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Abstract

Efficiently aggregating data from different sources is a challenging problem, particularly when
samples from each source are distributed differently. These differences can be inherent to the
inference task or present for other reasons: sensors in a sensor network may be placed far apart,
affecting their individual measurements. Conversely, it is computationally advantageous to split
Bayesian inference tasks across subsets of data, but data need not be identically distributed
across subsets. One principled way to fuse probability distributions is via the lens of optimal
transport: the Wasserstein barycenter is a single distribution that summarizes a collection of
input measures while respecting their geometry. However, computing the barycenter scales poorly
and requires discretization of all input distributions and the barycenter itself. Improving on
this situation, we present a scalable, communication-efficient, parallel algorithm for computing
the Wasserstein barycenter of arbitrary distributions. Our algorithm can operate directly on
continuous input distributions and is optimized for streaming data. Our method is even robust
to nonstationary input distributions and produces a barycenter estimate that tracks the input
measures over time. The algorithm is semi-discrete, needing to discretize only the barycenter
estimate. To the best of our knowledge, we also provide the first bounds on the quality of the
approximate barycenter as the discretization becomes finer. Finally, we demonstrate the practical
effectiveness of our method, both in tracking moving distributions on a sphere, as well as in a
large-scale Bayesian inference task.

1 Introduction

A key challenge when scaling up data aggregation occurs when data comes from multiple sources,
each with its own inherent structure. Sensors in a sensor network may be configured differently or
placed far apart, but each individual sensor simply measures a different view of the same quantity.
Similarly, user data collected by a server in California will differ from that collected by a server in
Europe: the data samples may be independent but are not identically distributed.

One reasonable approach to aggregation in the presence of multiple data sources is to perform
inference on each piece independently and fuse the results. This is possible when the data can be
distributed randomly, using methods akin to distributed optimization [Zhang et al., 2013, 2015].
However, when the data is not split in an i.i.d. way, Bayesian inference on different subsets of
observed data yields slightly different “subset posterior” distributions for each subset that must be
combined [Minsker et al., 2014]. Further complicating matters, data sources may be nonstationary.
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How can we fuse these different data sources for joint analysis in a consistent and structure-preserving
manner?

We address this question using ideas from the theory of optimal transport. Optimal transport
gives us a principled way to measure distances between measures that takes into account the
underlying space on which the measures are defined. Intuitively, the optimal transport distance
between two distributions measures the amount of work one would have to do to move all mass from
one distribution to the other. Given J input measures {µj}Jj=1, it is natural, in this setting, to ask
for a measure ν that minimizes the total squared distance to the input measures. This measure ν
is called the Wasserstein barycenter of the input measures [Agueh and Carlier, 2011], and should
be thought of as an aggregation of the input measures which preserves their geometry. When the
measures are discrete, their barycenter can be computed relatively efficiently via either a sparse
linear program [Anderes et al., 2016], or regularized projection-based methods [Cuturi and Doucet,
2014; Benamou et al., 2015; Ye et al., 2017; Cuturi and Peyré, 2016]. However, when the input
measures are continuous, to the best of our knowledge the only option is to discretize them via
sampling.

Given sample access to J potentially continuous distributions µj , we propose a communication-
efficient, parallel algorithm to estimate their barycenter. Our method can be parallelized to J worker
machines, and the messages sent between machines are merely single integers. We require a discrete
approximation of the barycenter itself, making our algorithm semi-discrete, but our algorithm scales
well to fine approximations (e.g. n ∼ 106). In contrast to previous work, we provide guarantees
on the quality of the approximation as n increases. These rates apply to the general setting in
which the µj ’s are defined on manifolds, with applications to directional statistics [Sra, 2016]. Our
algorithm is based on stochastic gradient descent as in [Genevay et al., 2016] and hence is robust to
gradual changes in the distributions: as the µj ’s change over time, we maintain a moving estimate
of their barycenter, a task which is not possible using current methods without solving a large linear
program in each iteration.

We emphasize that we aggregate the input distributions into a summary, the barycenter, which
is itself a distribution. Instead of performing any single domain-specific task such as clustering or
estimating an expectation, we can simply compute the barycenter of the inputs and process it later
any arbitrary way. This generality coupled with the efficiency and parallelism of our algorithm yields
immediate applications in fields from large scale Bayesian inference to e.g. streaming sensor fusion.

Contributions. 1. We give a communication-efficient and fully parallel algorithm for computing
the barycenter of a collection of distributions. Though our algorithm is semi-discrete, we stress that
the input measures can be continuous, and even nonstationary. 2. We give bounds on the quality of
the recovered barycenter as our discretization becomes finer. These are the first such bounds which
we are aware of, and they apply to measures on arbitrary compact and connected manifolds. 3. We
demonstrate the practical effectiveness of our method, both in tracking moving distributions on a
sphere, as well as in a real large-scale Bayesian inference task.

1.1 Related work

Optimal transport. A comprehensive treatment of optimal transport and its many applications
is beyond the scope of our work. We refer the interested reader to the detailed monographs by Villani
[2009] and Santambrogio [2015]. Fast algorithms for optimal transport have been developed in recent
years via Sinkhorn’s algorithm [Cuturi, 2013] and in particular stochastic gradient methods [Genevay
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et al., 2016], which we build off of in this work. These algorithms have enabled several applications
of optimal transport and Wasserstein metrics to machine learning, for example in supervised
learning [Frogner et al., 2015], unsupervised learning [Montavon et al., 2016; Arjovsky et al., 2017],
and domain adaptation [Courty et al., 2016]. Wasserstein barycenters in particular have been
applied to a wide variety of problems including fusion of subset posteriors [Srivastava et al., 2015a],
distribution clustering [Ye et al., 2017], shape and texture interpolation [Solomon et al., 2015; Rabin
et al., 2011], and multi-target tracking [Baum et al., 2015].

When the distributions µj are discrete, transport barycenters can be computed relatively ef-
ficiently via either a sparse linear program [Anderes et al., 2016] or regularized projection-based
methods [Cuturi and Doucet, 2014; Benamou et al., 2015; Ye et al., 2017; Cuturi and Peyré, 2016].
In settings like posterior inference, however, the distributions µj are likely continuous rather than
discrete, and the most obvious viable approach requires discrete approximation of each µj . The result-
ing discrete barycenter converges to the true, continuous barycenter as the approximations become
finer [Boissard et al., 2015; Kim and Pass, 2017], but the rate of convergence is not well-understood,
and finely approximating each µj yields a very large linear program.

Scalable Bayesian inference. Scaling Bayesian inference to large datasets has become an im-
portant topic in recent years. There are many approaches to this, ranging from parallel Gibbs
sampling [Newman et al., 2008; Johnson et al., 2013] to stochastic and streaming algorithms [Welling
and Teh, 2011; Chen et al., 2014; Hoffman et al., 2013; Broderick et al., 2013]. For a more complete
picture, we refer the reader to the survey by Angelino et al. [2016].

One promising method is via subset posteriors: instead of sampling from the posterior distribution
given by the full data, the data is split into smaller tractable subsets. Performing inference on each
subset yields several subset posteriors, which are biased but can be combined via their Wasserstein
barycenter [Srivastava et al., 2015a], with provable guarantees on approximation quality. This is in
contrast to other methods which rely on summary statistics to estimate the true posterior [Minsker
et al., 2014; Neiswanger et al., 2914] and that require additional assumptions. In fact, our algorithm
works with arbitrary measures and on manifolds.

2 Background

Let (X , d) be a metric space. Given two probability measures µ ∈ P(X ) and ν ∈ P(X ) and a cost
function c : X × X → [0,∞), the Kantorovich problem asks for a solution to

inf

{∫
X×X

c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
(1)

where Π(µ, ν) is the set of measures on the product space X ×X whose marginals evaluate to µ and
ν respectively.

Under mild conditions on the cost function (lower semi-continuity) and the underlying space
(completeness and separability), problem (1) admits a solution Santambrogio [2015]. Moreover, if the
cost function is of the form c(x, y) = d(x, y)p, the optimal transportation cost is a distance metric
on the space of probability measures. This is known as the Wasserstein distance and is given by

Wp(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
X×X

d(x, y)pdγ(x, y)

)1/p

. (2)
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Optimal transport has recently attracted much attention in machine learning and adjacent
communities [Frogner et al., 2015; Montavon et al., 2016; Courty et al., 2016; Peyré et al., 2016;
Rolet et al., 2016; Arjovsky et al., 2017]. When µ and ν are discrete measures, problem (2) is a linear
program, though faster regularized methods based on Sinkhorn iteration are used in practice Cuturi
[2013]. Optimal transport can also be computed using stochastic first-order methods Genevay et al.
[2016].

Now let µ1, . . . , µJ be measures on X . The Wasserstein barycenter problem, introduced by Agueh
and Carlier [2011], is to find a measure ν ∈ P(X ) which minimizes the functional

F [ν] :=
1

J

J∑
j=1

W 2
2 (µj , ν). (3)

Finding the barycenter ν is the primary problem we address in this paper. When each µj is a discrete
measure, the exact barycenter can be found via linear programming [Anderes et al., 2016], and many
of the regularization techniques apply for approximating it [Cuturi and Doucet, 2014; Cuturi and
Peyré, 2016]. However, the problem size grows quickly with the size of the support. When the
measures µj are truly continuous, we are aware of only one strategy: sample from each µj in order
to approximate it by the empirical measure, and then solve the discrete barycenter problem.

We directly address the problem of computing the barycenter when the input measures can be
continuous. We solve a semi-discrete problem, where the target measure is a finite set of points, but
we do not discretize any other distribution.

3 Algorithm

We first provide some background on the dual formulation of optimal transport. Then we derive
a useful form of the barycenter problem, provide an algorithm to solve it, and prove convergence
guarantees. Finally, we demonstrate how our algorithm can easily be parallelized.

3.1 Mathematical preliminaries

The primal optimal transport problem (2) admits a dual problem [Santambrogio, 2015]:

OTc(µ, ν) = sup
v 1-Lipschitz

{EY∼ν [v(Y )] + EX∼µ[vc(X)]} , (4)

where vc(x) = infy∈X {c(x, y)− v(y)} is the c-transform of v [Villani, 2009]. When ν =
∑n

i=1wiδyi
is discrete, problem (4) becomes the semi-discrete problem

OTc(µ, ν) = max
v∈Rn

{〈w, v〉+ EX∼µ[h(X, v)]} , (5)

where we define h(x, v) = vc(x) = mini=1,...,n{c(x, yi)− vi}. Semi-discrete optimal transport admits
efficient algorithms [Lévy, 2015; Kitagawa et al., 2016]; Genevay et al. [2016] in particular observed
that given sample oracle access to µ, the semi-discrete problem can be solved via stochastic gradient
ascent.
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3.2 Deriving the optimization problem

Absolutely continuous measures can be approximated arbitrarily well by discrete distributions with
respect to Wasserstein distance [Kloeckner, 2012]. Hence one natural approach to the barycenter
problem (3) is to approximate the true barycenter via discrete approximation: fixing n support
points {yi}ni=1 ∈ X , we wish to find the discrete distribution νn =

∑n
i=1wiδyi with support on n

points which optimizes

min
w∈∆n

F (w) = min
w∈∆n

1

J

J∑
j=1

W 2
2 (µj , νn) (6)

= min
w∈∆n

 1

J

J∑
j=1

max
vj∈Rn

{
〈w, vj〉+ EXj∼µj [h(Xj , v

j)]
} . (7)

where we have defined F (w) := F [νn] = F [
∑n

i=1wiδyi ] and used the dual formulation from equa-
tion (5). We will discuss in Section 4 the effect of different choices for the support points {yi}ni=1.

Noting that the variables vj are uncoupled, we can rearrange to get the following problem:

min
w∈∆n

max
v1,...,vJ

1

J

J∑
j=1

[
〈w, vj〉+ EXj∼µj [h(Xj , v

j)]
]
. (8)

Problem (8) is convex in w and jointly concave in the vj , and we can compute an unbiased gradient
estimate for each by sampling Xj ∼ µj . Hence, we could solve this saddle-point problem via
simultaneous (sub)gradient steps as in Nemirovski and Rubinstein [2005]. Such methods are simple
to implement, but in the current form we must project onto the simplex ∆n at each iteration. This
requires only O(n log n) time [Held et al., 1974; Michelot, 1986; Duchi et al., 2008] but makes it hard
to decouple the problem across each distribution µj . Fortunately, we can reformulate the problem in
a way which avoids projection entirely. By strong duality, Problem (8) can be written as

max
v1,...,vJ

min
w∈∆n


〈

1

J

J∑
j=1

vj , w

〉
+

1

J

J∑
j=1

EXj∼µj [h(Xj , v
j)]

 (9)

= max
v1,...,vJ

min
i

 1

J

J∑
j=1

vji

+
1

J

J∑
j=1

EXj∼µj [h(Xj , v
j)]

 . (10)

Note how the variable w disappears: for any fixed vector b, minimization of 〈b, w〉 over w ∈ ∆n is
equivalent to finding the minimum element of b. The optimal w can also be computed in closed
form when the barycentric cost is entropically regularized as in [Bigot et al., 2016], which may yield
better convergence rates but requires dense updates that, e.g. need more communication. In either
case, we are left with a concave maximization problem in v1, . . . , vJ , to which we can directly apply
stochastic gradient ascent. Unfortunately the gradients are still not sparse and decoupled, so we
turn problem (10) into the constrained problem

max
s,v1,...,vJ

1

J

J∑
j=1

[
1

J
min
i
si + EXj∼µj [h(Xj , v

j)]

]
s.t. s =

J∑
j=1

vj . (11)
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3.3 Algorithm and convergence Algorithm 1 Subgradient Ascent

s, v1, . . . , vJ ← 0n
loop

Draw j ∼ Unif[1, . . . , J ]
Draw x ∼ µj
iW ← argmini{c(x, yi)− v

j
i }

iM ← argmini si
vjiW ← vjiW − γ . Gradient update
siM ← siM + γ/J . Gradient update
vjiW ← vjiW + γ/2 . Projection
vjiM ← vjiM + γ/(2J) . Projection
siW ← siW − γ/2 . Projection
siM ← siM − γ/(2J) . Projection

end loop

We can now solve this problem via stochastic pro-
jected subgradient ascent. This is described in Al-
gorithm 1; note that the sparse adjustments after
the gradient step are actually projections onto the
constraint set with respect to the `1 norm. Derivation
of this sparse projection step is given rigorously in
Appendix A. Not only do we have an optimization
algorithm with sparse updates, but we can even re-
cover the optimal weights w from standard results in
online learning [Freund and Schapire, 1999]. Specif-
ically, in a zero-sum game where one player plays a
no-regret learning algorithm and the other plays a
best-response strategy, the average strategies of both
players converge to optimal:

Theorem 3.1. Perform T iterations of stochastic subgradient ascent on u = (s, v1, . . . , vJ) as in
Algorithm 1, and use step size γ = R

4
√
T
, assuming ‖ut − u∗‖1 ≤ R for all t. Let it be the minimizing

index chosen at iteration t, and write wT = 1
T

∑T
t=1 eit. Then we can bound

E[F (wT )− F (w∗)] ≤ 4R/
√
T . (12)

The expectation is with respect to the randomness in the subgradient estimates gt.

Theorem 3.1 is proved in Appendix B. The proof combines the zero-sum game idea above,
which itself comes from [Freund and Schapire, 1999], with a regret bound for online gradient
descent [Zinkevich, 2003; Hazan, 2016].

3.4 Parallel Implementation

The key realization which makes our barycenter algorithm truly scalable is that the variables
s, v1, . . . , vJ can be separated across different machines. In particular, the “sum” or “coupling”
variable s is maintained on a master thread which runs Algorithm 2, and each vj is maintained on a
worker thread running Algorithm 3. Each projected gradient step requires first selecting distribution
j. The algorithm then requires computing only iW = argmini{c(xj , yi)− v

j
i } and iM = argmini si,

and then updating s and vj in only those coordinates. Hence only a small amount of information
(iW and iM ) need pass between threads.

Where are the bottlenecks? When there are n points in the discrete approximation, each worker’s
task of computing argmini{c(xj , yi)− v

j
i } requires O(n) computations of c(x, y). The master must

iteratively find the minimum element siM in the vector s, then update siM , and decrease element siW .
These can be implemented respectively as the “find min”, “delete min” then “insert,” and “decrease
min” operations in a Fibonacci heap. All these operations together take amortized O(log n) time.
Hence, it takes O(n) time it for all J workers to each produce one gradient sample in parallel, and
only O(J log n) time for the master to process them all. Of course, communication is not free, but
the messages are small and our approach should scale up well for J � n.
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Algorithm 2 Master Thread
Input: index j, distribution µ, atoms {yi}i=1,...,N ,
number J of distributions, step size γ
Output: barycenter weights w
c← 0n
s← 0n
iM ← 1
loop

iW ← message from worker j
Send iM to worker j
ciM ← ciM + 1
siM ← siM + γ/(2J)
siW ← siW − γ/2
iM ← argmini si

end loop
return w ← c/(

∑n
i=1 ci)

Algorithm 3 Worker Thread
Input: index j, distribution µ, atoms {yi}i=1,...,N ,
number J of distributions, step size γ
v ← 0n
loop

Draw x ∼ µ
iW ← argmini{c(x, yi)− vi}
Send iW to master
iM ← message from master
viM ← viM + γ/(2J)
viW ← viW − γ/2

end loop

This parallel algorithm is particularly
well-suited to the Wasserstein posterior
(WASP) [Srivastava et al., 2015b] framework
for merging Bayesian subset posteriors. In this
setting, we split the dataset X1, . . . , Xk into J
subsets S1, . . . , SJ each with k/J data points,
distribute those subsets to J different machines,
then each machine runs Markov Chain Monte
Carlo (MCMC) to sample from p(θ|Si), and we
aggregate these posteriors via their barycenter.
The most expensive subroutine in the worker
thread is actually sampling from the posterior,
and everything else is cheap in comparison. In
particular, the machines need not even share
samples from their respective MCMC chains.

One subtlety is that selecting worker j truly
uniformly at random each iteration requires
more synchronization, hence our gradient esti-
mates are not actually independent as usual.
Selecting worker threads as they are available
will fail to yield a uniform distribution over j,
as at the moment worker j finishes one gradient
step, the probability that worker j is the next
available is much less than 1/J : worker j must
resample and recompute iW , whereas other
threads would have a head start. If workers all
took precisely the same amount of time, the
ordering of worker threads would be determin-
stic, and guarantees for without-replacement
sampling variants of stochastic gradient ascent
would apply [Shamir, 2016]. In practice, we
have no issues with our approach.

4 Consistency

Prior methods for estimating the Wasserstein barycenter ν∗ of continuous measures µj ∈ P(X )
involve first approximating each µj by a measure µj,n which has finite support on n points, then
computing the barycenter ν∗n of {µj,n} as a surrogate for ν∗. This approach is consistent, in that if
µj,n → µj as n→∞, then also ν∗n → ν∗. This holds even if the barycenter is not unique, both in the
Euclidean case [Boissard et al., 2015, Theorem 3.1] as well as when X is a Riemannian manifold [Kim
and Pass, 2017, Theorem 5.4]. However, it is not known how fast the approximation ν∗n approaches
the true barycenter ν∗, or even how fast the barycentric distance F [ν∗n] approaches F [νn].

In practice, not even the approximation ν∗n is computed exactly: instead, support points are
chosen and ν∗n is constrained to have support on those points. There are various heuristic methods for
choosing these support points, ranging from mesh grids of the support, to randomly sampling points
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from the convex hull of the supports of µj , or even optimizing over the support point locations. Yet
we are unaware of any rigorous guarantees on the quality of these approximations.

While our approach still involves approximating the barycenter ν∗ by a measure ν∗n with fixed
support, we are able to provide bounds on the quality of this approximation as n→∞. Specifically,
we bound the rate at which F [ν∗n]→ F [νn]. The result is intuitive, and appeals to the notion of an
ε-cover of the support of the barycenter:

Definition 4.1 (Covering Number). The ε-covering number of a compact set K ⊂ X , with respect
to the metric g, is the minimum number Nε(K) of points {xi}Nε(K)

i=1 ∈ K needed so that for each
y ∈ K, there is some xi with g(xi, y) ≤ ε. The set {xi} is called an ε-covering.

Definition 4.2 (Inverse Covering Radius). Fix n ∈ Z+. We define the n-inverse covering radius
of compact K ⊂ X as the value εn(K) = inf{ε > 0 : Nε(K) ≤ n}, when n is large enough so the
infimum exists.

Suppose throughout this section that K ⊂ Rd is endowed with a Riemannian metric g, where K
has diameter D. In the specific case where g is the usual Euclidean metric, there is an ε-cover for
K with at most C1ε

−d points, where C1 depends only on the diameter D and dimension d [Shalev-
Shwartz and Ben-David, 2014]. Reversing the inequality, K has an n-inverse covering radius of at
most ε ≤ C2n

−1/d when n takes the correct form.
We now present and then prove our main result:

Theorem 4.1. Suppose the measures µj are supported on K, and suppose µ1 is absolutely continuous
with respect to volume. Then the barycenter ν∗ is unique. Moreover, for each empirical approximation
size n, if we choose support points {yi}i=1,...,n which constitute a 2εn(K)-cover of K, it follows that
F [ν∗n]− F [ν∗] ≤ O(εn(K) + n−1/d), where ν∗n =

∑n
i=1w

∗
i δyi for w

∗ solving Problem (8).

Proof. For any two measures η, η′ supported on K, we can bound W2(η, η′) ≤ D: the worst-case
η, η′ are point masses distance D apart, so that the transport plan sends all the mass a distance of
D.

It follows that |W2(µ, νn) +W2(µ, ν)| ≤ 2D and therefore

|W 2
2 (µ, νn)−W 2

2 (µ, ν)| ≤ 2D · |W2(µ, νn)−W2(µ, ν)| (13)
≤ 2D ·W2(νn, ν) (14)

by the triangle inequality. Summing over all µ = µj , we find that

|F [νn]− F [ν]| ≤ 1

J

J∑
j=1

|W 2
2 (µj , νn)−W 2

2 (µj , ν)| (15)

≤ 1

J

J∑
j=1

2D ·W2(νn, ν) = 2D ·W2(νn, ν), (16)

completing the proof.

Remark 4.1. Absolute continuity is only needed to reason about approximating the barycenter
with an N point discrete distribution. If the input distributions are themselves discrete distributions,
so is the barycenter, and we can strengthen our result. For large enough n, we actually have
W2(ν∗n, ν

∗) ≤ 2εn(K) and therefore F [ν∗n]− F [ν∗] ≤ O(εn(K)).
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Corollary 4.1 (Convergence to ν∗). Suppose the measures µj are supported on K, with µ1 absolutely
continuous with respect to volume. Let ν∗ be the unique minimizer of F . Then we can choose support
points {yi}i=1,...,n such that some subsequence of ν∗n =

∑n
i=1w

∗
i δyi converges weakly to ν∗.

Proof. By Theorem 4.1, we can choose support points so that F [ν∗n]→ F [ν∗]. By compactness, the
sequence ν∗n admits a convergent subsequence ν∗nk → ν for some measure ν. Continuity of F allows
us to pass to the limit limk→∞ F [ν∗nk ] = F [limk→∞ ν

∗
nk

]. On the other hand, limk→∞ F [ν∗nk ] = F [ν∗],
and F is strictly convex Kim and Pass [2017], thus ν∗nk → ν∗ weakly.

Before proving Theorem 4.1, we need smoothness of the barycenter functional F with respect to
Wasserstein-2 distance:

Lemma 4.1. Suppose we are given measures {µj}Jj=1, ν, and {νn}∞n=1 supported on K, with νn → ν.
Then, F [νn]→ F [ν], with |F [νn]− F [ν]| ≤ 2D ·W2(νn, ν).

Proof of Theorem 4.1. Uniqueness of ν∗ follows from Theorem 2.4 of [Kim and Pass, 2017]. From
Theorem 5.1 in [Kim and Pass, 2017] we know further that ν∗ is absolutely continuous with respect
to volume.

Let N > 0, and let νN be the discrete distribution on N points, each with mass 1/N , which
minimizes W2(νN , ν

∗). This distribution satisfies W2(νN , ν
∗) ≤ CN−1/d [Kloeckner, 2012], where C

depends on K, the dimension d, and the metric. With our “budget” of n support points, we can
construct a 2εn(K)-cover as long as n is sufficiently large. Then define a distribution νn,N with
support on the 2εn(K)-cover as follows: for each x in the support of νN , map x to the closest point
x′ in the cover, and add mass 1/N to x′. Note that this defines not only the distribution νn,N , but
also a transport plan between νN and νn,N . This map moves N points of mass 1/N each a distance
at most 2εn(K), so we may bound W2(νn,N , νN ) ≤ N · 1/N · 2εn(K) = 2εn(K). Combining these
two bounds, we see that

W2(νn,N , ν
∗) ≤W2(νn,N , νN ) +W2(νN , ν

∗) (17)

≤ 2εn(K) + CN−1/d. (18)

For each n, we choose to set N = n, which yields W2(νn,n, ν
∗) ≤ 2εn(K) + Cn−1/d. Applying

Lemma 4.1, and recalling that ν∗ is the minimizer of J , we have

F [νn,n]− F [ν∗] ≤ 2D · (2εn(K) + Cn−1/d) = O(εn(K) + n−1/d). (19)

However, we must have F [ν∗n] ≤ F [νn,n], because both are measures on the same n point 2εn(K)-cover,
but ν∗n has weights chosen to minimize J . Thus we must also have

F [ν∗n]− F [ν∗] ≤ F [νn,n]− F [ν∗] ≤ O(εn(K) + n−1/d).

The high-level view of the above result is that choosing support points yi to form an ε-cover with
respect to the metric g, and then optimizing over their weights wi via our stochastic algorithm, will
give us a consistent picture of the behavior of the true barycenter. Also note that the proof above
requires an ε-cover only of the support of v∗, not all of K. In particular, an ε-cover of the convex hull
of the supports of µj is sufficient, as this must contain the barycenter. Other heuristic techniques
to efficiently focus a limited budget of n points only on the support of ν∗ are advantageous and
justified.

While Theorem 4.1 is a good start, ideally we would also be able to provide a bound onW2(ν∗n, ν
∗).

This would follow readily from sharpness of the functional F [ν], or even the discrete version F (w),
but it is not immediately clear how to achieve such a result.
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Figure 1: The Wasserstein barycenter of four von Mises-Fisher distributions on the unit sphere S2.
From left to right, the figures show the initial distributions merging into the Wasserstein barycenter.
As the input distributions are moved along parallel paths on the sphere, the barycenter accurately
tracks the new locations as shown in the final three figures.

5 Experiments

We demonstrate the applicability of our method on two experiments, one synthetic and one per-
forming a real inference task. Together, these showcase the positive traits of our algorithm: speed,
parallelization, robustness to non-stationarity, applicability to non-Euclidean domains, and immedi-
ate performance benefit to Bayesian inference. We implemented our algorithm in C++ using MPI,
and our code will be made available on Github. Full experiment details are given in Appendix C.

5.1 Von Mises-Fisher Distributions with Drift

We demonstrate computation and tracking of the barycenter of four drifting von Mises-Fisher
distributions on the unit sphere S2. Note that W2 and the barycentric cost are now defined with
respect to geodesic distance on S2.

The distributions are randomly centered, and we move the center of each distribution 3× 10−5

radians (in the same direction for all distributions) each time a sample is drawn. A snapshot of the
results is shown in Figure 1. Our algorithm is clearly able to track the barycenter as the distributions
move.

5.2 Large Scale Bayesian Inference

We run logistic regression on the UCI skin segmentation dataset Bhatt and Dhall. There are 245057
datapoints which are colors represented in R3, each with a binary label determing whether that color
is a skin color. We split consecutive blocks of the dataset into 127 subsets, and due to locality in the
dataset, the data in each subsets is not identically distributed. Each subset is assigned one thread
of an InfiniBand cluster on which we simultaneously sample from the subset posterior via MCMC
and optimize the barycenter estimate. This is in contrast to [Srivastava et al., 2015a], where the
barycenter can be computed via linear program (LP) only after all the samplers are run.

Since the full dataset is tractable, we can compare the two methods via W2 distance to the
posterior of the full dataset, which we can estimate via the large-scale optimal transport algorithm
in [Genevay et al., 2016]. For each method, we fix n barycenter support points on a mesh determined
by samples from the subset posteriors. After 283 seconds, or about 3000 iterations per subset
posterior, our algorithm has produced a barycenter on n = 106 support points with W2 distance
about 22 from the full posterior. Moreover, no individual 16 thread node used more than 2GB of
memory.

10



Table 1: Number of support points n versus computation time and W2 distance to the true posterior.
Compared to prior work, our algorithm handles much finer meshes, producing much better estimates.

Linear program from [Srivastava et al., 2015a] This paper

n 20 30 50 100 200 300 500 106

time (s) 0.5 1.5 3.1 16 67 169 out of memory 283
W2 67.9 34.1 34.1 64.8 47.1 34.1 out of memory 22.2

In comparsion, in Table 1 we attempt to compute the barycenter LP as in Srivastava et al.
[2015a] via Mosek [ApS, 2017], for varying values of n. Even n = 500 is not possible on a system
with 16GB of memory, and feasible values of n result in meshes too sparse to accurately and reliably
approximate the barycenter. Specifically, when n increases from 50 to 100, the approximation quality
actually decreases: the subset posteriors are spread far apart, and the barycenter is so small relative
to the required grid size that covering the barycenter well is a matter of luck. Entropy regularized
methods may have faired better than the LP for finer meshes but would still not give the same
result as our method. Note also that the LP timings include only optimization time, whereas in 283
seconds our algorithm produces samples and optimizes.

6 Conclusion and Future Directions

We have proposed an original algorithm for computing the Wasserstein barycenter of arbitrary
measures given a stream of samples. Our algorithm is communication-efficient, highly parallel, easy
to implement, and has immediate impact in large-scale Bayesian inference and sensor fusion tasks.
For Bayesian inference in particular, we obtain far finer estimates of the Wasserstein-averaged subset
posterior (WASP) [Srivastava et al., 2015a] than was possible before, enabling faster and more
accurate inference.

There are many directions for future work: we have barely scratched the surface in terms of new
applications of large-scale Wasserstein barycenters, and there are still many possible algorithmic
improvements. One implication of Theorem 3.1 is that a faster algorithm for solving the concave
problem (11) immediately yields faster convergence to the barycenter. Incorporating variance reduc-
tion [Defazio et al., 2014; Johnson and Zhang, 2013] is a promising direction, provided we maintain
communication-efficiency. Recasting problem (11) as distributed consensus optimization [Nedic and
Ozdaglar, 2009; Boyd et al., 2011] would further help scale up the barycenter computation to huge
numbers of input measures.
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A Sparse Projections

Our algorithms for solving the barycenter problem in the parallel setting relied on the ability to
efficiently project the matrix A = (s, v1, . . . , vJ) back onto the constraint set s =

∑J
j=1 v

j . For the
sake of completion, we include a proof that our sparse updates actually result in projection with
respect to the `1 norm.

At any given iteration of gradient ascent, we start with some iterate A = (s, v1, . . . , vJ) which
does satisfy the constraint. Suppose we selected distribution j. The gradient estimate is a sparse
n× (J + 1) matrix M which has Mu1 = 1/J and Mvj = −1, for some indices u and v, with column
1 corresponding to s and column j corresponding to vj . After the gradient step with stepsize γ, we
have A+ γM . Now, our constraint can be written in matrix form as Az = 0, where

z =


−1
1
...
1

 , (20)

and so the problem of projecting A+ γM onto this constraint set can be written as

minB ‖A+ γM −B‖1
s.t. Bz = 0.

(21)

Equivalently, we want to find the matrix C solving

minC ‖C‖1
s.t. (A+ γM + C)z = 0.

(22)

Note that
(A+ γM + C)z = 0⇔ Cz = −γMz = γ

(
1

J
eu + ev

)
. (23)

Consider the sparse matrix C given by Cu1 = −γ/(2J), Cuj = γ/(2J), Cv1 = γ/2, and Cvj = −γ/2.
Define a sparse vector λ ∈ Rn by λu = λv = −1. We wish to show that the primal dual pair (C, λ)
solves problem (22). We can do this directly by looking at the Karush–Kuhn–Tucker conditions. It
is easy to check that C is primal feasible, so it remains only to show that

0 ∈ ∂C(‖C‖1 + λTCz)⇔ −zλT ∈ ∂C(‖C‖1). (24)

The subgradients of the `1 norm at C are matrices G which satisfy ‖G‖∞ ≤ 1 and 〈G,C〉 = ‖C‖1.
It is easy to check that ‖zλT ‖∞ = 1. Finally,

〈−zλT , C〉 = −λTCz = −γλT
(

1

J
eu + ev

)
(25)

= γ ·
(

1

J
+ 1

)
(26)

= ‖C‖1. (27)
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Hence after the gradient step we can project onto the feasible set with respect to `1, simply by
adding the sparse matrix C.

B Stochastic Gradient Bound

We first need a lemma which gives a regret bound for online gradient ascent:

Lemma B.1 (Adapted from [Hazan, 2016, Theorem 3.1]). Run online gradient ascent on concave
functions ft with subgradients gt ∈ ∂ft(xt). Assume ‖xt−x∗‖ ≤ R for some optimizer x∗ of

∑T
t=1 ft,

and assume E[‖gt‖] ≤ G. Using stepsize γ = R
G
√
T
, the expected regret after T iterations is bounded

by 2RG
√
T .

Proof of Theorem 3.1. This is adapted from [Freund and Schapire, 1999; Rakhlin and Sridharan,
2013].

Define f(s, v, w) = 〈s, w〉+ 1
J

∑J
j=1 EXj∼µj [h(Xj , v

j)] as in (11). For simplicity, concatenate s
and v into a vector u, with f(u,w) = f(s, v, w). Write w∗(u) = argminw∈∆n

〈s, w〉 and note that our
objective in Equation (11) is f(u) := f(u,w∗(u)).

Recall the online optimization setup: at time step t we play ut, then receive ft and reward ft(ut),
then update ut and repeat. Note that if ft is given by f(ut, w

∗(ut)), then online gradient ascent on
ft is effectively subgradient ascent on f . Suppose we play online subgradient ascent and achieve
average expected regret ε(T ) after T timesteps, where the expectation is with respect to the gradient
estimates in the learning algorithm. Then by the definition of expected regret,

ε(T ) ≥ E

[
sup
u

1

T

T∑
t=1

ft(u)− 1

T

T∑
t=1

ft(ut)

]
= E

[
sup
v

1

T

T∑
t=1

f(u,wt)−
1

T

T∑
t=1

f(ut, wt)

]
. (28)

where we write wt = w∗(ut). Simultaneously, we have

1

T

T∑
t=1

f(ut, wt)− inf
w

1

T

T∑
t=1

f(ut, w) ≤ 1

T

T∑
t=1

f(ut, wt)−
1

T

T∑
t=1

f(ut, wt) = 0 (29)

because wt are each chosen optimally. Summing, we have

E

[
sup
u

1

T

T∑
t=1

f(u,wt)− inf
w

1

T

T∑
t=1

f(ut, w)

]
≤ ε(T ). (30)

Now we merely need combine this with the standard bound:

inf
w

1

T

T∑
t=1

f(ut, w) ≤ inf
w
f(uT , w) ≤ sup

v
inf
w
f(u,w) (31)

≤ inf
w

sup
u
f(u,w) ≤ sup

u
f(u,wT ) ≤ sup

u

1

T

T∑
t=1

f(u,wt). (32)

The extreme bounds on either side of this chain of inequalities are within ε(T ), hence we also have

E
[
sup
u
f(u,wT )− inf

w
sup
u
f(u,w)

]
≤ ε(T ). (33)
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By definition of f , the left hand side is precisely E[F (wT )− F (w∗)]. Now, noting that our gradient
estimates g are always sparse (we always have two elements of magnitude 1, so ‖g‖1 = 2), we simply
replace ε(T ) with the particular regret bound of Lemma B.1 for online gradient ascent.

C Experiment details

C.1 Von Mises-Fisher Distributions with Drift

The distributions are randomly centered with concentration parameter κ = 30. To verify that the
barycenter accurately tracks when the input distributions are non-stationary, we move the center of
each distribution 3× 10−5 radians (in the same direction for all distributions) each time a sample is
drawn. A snapshot of the results is shown in Figure 1.

We use a sliding window of T = 105 timesteps with step size γ = 1 and on N = 104 evenly-
distributed support points. Each thread is run for 5× 105 iterations on a separate thread of an 8
core workstation. The total time is roughly 80 seconds, during which our algorithm has processed a
total of 2× 106 samples. Clearly our algorithm is efficient and is able to perform the specified task.

C.2 Large Scale Bayesian Inference

Subset assignment. The skin segmentation dataset is given with positive samples grouped all
together, then negative samples grouped together. To ensure even representation of positive and
negative samples across all subsets, while simulating the non-i.i.d data setting, each subset is
composed of a consecutive block of positive samples and one of negative samples.

MCMC chains. We used a simple Metropolis-Hastings sampler with Gaussian proposal distribu-
tion N (0, σ2I), for σ = 0.05. We used a very conservative 105 burn-in iterations, and afterwards
took every fifth sample.

Mesh selection. During the burn-in phase, we compute a minimum axis-aligned bounding box
containing all samples from all MCMC chains. Then, for a desired mesh size of n, we cut each axis
into n1/3 evenly-spaced values.

Optimization. We chose an aggressive step size of γ = 500 because of the large mesh size (n = 106).
The 283 seconds value corresponds to 3 × 105 iterations total, or about 3000 per sampler. The
barycenter estimate wT = 1

T

∑T
t=1 eit was maintained over a sliding window of T = 105 timesteps.

Error metric. We stored 104 samples from the true posterior, and computed the W2 distance
between these samples and each candidate barycenter.
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