NOT-gadget: Realizing a negation is necessary to evaluate the clauses of ϕ.
See Figure 6.5 for an illustration of the NOT-gadget. The gadget has to change
the orientation of the diagonals. In the middle of the gadget every triangula-
tion has to use a triangle with a solid and a dashed diagonal. There is no other
triangle with mixed types of diagonals. Thus, the only two triangulations con-
tained in the gadget reverse the orientation of the diagonals. As a consequence
the state of the wire attached at the left end has to be opposite to the state of
the wire attached at the right end.

(a) (b)

Figure 6.5: The NOT-gadget for Tri (a), and one of its two triangulations (b).

OR-gadget: The OR-gadget is used to evaluate the clauses of ϕ. The gadget
has three input slots where wires can be attached. It is slightly more complex
than the other gadgets, because it allows more than two triangulations. The
gadget contains diagonals, which cannot be considered as solid or dashed. We
call these diagonals hybrid. See Figure 6.6 for a picture of the gadget. We see
that three input wires meet in a 9-gon, which is filled with 18 diagonals. Theses
diagonals are the hybrid diagonals. The gadget (with edges) is symmetric under
rotation by 120 degrees, but it is not symmetric by reflection. We show that the

a1

a2

b1

b2

Figure 6.6: The OR-gadget for Tri.

gadget allows a triangulation for all possible input combinations, except when
all wires use dashed diagonals. We observe that there are only three hybrid
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diagonals crossing the solid diagonal (a1, a2) but there are 6 hybrid diagonals
crossing the dashed diagonal (b1, b2). Having three input wires with dashed
diagonals makes it impossible to find a triangulation of the 9-gon. The removal
of all hybrid diagonals in this case creates an empty hexagon (Figure 6.7(a)) and
therefore allows no triangulation. On the other hand, all other combinations
of input states lead to triangulations (as seen in Figure 6.7(b)-(d)). All other
combinations are symmetric versions of Figure 6.7. Hence, the OR-gadget works
correctly.

(a) (b) (c) (d)

Figure 6.7: The OR-gadget for Tri with different input states.

After the substitution of the edges and vertices of Gϕ by the gadgets, we
might have holes and pockets inside the resulting graph. We triangulate them
arbitrarily. Any edge of the graph that is not crossed by any other edge has
to be contained in the triangulation (this is well known, but arises also as a
consequence of the results of [7]). Thus, no boundary edge of a gadget can be
deleted and the triangulation of the holes does not affect the functionality of
the gadgets.

Clearly, a formula ϕ is satisfiable if and only if there exists a triangulation
inside the constructed graph Gt

ϕ. We omit the detailed analysis of the construc-
tion of the embedding of Gt

ϕ. In particular, we leave out the explanation how to
blow up the linear grid appropriately. The calculation of the exact coordinates
is only a technicality and gives no deeper insight in the problem.

Notice that we reduce from Planar 3-Sat, which does not contain any
numeric values. The strong NP-completeness of Tri follows.

Theorem 6.2. Tri is strongly NP-complete.

6.2.2 New NP-Completeness Results

We modify the proof of Theorem 6.2 to obtain reductions for P-Tri and PP-
Tri. We start with the reduction for PP-Tri. Let Gpt

ϕ be the geometric graph
we built for ϕ. In the previous proof we constructed the gadgets (except the
OR-gadget) such that exactly two triangulations are contained in every gadget
(under the assumption that the boundary edges appear in the triangulation).
We modify the gadgets such that exactly two pointed pseudo-triangulations are
contained in every gadget (except the OR-gadget). Furthermore, all gadgets
are constructed such that they have only pointed vertices at their boundary.
This property is useful to enforce the boundary gadget edges to appear in every
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pseudo-triangulation contained in Gpt
ϕ . Let us assume for now that all boundary

gadget edges have to appear in every contained pseudo-triangulation (we prove
this fact later with help of Lemma 6.3).

Wire-gadget: The Wire-gadget can be easily obtained from the one used
for Tri. Exactly two pointed pseudo-triangulations are contained in the gad-
get. Again, we associate one of them with true (the one with solid diagonals)
and one of them with false (the one with dashed diagonals). There exists no
pseudo-triangle that uses dashed and solid diagonals and therefore switching
between the states inside the Wire-gadget is not possible. See Figure 6.8 for
the corresponding pictures. Small perturbations of the vertices are valid. Thus,
we can realize bent wires without problems.

(a) (b) (c)

Figure 6.8: The Wire-gadget for PP-Tri (a), and its two pointed pseudo-
triangulations (b) and (c).

Split-gadget: The new Split-gadget is depicted in Figure 6.9(a). Its central
area has to be covered by a pseudo-triangle. Such a pseudo-triangle exists
only if the state of all attached wires is the same. It is not possible to find a
pseudo-triangulation for any other combination of the states. In these cases it
is impossible to construct an angle greater than π at one of the points a, b, c.
Figure 6.9(b) shows that the large central pseudo-triangle fits perfectly together
with the wires if their state is true. The symmetric situation (all wires have
state false) is the reflection of Figure 6.9(b).

NOT-gadget: The NOT-gadget is similar to the NOT-gadget for Tri. Due
to the updated Wire-gadget no vertex is non-pointed. Figure 6.10 shows the
gadget.

OR-gadget: The final gadget in our reduction is the OR-gadget. The gadget
is based on the same ideas we used for the OR-gadget for Tri. We have again a
9-gon that includes a number of hybrid diagonals. If the state of an input wire
is false (it uses dashed diagonals) 5 hybrid diagonals have to be removed. On
the other hand, if the state of an attached wire is true (it uses solid diagonals)
we have to remove only two hybrid diagonals. Observe that if all attached wires
use dashed diagonals it is not possible to cover the 9-gon with pseudo-triangles
(see Figure 6.12(a)). Notice that in all other cases it is possible to find a pointed
pseudo-triangulation that is contained in the gadget. Figure 6.12(b)–(d) depicts
all possible situations (up to symmetry).
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a

bc

(a) (b)

Figure 6.9: The new Split-gadget (a) and one of its pointed pseudo-
triangulations (b).

(a) (b)

Figure 6.10: The new NOT-gadget (a) and one of its pointed pseudo-
triangulation (b).

Figure 6.11: The OR-gadget for PP-Tri.
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(a) (b) (c) (d)

Figure 6.12: The OR-gadget for PP-Tri with different input states.

The assembled gadgets contain a pointed pseudo-triangulation if and only
if the formula ϕ is satisfiable. Again, it can be realized on a polynomial sized
grid by scaling the linear sized grid embedding of Gϕ (we omit the technical
details again).

In the final step of the reduction we fill the remaining holes and pockets of
Gpt

ϕ . This is done by pseudo-triangulating them arbitrarily without violating
the pointedness condition of the vertices at the gadget boundaries. We can
complete any non-crossing, pointed graph to a pointed pseudo-triangulation
(see Streinu [84]). Therefore, all holes and pockets can be filled with pseudo-
triangles while maintaining the pointedness property of the boundary vertices.
We show that the functionality of the gadgets is not destroyed by these pseudo-
triangles.

It suffices to show that the boundary edges of the gadgets have to be con-
tained in every pointed pseudo-triangulation contained in Gpt

ϕ (this was assumed
during the discussion).

Lemma 6.3. Let e be an edge in a geometric graph G where the endpoints of
e are pointed. If there is no edge e′ in G (e 6= e′) that crosses e then every
pseudo-triangulation contained in G has to contain e.

Proof. Assume that there is a pseudo-triangulation PT contained in G without
e. Then the (deleted) edge e has to lie in the interior of some pseudo-triangle
∆. Assume that ∆ has q vertices. Let PT∆ be a pointed pseudo-triangulation
of the points of ∆ which includes ∆ as face. PT∆ has 2q − 3 edges. Adding
e to PT∆ gives one pointed vertex, because the edge count is now 2q − 2.
Clearly, the non-pointed vertex has to show up at one of the endpoints of e.
As a consequence, adding e to PT gives a non-pointed vertex at one of its
endpoints as well. But this is impossible since these points are pointed in G.
This contradicts the assumption.

Due to Lemma 6.3 no boundary edge of the gadgets can be removed with-
out constructing a pseudo-k-gon with k > 3. This finishes the proof of the
NP-completeness by construction. The strong NP-completeness follows by the
reasons given in the proof of Theorem 6.2. We conclude with:

Theorem 6.4. PP-Tri is strongly NP-complete.
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The reduction ϕ → Gpt
ϕ can also be used to show the NP-completeness of P-

Tri. Every yes-instance of Planar 3-Sat is mapped to a graph that contains
a pointed pseudo-triangulation and hence a pseudo-triangulation. It remains to
show that if Gpt

ϕ contains a pseudo-triangulation, then this pseudo-triangulation
has to be pointed. This would imply that Gpt

ϕ contains a pseudo-triangulation
only if ϕ is satisfiable.

Non-pointed vertices in Gpt
ϕ appear in the OR-gadget (6 per gadget) and in

the Split-gadget (3 per gadget). These vertices cannot remain non-pointed in a
pseudo-triangulation contained in Gpt

ϕ . If we keep the vertices non-pointed we
have to delete all edges that are crossed by the edges incident to the small angles
of the non-pointed vertices. Figure 6.13 depicts this situation. We observe that
a pseudo-k-gon with k > 3 is unavoidable. Since all other vertices in Gpt

ϕ are

(a) (b)

Figure 6.13: Maintaining a non-pointed vertex (marked as cross) in the OR-
gadget (a) or the Split-gadget (b) produces at least a pseudo-quadrilateral in
every crossing free subset of edges.

already pointed, every pseudo-triangulation contained in Gpt
ϕ has to be pointed.

Theorem 6.5. P-Tri is strongly NP-complete.

6.3 Bounded-Degree Pseudo-triangulations

In the last section we considered the problem if it is possible to delete edges
such that we obtain a (pointed) pseudo-triangulation. Now we look at the
opposite setting. Given a graph that is not a pseudo-triangulation yet. Can we
add edges such that this graph becomes a pseudo-triangulation? This problem
can be answered easily. If the graph is non-crossing, then we can complete it
to a triangulation (and hence a pseudo-triangulation). As mentioned before, if
the graph is non-crossing and pointed we can complete it to a pointed pseudo-
triangulation [84]. A more challenging question is, if we can complete the graph
such that it can be completed to a pseudo-triangulation with special properties.

We know that for every point set there exists a pointed pseudo-triangulation
with vertex degree at most 5 [51]. Notice that a similar result does not hold
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for triangulations. There are point sets with n vertices that require a vertex
degree of n − 1. See Figure 6.14 for such a point set. Since an edge has to
be contained in a triangulation if there is no other edge crossing it, a vertex
with high degree cannot be avoided in this example. On the other hand, this
point set has clearly a pseudo-triangulation with no vertex of degree larger
than four. For the more general setting of constrained pseudo-triangulations

Figure 6.14: A point set with high vertex degree triangulation.

constant degree bounds exist as well [10].
We address the problem if a convex hull of a point set with given edge con-

straints can be completed to a pseudo-triangulation such that no vertex violates
a given degree bound. As edge constraints we consider a set of edges, which
has to appear in the pseudo-triangulation. The following incarnations of this
question are studied:
k-Constrained Pseudo-Triangulation (k-CPT)
Input: A point set P and a set C ⊆ P × P of edge constraints.
Question: Is there a pseudo-triangulation of conv(P ) that includes C, whose
maximal vertex degree is k?
k-Constrained Pointed Pseudo-Triangulation (k-CPPT)
Input: A point set P and a set C ⊆ P × P of edge constraints.
Question: Is there a pointed pseudo-triangulation of conv(P ) that includes C,
whose maximal vertex degree is k?

The number k is not part of the input but part of the problem. Related
to this question is the equivalent problem for triangulations, also known as the
min-max degree triangulation problem, which was shown to be NP-complete by
Jansen [50].

Theorem 6.6. For any k ≥ 5, k-CPT is strongly NP-complete.

Proof. We prove the theorem by introducing a reduction form Planar 3-Sat.
The key elements of the reduction are a set of gadgets that represent edges and
vertices of a planar formula. The final result of the reduction is a graph G3

ϕ

that can be extended to a pseudo-triangulation with maximum vertex degree 5
if and only if ϕ is satisfiable. The vertices of G3

ϕ give the set P and the edges
induce the edge constraints C.

We assume that the formula ϕ satisfies the additional conditions of Knuth
and Raghunathan [53], namely: Gϕ can be embedded such that all variables
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lie on a common line and the clause vertices are above and below this line.
Furthermore, no edge crosses this line and every clause contains exactly three
literals. The “stronger” version of Planar 3-Sat is necessary to show the
3-connectivity and planarity of G3

ϕ. The explicit embedding of G3
ϕ is computed

later.
We use four different kind of gadgets: Wire, Variable, NOT and OR. The

functionality of the gadgets is related to the set of gadgets used in proof of
Theorem 6.4. The only difference is that we do not have a distinct Split-gadget.
Instead we use a Variable-gadget to copy wire signals.

Our goal is an embedding of G3
ϕ where every hole (induced by the gadget

boundaries) is a convex polygon. For this purpose we construct a 3-connected
planar graph G3

ϕ based on Gϕ. We first define the abstract graph G3
ϕ by its gad-

gets (which are abstract subgraphs). The gadgets work correct for any convex
embedding of G3

ϕ. Due to Bárány and Rote the planarity and 3-connectedness
guarantee a strictly convex polygonal grid embedding that can be computed in
polynomial time [14].

Let us start with a high level description of the reduction and then discuss
the gadgets more detailed one by one. Every vertex that represents a variable in
Gϕ is replaced by a Variable-gadget. All vertices that represent a clause are sub-
stituted by OR-gadgets. We connect the corresponding Variable-gadgets and
OR-gadgets by a Wire-gadget (if the variable appears in the clause as literal) or
by a NOT-gadget (if the negated variable appears in the clause as literal). The
basic idea of the construction is that the Variable-gadgets provide two feasible
triangulations, which we associate with true and false. Wire and NOT-gadget
will propagate the assignments to the OR-clauses, where the evaluation of the
clauses takes place.

We start with the discussion of the gadget for k = 5 and show later how to
modify the gadgets for any k > 5:

Variable-gadget: In G3
ϕ every variable is associated with a subgraph called

Variable-gadget. The gadget is depicted in Figure 6.15(a). It contains several
connection slots for Wire-gadgets or NOT-gadgets. We can realize any number
of these slots. In contrast to Section 6.2 we do not need to “split” the signal of
the wire because we realized multiple copies of it already at the Variable-gadget.

Wire-gadget: The Wire-gadget is used to propagate the truth assignment
of the Variable-gadgets. It consists of a convex quadrilateral. The quadrilat-
eral is attached at a triangle of the Variable-gadget. There are two ways to
triangulate the gadget, but one of the triangulations is forbidden by the degree
bound induced by the triangulation of the Variable-gadget. Figure 6.16 shows
that there are exactly two ways to triangulate a Variable-gadget with con-
nected Wire-gadgets without violating the degree bound. Notice that selecting
one diagonal in the Variable-gadget predetermines the whole triangulation. As
mentioned before, the orientation of the diagonals represents the truth assign-
ment of the corresponding variable. We use the truth assignment depending on



6.3. Bounded-Degree Pseudo-triangulations 89

Figure 6.15: The Variable-gadget.

the triangulation as depicted in Figure 6.16.

true false

Figure 6.16: The associated truth assignment of the Variable-gadget with at-
tached wires.

NOT-gadget: The NOT-gadget is used like a Wire-gadget, but it reverses the
orientation of the diagonals chosen in the adjacent Variable-gadget. The gad-
get is shown in Figure 6.17(a). Notice that if connected to a Variable-gadget
(Figure 6.17(b)–(c), top-most connection slot) it has only two triangulations
with vertex degree at most 5. Observe that depending on the triangulation of
the Variable-gadget only one of these triangulations is feasible. As shown in
Figure 6.17(b)–(c) the orientation of the “outer-most” diagonal changes (com-
pared to the other Wire-gadgets attached to the Variable-gadget in the figure).

OR-gadget: The OR-gadget is needed to evaluate the clauses. The abstract
graph G3

ϕ contains only a convex hexagon with a vertex and three edges inserted
as placeholder for the gadget (depicted in Figure 6.18). After the (convex)
embedding of G3

ϕ we delete the three gray edges and add the dotted edges from
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(a) (b) (c)

Figure 6.17: The NOT-gadget (a) attached to a Variable-gadget with its two
possible triangulations (b) and (c).

Figure 6.18. There are 8 possibilities how the diagonals at the input Wire/Not-
gadget can be oriented, but due to symmetry we have only to check 4 cases.
If all input slots correspond to false, we have to create a degree 6 vertex at
the center (Figure 6.19(a)). All other combinations (Figure 6.19(b)–(d)) can
be completed to a triangulation with valid degree bound.

Figure 6.18: The placeholder of the OR-gadget. For the real gadget the gray
edges are replaced by the dotted edges.

(a) (b) (c) (d)

Figure 6.19: The triangulation with smallest vertex degree for all types of input
combinations.

Since G3
ϕ needs to be 3-connected we connect the Variable-gadgets cyclically.
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The direct connections between Variable-gadgets (by three Wire-gadgets) prop-
agate no information. The created subgraph represents all variable vertices of
Gϕ (see Figure 6.20). Notice that G3

ϕ is 3-connected, because deleting any two
vertices will not disconnect the graph. Furthermore, it is planar, because it
can be drawn without crossings (edges do not have to be necessarily drawn as
straight-lines). Due to the algorithm of Bárány and Rote [14] the graph G3

ϕ

Figure 6.20: The ring of variables for a formula with 6 variables.

can be realized on a polynomial grid with strictly convex faces (in polynomial
time). This assures that all gadgets work correctly. After the embedding we
have to replace the placeholder for the OR-gadget by the real OR-gadget. This
might require a further subdivision of the grid. By construction the faces of
the gadget can be decomposed into pseudo-triangles with degree bound 5 if and
only if ϕ is satisfiable.

It remains to show how to fill the holes (induced by the gadget boundaries)
of the embedding of G3

ϕ with pseudo-triangles without violating the degree
bound. The holes are convex polygons. We discuss now how to fill the holes
without using a vertex with degree larger than 5 and without increasing the
vertex degree of any “old” vertex. We scale by a polynomial factor to obtain
enough “space” for the modifications. We omit the technical details.

Filling the holes works in 5 steps. Assume a hole has k boundary vertices.
In the first step we subdivide every boundary segment of a hole by adding a
new vertex on every boundary edge. We shift the new vertices such that the
hole remains a strictly convex polygon. Notice that a small perturbation does
not destroy the functionality of the gadgets. After the perturbation the gadgets
consist of pseudo-quadrilaterals and pseudo-triangles instead of quadrilaterals
and triangles. The correctness of the gadget is guaranteed if the diagonals in ev-
ery quadrilateral are also the diagonals in the (perturbed) pseudo-quadrilateral.
Since the perturbations can be made small this can be guaranteed.

After the first step we have doubled the number of vertices on the boundary
of the hole. Every other vertex has degree two. We connect the degree-two
vertices in the next step cyclically (see Figure 6.21). This produces a convex
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original hole after step 1 after step 2

Figure 6.21: Step 1 and 2 for filling the holes. The crosses mark newly added
vertices. Original hole edges are drawn dashed.

k-gon where every vertex has degree 4. Let the vertices of the new k-gon
be p1, . . . ,pk labeled in cyclic order. For every pi we define the vertex qi

as intersection of the diagonals (pi,pi+2) and (pi+1,pi+3) (index shift always
modulo k). In the third step we add all segments (pi,qi). This produces a
degenerate situation (on every new segment we have three points on a line). We
perturb the vertices qi such that the quadrilateral pi,pi+1,qi,qi−1 becomes a
pseudo-triangulation with qi−1 as non-corner. This can be achieved by placing
qi in the center between pi+1 and the old position of qi. The vertices qi span
a convex k-gon, where every vertex has degree three. Now we triangulate the
inner most k-gon in a zig-zag manner. Every vertex degree increases by at most
two and hence the degree bound of 5 holds.

after step 3 after step 4 final

Figure 6.22: Steps 3–5 for filling the holes.

So far we have shown the NP-completeness of 5-CPT. The construction can
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be modified such that it works for k-CPT (k ≥ 5). This can be achieved by
increasing the vertex degree of the “important” vertices of G3

ϕ after its convex
embedding. We show the modified gadgets for 6-CPT in Figure 6.23.

NOT-gadget Wire and OR-gadget

Figure 6.23: Gadget modifications for 6-CPT.

Theorem 6.7. For any k ≥ 8, k-CPPT is strongly NP-complete.

Proof. We show first that 8-CPPT is NP-complete. The proof relies on the
same ideas we used to prove the NP-completeness of Tri: We construct for a
formula ϕ a geometric graph Gd

ϕ. This geometric graph induces the vertex set
P and the edge constraints C.

The starting point for the construction of Gd
ϕ is an arbitrary straight-line

embedding of Gϕ on a polynomial grid. As done in the proof of Theorem 6.2
we construct Gd

ϕ by substituting vertices and edges of Gϕ by gadgets. The
gadgets used in the reduction are Wire, Split, NOT and OR. The gadgets are
constructed to work for a degree bound of 5. Later we show how to modify the
gadgets such that they work for degree 8 and higher. The reason why we need
the rather large degree bound of 8 will be clear later, when we discuss how to
fill the holes after substituting the gadgets. Nevertheless, it is easier to draw
and to discuss the construction of the gadgets with the degree bound of 5.

Wire-gadget: The Wire-gadget is used to represent edges of Gϕ. It also
models the vertices that belong to the variables. Figure 6.24 shows an illustra-
tion of the gadget. We notice that there are exactly two ways how to complete
the gadget to a pseudo-triangulation with vertex degree at most 5. We asso-
ciate these pseudo-triangulations with true and false. Let us assume that the
triangulation in the middle of Figure 6.24 corresponds to the state true, whereas
the bottom-most triangulation in the figure corresponds to the state false. It
is not possible to switch from true to false inside the wire, because this would
result in a vertex of degree 6. Thus, the selection of one edge predetermines the
selection of the remaining edges inside the Wire-gadget. Clearly, the position
of the vertices can be perturbed without destroying the structure of the gadget.
Thus we can realize bent wires easily.
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Figure 6.24: The wire gadget (on the top) and the two possible pseudo-
triangulations beneath.

Split-gadget: Since we have only one copy of each variable, but different
clauses where it could appear, we need the Split-gadget to propagate the as-
signment of the variables to the clauses. The Split-gadget is connected to three
wires and it assures that the state of all three wires has to be the same. Fig-
ure 6.25(a) shows the gadget. The correctness of the gadget can be verified
easily: An ingoing wire turns one vertex into a degree 5 vertex. This vertex is
blocked for any other edges. There remains only one possibility to introduce the
diagonal in pseudo-quadrilateral next to the degree 5 vertex. Moreover, there
is only one possibility to insert the diagonal in the third pseudo-quadrilateral
(without violating the vertex degree bound). Figure 6.25(b) and (c) shows the
two possibilities how to pseudo-triangulate the Split-gadget.

(a) (b) (c)

Figure 6.25: The Split-gadget (a) and its pseudo-triangulations (b) & (c).

NOT-gadget: The NOT-gadget (Figure 6.26(a)) works in combination with
a Split-gadget. In particular, we use the Split-gadget to duplicate a wire. The
two wires (which carry the same signal) are plugged into the two input slots of
the NOT-gadget (at the bottom of the figure). Under the assumption that both
input signals are the same there are only two pseudo-triangulations with degree
at most 5 left. Both will reverse the direction of the diagonals. Figure 6.26(b)
shows one of the two feasible pseudo-triangulations.
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(a) (b)

Figure 6.26: The NOT-gadget (a) and its pseudo-triangulation (b).

OR-gadget: The OR-gadget consists of a pseudo-hexagon. We have three
input slots where the wires have to be attached. Figure 6.27 shows the gadget.

Figure 6.27: The pointed OR-gadget.

We study all possible pointed pseudo-triangulation of the pseudo-hexagon.
Notice that there is a one-to-one mapping from the triangulations of a convex
hexagon to the pseudo-triangulations of this pseudo-hexagon. The corners of
the pseudo-hexagon and the vertices of the convex hexagon are indexed in cyclic
order (1 to 6). We associate the triangulation that contains the three diagonals
d1, d2 and d3 with the pseudo-triangulation that contains the geodesics d1, d2

and d3. Figure 6.28 shows one example of this bijection. The set of triangu-
lations of a convex polygon is well understood. For a convex hexagon we have
14 distinct triangulations. We test for all triangulations if the corresponding
pseudo-triangulations fulfills the degree bound. Only 7 pseudo-triangulations
of the OR-gadget remain (listed in Figure 6.29).

Remember, that the state of a wire is considered as false, if its diagonals
are aligned from bottom/left to top/right. When all incoming wires have state
false, the vertices between wires and pseudo-hexagon have all vertex degree 4.
Thus, we can only increase the degree from any of them by one. Convince
yourself that all valid pseudo-triangulations shown in Figure 6.29 have at least
one vertex with two incident diagonals at the boundary to the wire. It is
impossible to cover the pseudo-hexagon with pointed pseudo-triangles when
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Figure 6.28: Bijection between triangulation of a convex hexagon and the
pointed pseudo-triangulation of the OR-gadget.

Figure 6.29: The 7 valid pseudo-triangulations of the pointed OR-gadget.

all inputs are false. On the other hand, any other input combination can be
finished to a pointed pseudo-triangulation without violating the degree bound.
The corresponding pseudo-triangulations are depicted in Figure 6.30.

The discussion shows that ϕ is satisfiable if and only if the gadgets can be
decomposed into pseudo-triangles with no vertex degree greater 5. The gadgets
can be modified easily for any k ≥ 5. We can add artificial edges to increase
the vertex degree of the vertices of Gd

ϕ. Figure 6.31 shows the modifications for
the Wire-gadget such that it works for 8-CPT. The additional edges are drawn
dashed. The OR-gadget needs no adjustments. It will be connected to a wire
in such a way that the vertex degree at the intersection is 7 (for 8-CPT).

Only slight modifications are necessary for the NOT-gadget and the Split-
gadget. Both are depicted in Figure 6.32. Also these gadget have to be con-
nected to wires such that the intersection vertices will get vertex degree 7 (for
8-CPT).

The reduction so far produces edge constraints that induce “holes” by the
gadget boundaries. It is not clear if these holes can be completed to a pointed
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Figure 6.30: All possible input combinations for the pointed OR-gadget

Figure 6.31: The Wire-gadget modified for 8-CPT.

(a) (b)

Figure 6.32: The NOT-gadget and the Split-gadget modified for 8-CPT.
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pseudo-triangulations without violating the degree bound. We show how to fill
the holes of the final embedding used in the reduction to 8-CPPT.

We assemble the graph Gd
ϕ with gadgets for 8-CPPT. In order to fill the

holes we first modify the boundary of the OR-gadgets as shown in Figure 6.33.
With this small modification every other vertex at the boundary has degree

Figure 6.33: Preparation step for pseudo-triangulating the holes.

two or three. At the boundary the large angles of the vertices are alternatively
inside or outside the hole. We observe that every vertex with degree 7 has its
large angle inside the hole. We can therefore place a pseudo-triangle inside the
hole such that the degree 7 vertex lies on a concave 2-chain of it. We link these
new pseudo-triangles together (by “glueing” them with triangles) as shown in
Figure 6.34. We obtain a polygon inside the “hole” where every vertex has at
most degree three. On the other hand we increased the vertex degree only at
the gadget boundary vertices with degree two or three. These vertices have
now vertex degree 4 or 5 and therefore the degree bound of 8 holds.

Due to Aichholzer et al. [10, Theorem 3] we know that we can always find
(efficiently) a pointed pseudo-triangulation for a simple polygon with maximum
vertex degree 7. In our setting a vertex of the new boundary of the hole (after
inserting the pseudo-triangles) has degree at most three. Thus we have +1 for
the degree count compared to the simple polygon case where every boundary
vertex has degree two. This implies that we can fill the holes with no vertex of
degree greater than 8.

We assume that the polynomial grid is large enough to provide space for
the embedding of the gadgets. We omit the technical details for the explicit
embedding.

In the formulation of k-CPT and k-CPPT we the parameter k is part of the
problem. The problems without fixed k (the vertex degree bound is part of the
input) is a more general question. The NP-completeness of this formulation is
an immediate consequence of our results. Moreover, our results are stronger,
since they show that the NP-completeness is not related to the actual degree
bound, as long as k at least 5 (for k-CPT) or 8 (for k-CPPT).
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Figure 6.34: Filling the holes with pointed vertices. The additional pseudo-
triangles are drawn with thicker edges.





Chapter 7

Conclusion and Open Problems

The lifting technique is a powerful tool to study geometric objects. We have
shown how it can be applied to (1) compute small grid embeddings of 3-
polytopes and (2) to compute regular (pseudo)-triangulations as linear pro-
grams over the PPT-polytope. Even though the lifting of planar graphs is well
understood there exists a number of open question that we discuss briefly in
the following.

In the weakest formulation the lifting technique lifts a planar simplicial
complex to a polyhedral terrain. The crucial point in the proof of the Maxwell-
Whiteley theorem is the contractibility of cycles on the surface. This argument
is not restricted to piecewise linear surfaces and can be applied to smooth sur-
faces as well. The question arises, if there is an analogous theorem of the
Maxwell-Whitely Theorem for smooth surfaces. Such a theorem requires for-
malisms and methods of differential geometry. Further studies should discuss
if the lifting technique (of planar graphs) is a special (discrete) version of an
more general method.

Another way to extend the lifting technique is to apply it for graphs and
surfaces with higher genus. The projection of any 3d-mesh into the plane pro-
duces an equilibrium stress. However, additional conditions must hold as well.
Assume for example that we project a torus in the plane. Clearly any con-
tractible cycle can be contracted and assures the equilibrium. On the other
hand, there are cycles that are not contractible. These cycles are responsible
for additional conditions. It is an open and challenging task to obtain a general
lifting condition that includes the additional conditions for surfaces with higher
genus.

Integer Realizations of 3-Polytopes

We come now to the results obtained in this thesis and discuss related open
questions. In the first part we studied the realization of 3-polytopes on the grid.
We were able to improve the upper bound of Richter-Gebert [72] substantially
in Theorem 3.15. The discussion in Chapter 4 showed that the gap between
upper a lower bound is still big. As mentioned in Conjecture 4.1 we believe that
the truth is closer to the upper bound. Proving or disproving Conjecture 4.1
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is an intriguing challenge. It seems reasonable to study grid embeddings of a
special types of 3-polytopes first. The so-called stacked polytopes were suggested
as candidates for small grid-embeddings. A polytope is called stacked, if its
graph can be constructed by a K4 and a sequence of stacking operations, where
a stacking operation replaces a triangular face by three new triangular faces
sharing a new vertex. For special types of stacked polytopes polynomial size
grid embeddings exist [94]. The general case is still open.

Open Problem 1 (Ziegler [95]). Can every stacked 3-polytope be realized on
a polynomial grid?

Instead of asking for integral coordinates one can also aim at realizing 3-
polytopes with integer edge lengths.

Open Problem 2 (Richter-Gebert [72]). Can every 3-polytope be realized
with integer edge lengths?

The (probably harder) 2d case is open as well.

Open Problem 3 (Harborth). Can a planar (3-connected) graph be embed-
ded in the plane with integer edge lengths?

Open Problem 3 is listed in the open problem book of Brass, Moser and
Pach [20]. Related open problems can be found there. The problem goes back
to Harborth and can be answered positively for the graphs of the Platonic solids
[46]. It seems that problems of this type are hard to solve, even if they have
a simple formulation. The following number theoretic problems goes back to
Richard Guy [44] and is also listed in [20].

Open Problem 4. Is it possible to place a point relative to a square such that
the euclidean distances between the point and each of the corners of the square
are rational?

The integral embedding algorithm for 3-polytopes in Chapter 3 uses a plane
spring embedding as intermediate embedding. As crucial feature the embedding
supports an equilibrium stress – also at the boundary. Tutte’s spring embedding
finds application in remeshing, morphing, texture mapping, and other fields
(see for example [26, 36, 37, 42]). Our refined construction, which assures an
equilibrium stress, might be applicable in these areas to obtain new results.
Another interesting question is how we can find an embedding of a planar 3-
connected graph with complete equilibrium stress (prescribed for the interior)
for any outer face. Remember that the embedding algorithm in Chapter 3
assumes that the outer faces has at most 5 vertices.

Topics in Pseudo-Triangulations

In the second part of the thesis we addressed problems related to pseudo-
triangulations. We were able to characterize regular triangulations in the poly-
tope of pointed pseudo-triangulation. We showed that the canonical linear
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program over the PPT-polytope results in a pointed pseudo-triangulation with
nice properties (e.g. affine independence). The local behavior of the pseudo-
triangulation of the canonical linear program depends on the global point set.
Our hope is still to find a pseudo-triangulation in the PPT-polytope that can
be characterized by an easy local geometric condition. The existence of such a
pointed pseudo-triangulation in the PPT-polytope could enable faster enumer-
ation algorithms based on the reverse search technique [13]. This might lead
to an enumeration scheme similar to the one of Bereg [17] and faster compared
to the scheme of Brönnimann et al. [21].

We were able to find a new characterization of pointed pseudo-triangulations
with the help of linear programming duality. In particular, we showed that every
moment-free load can be canceled by some pointed pseudo-triangulation with
equilibrium stresses that are positive at the interior edges. We have used this
property to turn a non-regular triangulation into a regular one. As mentioned in
Chapter 5 this modification has potential applications in physics (e.g. modeling
of diffusion processes). Our approach yields a regular triangulation that might
have edge crossings (which can be removed at the expense of new vertices). A
different approach might lead to regular triangulations that are more similar to
the original triangulation.

Open Problem 5 (Wardetzky[88]). Given a non-regular triangulation Tnr

on the point set P . Does there exists a regular triangulation Tr such that the
graph theoretic distance between any two points in both triangulations differs
only by a constant.

Other variants of this problem are also interesting. For example, we can ask
how man flips are necessary to turn a non-regular triangulation into a regular
one. Furthermore, we can ask these questions not only for “flat” triangulation,
but more generally for triangulation of two-manifolds.

In general many problems on non-regular triangulations are open. As ob-
served in [7] not every non-regular triangulation has such a cyclically depen-
dence like the one in the example shown in Figure 5.19(a). What is known
about the maximal number of edges with negative stresses for a given triangu-
lation? We can efficiently decide if we need negative stresses, but determining
the number of negative stressed edges seems to be NP-complete. Are certain tri-
angulation problems easier if we restrict ourselves to regular triangulations? For
example is the minimum weight regular triangulation problem NP-complete?

In Chapter 6 we investigated some complexity questions related to pseudo-
triangulations. We were able to prove several NP-completeness result. It would
be nice to show the NP-completeness of the generalized problem for the k-
constrained pointed pseudo-triangulation problem.

Open Problem 6. Show that the question if a given point sets supports a
pseudo-triangulation with maximum degree 4 is NP-complete.

Related to this question is the open problem proposed in [80], which asks
how many Steiner points might be necessary to guarantee a pointed pseudo-
triangulation with maximum vertex degree 4. One approach to solve this prob-
lem is the following: Take the x-monotone path including all the points and add
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Steiner points at the outside (with large absolute y-coordinate) to construct a
degree 4 pseudo-triangulation. See Figure 7.1 for a sketch of this construction.
One can observe that Θ(n) additional points suffice.

(a) (b)

Figure 7.1: A point set (a) and its degree 4 pseudo-triangulation with O(n)
Steiner points drawn as crosses (b).

Open Problem 7. Is it sufficient for any point set to add o(n) Steiner points
such that the new point set supports a pseudo-triangulation with maximum ver-
tex degree 4?

Another open question related to pseudo-triangulation that we have not
addressed in the thesis was mentioned in [78].

Open Problem 8 (Rote et al. [78]). How can we find a pseudo-triangulation
contained in a geometric graph with the minimum number of edges. Is the
corresponding decision problem NP-complete?

Related to the last problem is the question how to find a minimum weight
(pointed) pseudo-triangulation. Constant factor approximations exist [43] but
the complexity status is still open. Recently Mulzer and Rote proved the NP-
completeness of the minimum weight triangulation problem [60]. The reduction
in their proof is complicated and does not provide an easy generalization for the
(pointed) pseudo-triangulation scenario. Most recently it was observed that the
minimum weight pseudo-triangulations contains a pointed vertex for sufficiently
large point sets with not too many points on the convex hull [9].
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1(6):549–548, 1982.
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Appendix A

Boundary Stresses of the Equilibrium Embedding
with Pentagonal Boundary Face

An important part in Chapter 3 was to generate a 2d embedding with non-trivial equi-
librium stress. To construct such an equilibrium embedding even for the boundary points
we solve the equation system given by the equations (3.4) and (3.5).

Case 5A

If equation (3.9) holds we have

p1 =

(
0
0

)
,p2 =

(
1
0

)
,p3 =

(
1
1

)
,p4 =

(
0
1

)
,

and obtain as solution for the remaining point:

x5 =
(ω̃13 − ω̃25 − ω̃24)(ω̃35 + ω̃13 − ω̃24)

ω̃35ω̃14 + ω̃14ω̃25 + ω̃25ω̃24 + ω̃13ω̃35 − ω̃35ω̃25
,

y5 =
ω̃35 + ω̃13 − ω̃24

ω̃35 + ω̃25
.

The boundary stresses are

ω12=
ω̃13(ω̃2

25 + ω̃24ω̃35 + 2ω̃24ω̃25 − ω̃13ω̃25)+ω̃14(ω̃2
25 + ω̃25ω̃35 + ω̃24ω̃25 + ω̃35ω̃24)

ω̃35ω̃25 − ω̃14ω̃25 − ω̃25ω̃24 − ω̃13ω̃35 − ω̃35ω̃14
−ω̃12,

ω23=
ω̃13ω̃25 + ω̃25ω̃35 + ω̃24ω̃25

−ω̃25 − ω̃35
− ω̃23,

ω34=
ω̃14(ω̃2

35 + ω̃35ω̃13 + ω̃25ω̃35 + ω̃13ω̃25)+ω̃24(ω̃2
35 + ω̃13ω̃25 + 2ω̃13ω̃35 − ω̃35ω̃24)

ω̃35ω̃25 − ω̃14ω̃25 − ω̃25ω̃24 − ω̃13ω̃35 − ω̃35ω̃14
−ω̃34,

ω45=
ω̃24ω̃25 + ω̃25ω̃14 + ω̃14ω̃35 + ω̃24ω̃35

ω̃13 − ω̃24 − ω̃25
− ω̃45,

ω15=
ω̃13ω̃25 + ω̃35ω̃13 + ω̃14ω̃25 + ω̃14ω̃35

ω̃24 − ω̃35 − ω̃13
− ω̃15.

Case 5B

If equation (3.9) does not hold we set

p1 =

(
0
−1

)
,p2 =

(
1
y2

)
,p3 =

(
1
y3

)
,p4 =

(
0
1

)
,p5 =

(
−1
0

)
.
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This leads to the solution

y2=−2
ω̃24ω̃13 + ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35 − ω̃2

13 − 2ω̃13ω̃35 − ω̃35ω̃14

ω̃24ω̃35 + 2ω̃25ω̃13 + 2ω̃25ω̃35
,

y3= 2
ω̃24ω̃13 + ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35 − ω̃2

24 − 2ω̃24ω̃25 − ω̃14ω̃25

ω̃24ω̃35 + ω̃25ω̃13 + 2ω̃25ω̃35
,

ω12=−ω̃24 − 2ω̃25 − ω̃12,

ω23=
−ω̃25(ω̃2

13 + 2ω̃13ω̃35 + 2ω̃24ω̃35)− ω̃35(ω̃2
24 + ω̃25ω̃14)

2ω̃35(ω̃24+ω̃25−ω̃13− 1
2 ω̃14)+2ω̃25(ω̃13+ω̃35−ω̃24− 1

2 ω̃14)−(ω̃13−ω̃24)2
−ω̃23,

ω34=−ω̃14 − 2ω̃15 − ω̃34,

ω45=ω̃24 − 2ω̃35 − ω̃13 − ω̃45,

ω15=ω̃13 − 2ω̃25 − ω̃24 − ω̃15.
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