# Glyphosate: Is it the Primary Cause of the Autism Epidemic?

Stephanie Seneff MIT CSAIL TACA Workshop March 22, 2019









# Is Glyphosate Toxic?

- Monsanto has argued that glyphosate is harmless to humans because our cells don't have the shikimate pathway, which it inhibits
- However, our gut bacteria DO have this pathway
  - We depend upon them to supply us with essential amino acids (among many other things)
- Other ingredients in Roundup greatly increase glyphosate's toxic effects and are themselves toxic
- Insidious effects of glyphosate accumulate over time
  - Most studies are too short to detect damage





# Sobering Statistics on Glyphosate Residues\*

- Parts per *trillion (ppt)*: increased proliferation of breast cancer cells in vitro
- 0.1 ppb:
  - Altered the gene function of over 4000 genes in the livers and kidneys of rats
  - Severe organ damage in rats
  - Permitted level for glyphosate and all other herbicides in EU tap water
- 10 ppb: demonstrated toxic effects on the livers of fish
- 700 ppb: Permitted level for glyphosate in U.S. tap water
- 11,900 ppb: found in Genetically Modified (GMO) soybeans

\*http://detoxproject.org/glyphosate-in-numbers/

# Some Biomarkers for Autism

- Disrupted gut bacteria; inflammatory bowel
- Low serum sulfate
- Methionine deficiency
- · Serotonin and melatonin deficiency
- Defective aromatase
- Zinc and iron deficiency
- Urinary p-cresol
- Mitochondrial disorder
- Glutamate toxicity in the brain

These can all be explained as potential effects of glyphosate on biological systems





## Autism and the Gut\*

"Prospective, controlled studies suggest that as many as 70% of autistic children exhibit chronic GI-related symptoms [1,5,6] including diarrhea, laxative-dependent constipation, abdominal distension, failure to thrive, weight loss, feeding problems, and abdominal pain related to extreme irritability, aggression, and self-injury."

\*SJ Walker et al. PLOS One March 2013; 8(3):e58058.







# Glyphosate and the Gut: Digestive Enzymes Glyphosate has been found as a contaminant in digestive enzymes trypsin, pepsin and lipase\* Trypsin impairment prevents proteins like gluten in wheat from being digested Undigested proteins induce release of zonulin which opens up gut barrier\*\* Zonulin lingers because trypsin is defective \*A Samsel and S Seneff. J Biol Phys Chem 2017;17:8-32 \*\* JJ Gildea et al. J Clin Nutr Diet. 2017, 3:1.

# Trypsin, Pepsin and Lipase are all contaminated with glyphosate\*

| Enzyme             | Glyphosate<br>(PPB) |
|--------------------|---------------------|
| Pepsin (ELISA)     | <40                 |
| Pepsin (GC-MS)     | 430                 |
| Pepsin (HPLC-MSMS) | 290                 |
| Trypsin (ELISA)    | 62                  |
| Lipase (ELISA)     | 24                  |



\*A Samsel and S Seneff. Journal of Biological Physics and Chemistry 2017;17: 8-32





# Celiac Disease, Glyphosate and Non Hodgkin's Lymphoma Glyphosate preferentially kills *Bifidobacteria*\*

- Bifidobacteria are depleted in celiac disease\*\*
- Celiac disease is associated with increased risk to non Hodgkin's lymphoma\*\*\*
- Glyphosate itself is also linked directly to non Hodgkin's lymphoma\*\*\*\*

\*A.A. Shehata et al., Curr Microbiol. 2013 Apr;66(4):350-8. \*\* M. Velasquez-Manoff, NY Times Sunday Review, Feb. 23, 2013. \*\*\* C. Catassi et all, JAMA. 2002 Mar 20;287(11):1413-9. \*\*\*\*M. Eriksson et al., Int J Cancer. 2008 Oct 1;123(7):1657-63.







# A BTBR Mouse Model of Autism\*

These mice had all the mouse features of autism They were fed "standard rodent chow" – glyphosate contaminated? Some features in the gut:

- Reduced levels of bile acids
  - Due to impaired CYP7A1 activity in the liver
- Further reduced levels of secondary bile acids
  - Impaired metabolism by gut microbes
- Reduced levels of Lactobacillus and Bifidobacteria
  - Microbes that metabolize bile acids
  - These microbes are preferentially killed by glyphosate
- Serotonin deficiency
  - Serotonin is derived from tryptophan, a product of the shikimate pathway which glyphosate disrupts
    - \*AV Glubeva et al. EBioMedicine. 2017 Oct;24:166-178.









#### CASE REPORT

Elevated Urinary Glyphosate and Clostridia Metabolites With Altered Dopamine Metabolism in Triplets With Autistic Spectrum Disorder or Suspected Seizure Disorder: A Case Study \*

William Shaw, PhD

- Triplets: two boys, one girl. Both boys have autism and girl has seizure disorder
- Very high levels of glyphosate in urine in all three
- Clostridia overgrowth due to glyphosate disruption of gut microbes
  - Clostridia produce toxins HPHPA and p-cresol, which block the conversion of dopamine to norepinephrine.
  - Damage to neurons in the brain through oxidative stress

\*W. Shaw. Integrative Medicine 2017;16(1);50-57.

# Recapitulation

- Glyphosate contamination in food proteins makes them hard to break down
  - This leads to autoimmune disease
- Digestive enzymes are contaminated with glyphosate
   Undigested proteins induce Celiac disease and leaky gut
- Glyphosate is a key factor in the emergence of antibiotic resistant pathogens
- The BTBR mouse model of autism is consistent with glyphosate damage in the gut
- Glyphosate promotes Clostridia overgrowth
  - This induces inflammatory bowel disease, an epidemic today
  - Autism has been linked to Clostridia overgrowth
  - Clostridia release toxins that induce an inflammatory response



"Fundamentally **the herbicidal effect of glyphosate is ultimately due to soil pathogens** gaining access to the "weed" thanks to glyphosate's weakening of the plant and killing of beneficial microbes *by the chelation of manganese* and other trace elements."

Dr. Arden Andersen, D.O.,

Food Plague Primer: Glyphosate and Genetically Engineered Crops

This is analogous to glyphosate's effect on gut bacteria: killing the beneficial bacteria and allowing the pathogens to overgrow





#### Low Manganese in Teeth Linked to Autism\*

- Studied lead, mercury and manganese levels in tooth enamel of shed primary teeth in 84 children
- Manganese accumulated after birth was down by 60% in autistic children
- No other result was statistically significant



\*MM Abdullah et al., J Autism Dev Disord. 2012 Jun;42(6):929-36.

### Some Consequences of Manganese Deficiency

- Lactobacillus critically depend on manganese
- Manganese superoxide dismutase protects mitochondria from oxidative damage
- Manganese is essential for detoxing glutamate (neurotoxin)
- Pituitary depends on manganese to release thyroid stimulating hormone
- Chondroitin sulfate synthesis in bones





## Lactobacillus Alleviate Anxiety\*

- Patients suffered from chronic fatigue syndrome and associated anxiety
- Patients were treated with probiotic strain of Lactobacillus (control group got a placebo)
- Significant rise in both Latobacillus and Bifidobacteria in gut
- Significant decrease in anxiety symptoms (p = 0.01)
- Supports concept of gut-brain axis (communicate with brain via vagal nerve)

\*R Av et al. Gut Pathog. 2009 Mar 19;1(1):6. doi: 10.1186/1757-4749-1-6.











#### "Alteration of Plasma Glutamate and Glutamine Levels in Children with High-Functioning Autism"\*

|           | Amino acid          | Control      | HFA          | <i>p</i> -value |                   |
|-----------|---------------------|--------------|--------------|-----------------|-------------------|
|           | Alanine             | 326.1±61.6   | 300.3±55.0   | 0.145           |                   |
|           | α-Aminobutyric acid | 18.8±3.8     | 18.7±5.4     | 0.971           |                   |
|           | Arginine            | 89.1±19.0    | 95.3±18.5    | 0.279           |                   |
|           | Asparagine          | 40.8±8.3     | 43.1±7.0     | 0.311           |                   |
| Glutamate | 20.9±4              | 1.5          | 27.9         | ± <b>7.4</b>    | <0.002*           |
| Glutamine | 513.1±              | 48.5         | 445.8        | 8±50.6          | <0.0004**         |
|           | Isoleucine          | 53.6±11.5    | 62.2±14.5    | 0.033           |                   |
|           | Leucine             | 99.0±16.1    | 106.4±22.4   | 0.210           |                   |
|           | Lysine              | 155.3±28.5   | 164.2±32.5   | 0.332           |                   |
|           | Methionine          | 23.7±5.1     | 25.8±5.6     | 0.203           |                   |
|           | Ornithine           | 43.9±11.3    | 51.9±10.8    | 0.021           |                   |
|           | Phenylalanine       | 51.7±6.8     | 55.1±8.4     | 0.146           |                   |
|           | Proline             | 153.7±56.4   | 131.7±47.6   | 0.165           |                   |
|           | Serine              | 105.4±15.6   | 115.8±14.7   | 0.027           |                   |
|           | Taurine             | 33.4±5.5     | 37.8±7.9     | 0.036           |                   |
|           | Threonine           | 100.8±19.7   | 112.0±24.3   | 0.097           |                   |
|           | Tryptophan          | 44.8±5.6     | 47.3±6.4     | 0.167           | *C. Shimmura et a |
|           | Tyrosine            | 60.9±10.5    | 58.4±10.1    | 0.425           | PLoSone October   |
|           | Urea                | 3976.3±818.7 | 3759.9±773.3 | 0.367           |                   |
|           | Valine              | 200.2+29.4   | 2171+297     | 0.062           | 2011 6(1)·e25340  |









![](_page_24_Picture_2.jpeg)