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Medical Image Segmentation Using Active Contours
Serdar Kemal Balci

Abstract— Medical image segmentation allow medical doctors
to interpret medical images more accurately and more efficiently.
We aim to develop a medical image segmentation procedure
in order to reduce medical doctors’ data examination and
interpretation time. Active contours provide a means to detect
boundaries of desired objects in images. In this paper we use
active contours based on level set methods to detect and segment
structures in medical data. We first review the theory of three
level set based active contour methods; namely, geodesic active
contours, area minimizing flows and active contours without
edges. We apply these methods to 2D/3D synthetic data and to
an MRI data with the aim of segmenting the boundaries of brain
and present the results.

Index Terms— Medical image segmentation, active contours,
level set methods, geodesic active contours, area minimizing flow,
active contours without edges.

I. INTRODUCTION

AS a consequence of progressive technological improve-
ments in screening techniques, medical doctors are pro-

vided with medical images having higher resolution rates.
Therefore, medical doctors spend an increasing part of their
time on examining and interpreting medical images. By de-
veloping a medical image segmentation procedure we aim at
reducing medical doctors’ data examination and interpretation
time. To segment regions of interest from a medical image we
will use active contours based on level set methods.

Active contours, or snakes, as defined by Kass et al. [1]
are curves defined within an image domain that can move
under the influence of internal forces coming from within the
curve itself and external forces computed from the image data.
The essential idea is to evolve a curve or a surface under
constraints from image forces so that it is attracted to features
of interest in an intensity image. Snakes are widely used in
many applications, including edge detection, shape modeling,
segmentation, and motion tracking. In this paper we will use
active contours to segment regions of interest in a medical
image.

The active contour models in literature can be classified
into two broad categories: parametric active contours [1] and
geometric active contours [3]- [8], [10]- [14]. In Kass et
al.’s first efforts on active contours, the main idea was to
formalize the problem as an energy minimization one. They
defined active contours as energy-minimizing splines guided
by external constraint forces that pull them toward features
such as lines and edges. They also define an internal energy
term which is used to impose a smoothness constraint on the
moving curve. Because of the way the contours move while
the energy is minimized they call them snakes. Kass et al.’s
classical active contour model is important as a first efforts
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on this problem; however, their approach has some drawbacks
which were attempted to be solved by subsequent researchers.
The classical approach faced some difficulties such as handling
topological changes during evolution, lack of a parametrization
independent energy definition, detecting nonconvex objects,
sensitivity to initialization, numerical instabilities and resam-
pling problems arising in solving the energy minimization
problem.

Level set methods as introduced by Osher-Sethian [3] pro-
vided a framework in which new active contour models can be
formed which overcame the problems associated with classical
energy minimization approaches. The level set formulation
is based on the observation due to Osher-Sethian [3] that
a curve can be seen as the zero level set of a function in
higher dimension. Level set methods provide an efficient and
stable algorithm to solve curve evolution equations. If the
curve motion can be expressed as a velocity along the normal
direction of the curve, level set methods can offer several
advantages. Firstly, changes in topology of the active contour
are handled implicitly during the curve evolution. This is the
main advantage of level set formulation as the topological
changes should not be taken into account explicitly. Secondly,
for numerical approximations, a fixed discrete grid in the
spatial domain and finite-difference approximations for spatial
and temporal derivatives can be used. A third advantage is that
level set methods can be extended to any dimension which
is not straightforward with the classical energy minimization
schemes.

The geometric active contour models [3]- [8], [10]- [14]
have made use of these advantages of level set formulation.
Geometric active contour models are based on designing a
speed term so that the evolving front gradually attains zero
speed as it gets closer to the object boundaries and eventually
comes to a stop. The speed term might depend on the boundary
of the front while it can also make use of the information
inside the region enclosed by the evolving front. Beginning
from Osher and Sethian’s [3] level set formulation, Caselles
et al. [4] and Malladi et al. [5] formulated their active contour
model directly in terms of level sets. Caselles et al. [4] in-
troduced geometric active contour model which was followed
by Malladi et al. [5]. Caselles et al. [4] and Malladi et al. [5]
designed a proper speed function so as to drive the evolving
contour to the object boundaries. They provided a numerically
stable and efficient model immune to topological changes.
However, the stopping term was not robust and hence could not
stop the leakage of the boundaries and if the front propagated
and crossed the goal boundary, then it could not come back.
Caselles et al. [6], [7] introduced geodesic active contours
model which was based on an intrinsic weighted Euclidean
length and showed its correspondence to Kass et al.’s classical
snake model. Caselles et al. [6], [7] enhanced Caselles [4] and
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Malladi’s model [5] by introducing an additional edge strength
term. Aubert et al. [9] showed that geometric active contours
unify the curve evolution framework with classical energy
minimization techniques. Siddiqi et al. [10], [11] introduce an
area based active contour model which minimizes a weighted
area functional. Siddiqi et al. combine the weighted area
minimizing flow with the weighted length minimizing flow of
Caselles et al. [7] and Kichenassamy et al. [8]. They define an
additional attraction force which can handle object boundaries
having complex structures.

Boundary based level set methods provide efficient and
stable algorithms to detect contours in a given image. They
handle changes in topology and provide robust stopping terms
to detect the goal contours. However, structures such as interior
of objects, e.g. interior of discs are not segmented. Because
of level set formulation the final contours are always closed
contours. In addition, in images where the objects boundaries
are noisy and blurry these methods face some difficulties.
Some recent work in active contours by Chan and Vese [12],
[13] consider these issues. The main idea is to consider the
information inside the regions not only at their boundaries.
Chan and Vese formulate their problem using area functionals
and solve the problem using level set methods.

To segment regions of interest in medical images we empha-
size methods based on level set methods due to their aforemen-
tioned advantages. We will briefly review the theoretical part
of three level set based active contour models, namely geodesic
active contours by Caselles et al. [7], area minimizing flow by
Siddiqi et al. [10] and active contours without edges by Chan
and Vese [13]. Then we will state the results of applying these
methods on 2D/3D synthetic images and on a 3D MRI data
in order to detect boundaries of brain. Also, for the sake of
completeness we will provide a brief overview of Kass. et al.’s
[1] classical active contour model.

The paper is organized as follows. In section II, we will
first introduce the notation that is used throughout the paper.
Then we will present the Kass et al.’s [1] classical active
contour model, Caselles et al.’s [7]geodesic active contour
model, Siddiqi et al.’s [10] area minimizing flow and Chan
and Vese’s [13] active contours without edges, respectively.
In section III, we will state the results for the implemented
methods, namely geodesic active contours, area minimizing
flow and active contours without edges. We will present results
for 2D synthetic data, 3D synthetic data and 3D MRI data,
respectively. In the conclusion part, we will provide a brief
comparison of the performance of the employed methods and
state some remarks.

II. THEORY: ACTIVE CONTOURS

In the following sections we will use the following notation.
Let C be the set of curves in R2 given by:

C =
{
c : [a, b] → Ω, piecewise C1, c(a) = c(b)

}
(1)

Also let c′ and c′′ denote the first and second derivatives of
c, respectively:

c(q) = (c1(q), c2(q))
c′(q) =

(
dc1
dq , dc2

dq

)
|c′(q)| =

√(
dc1
dq

)2

+
(

dc1
dq

)2
(2)

and similar notation for c′′. We also note that the extension
to three dimensions is straightforward and can be given as

c(q) = (c1(q), c2(q), c3(q))
c′(q) =

(
dc1
dq , dc2

dq , dc3
dq

)
|c′(q)| =

√(
dc1
dq

)2

+
(

dc1
dq

)2

+
(

dc1
dq

)2
(3)

We also define an edge detector function g (∇I) which is
a monotonic decreasing function. A typical choice for g (∇I)
is

g (∇I) =
1

1 + |g (∇I) |i
(4)

where i can be selected between 1 < i < ∞. In our work
we used i = 2 for all methods we implemented. g (∇I) is
primarily an edge detector function which takes small values
on edges and large values on smooth regions. The particular
choice of g (∇I) in equation (4) enhances contours in an
image while reducing noise.

A. Classical Active Contour Model

Kass, Witkin and Terzopulos gave the first efforts in formu-
lating the boundary detection problem as an energy minimiza-
tion one [1]. They define active contours as energy-minimizing
splines guided by external constraint forces that pull them to-
ward features such as lines and edges. In Kass et al.’s approach,
boundary detection consists of matching a deformable model
to an image by means of energy minimization. Although we
did not implement Kass. et al’s method, we state the results
here for the sake of completeness.

Using Aubert and Kornprobst’s notation [2] for the formula-
tion of Kass et al’s active contour model, the energy functional
J(c) to be minimized is given by:

J(c) = α

∫ b

a

|c′(q)|2dq + β

∫ b

a

|c′′(q)|2dq︸ ︷︷ ︸
internal energy

+λ

∫ b

a

g2 (|∇I (c(q)) |) dq︸ ︷︷ ︸
external energy

(5)
The first two terms in equation (5) are called internal energy

and are used to impose a smoothness constraint. The first order
term makes the curve act like a membrane and the second term
makes it act like a thin plate. Setting β = 0 allows second
order discontinuities at corners. Instead of being constant α, β
can be selected to depend on the curve parameters as α(s) β(s)
allowing the weight of smoothness constraints to change along
the curve. The third term, called the external energy, attracts
the curve toward the edges of the objects by taking smaller
values at the object boundaries.

The Euler-Lagrange equations associated with J(c) are a
fourth order system:
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{
−αc′′ + β(iv) + λ∇F |c(c) = 0

c(a) = c(b)
(6)

Where F (c1, c2) = g2 (|∇I(c1, c2)|) and c(iv) is the fourth
order derivative.

In Kass et al.’s [1] approach the main ideas was to formulate
the problem as a minimization one. However, this approach
has significant drawbacks. One of the drawbacks is that the
functional J(c) is not intrinsic. It depends on the parametriza-
tion of c. Different solutions can be obtained by changing
the parametrization while preserving the same initial curve.
Another drawback is that the model cannot handle changes
in topology. It is not possible to detect multiple objects. In
addition nonconvex objects cannot be detected efficiently. A
third consideration is about the numerical problems arising
in solving equations in (6). In order to solve the system of
equations in (6) the curve is made to depend on an artificial
parameter t (the time) which may cause numerical instabilities.
A difficult task is the choice of a set of marker points for
discretizing the parametrized curve. The sampling rate of the
markers has to be changed during iterations in order to avoid
numerical instabilities and false detections.

B. Level Set Methods

The equations in (6) can be solved by parametrizing the
curve and discretizing the equations. However, this direct
approach faces some numerical difficulties such as numerical
instabilities and the need for sampling rate changes. Level
set methods as introduced by Osher-Sethian [3] provide an
efficient and stable algorithm to solve (6).

The active contour models introduced in this part will make
use of flows governed by equations of the form:{

∂
∂t = FN

c(0, q) = c0(q)
(7)

Equation (7) states that the curve c(t, q) moves along its
normal with a speed F , which may depend on t, c, c′, c′′. The
level set formulation is based on the observation due to Osher-
Sethian [3] that a curve can be seen as the zero level set of a
function in higher dimension. For example, a curve in R2 can
be represented as the zero-level line of a function R2 → R.
Suppose that there exists a function such that u : R+ ×R →
such that

u (t, c(t, q)) = 0, ∀q,∀t ≥ 0 (8)

Then by differentiating (8) with respect to t, we get

∂u

∂t
+

〈
∇u,

∂c

∂t

〉
= 0 (9)

Setting the speed term in (7) into (9)

∂u

∂t
+ 〈∇u, FN〉 = 0 (10)

The unit normal is given as

N = − ∇u

|∇u|
(11)

Putting this into (10)

∂u

∂t
(t, c(t, q)) = F |∇u (t, c(t, q)) | (12)

This equation is valid only for the zero-level set of u . But,
Osher-Sethian show in [3] that u can be regarded as defined
on the whole domain R+ × Ω . Then the following PDE can
be solved

∂u

∂t
(t, x) = F |∇u (t, x) | (13)

For t > 0 and x ∈ Ω if F is defined on the whole
space. Then once u is calculated on R+ × Ω the curve c
can be obtained by extracting the zero level set of u . The
normal derivative is chosen to vanish on the boundary and u is
initialized to be the signed distance function to the initial curve
c0. Then, Osher-Sethian [3] give the following final model:

∂u
∂t (t, x) = F |∇u (t, x) | for(t, x) ∈ ]0, inf[×Ω

u(0, x) = d̄(x, c0) (d̄ signed distance)
∂u
∂N = 0 for(t, x) ∈ ]0, inf[×Ω

(14)

If the curve motion can be expressed as a velocity along
the normal direction of the curve, the model in (14) is useful
from several points of view. Firstly, the evolving function
u(t, x) remains a function during evolution as long as F is
smooth. However, the level set u = 0 , so the front c(t, q), may
change topology, break, merge as u evolves. This is the main
advantage of level set formulation as the topological changes
should not be taken into account explicitly. Secondly, for
numerical approximations, a fixed discrete grid in the spatial
domain and finite-difference approximations for spatial and
temporal derivatives can be used. A third advantage is that
geometric elements of the front such as the normal vector and
the curvature can be expressed with respect to u. In addition,
level set methods can be extended to higher dimensions.

The following active contour models will make use of these
advantages of level set formulation. Active contour models
based on Osher-Sethian’s [3] level set formulation are based
on designing the speed function F (t, c, c′, c′′) in (14) so that
the evolving front gradually attains zero speed as it gets closer
to the object boundaries and eventually comes to a stop. In
addition, special stopping functions are designed in order to
detect the contours more efficiently.

C. Geodesic Active Contours
Beginning from Osher and Sethian’s [3] level set for-

mulation, Caselles et al. [4], proposed the geometric active
contour model. The model proposed by Caselles was based
on equations (14), where they define a proper speed function
F . The geometric active contour was given by solving:

∂u

∂t
= g(|∇I|)︸ ︷︷ ︸

stopping term

(κ + α)︸ ︷︷ ︸
curvature + constant

(|∇u|) (15)

α is a constant and κ is the curvature term which is given
by:

κ = div

(
∇u

|∇u|

)
(16)
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The curvature term κ imposes smoothness constraints on the
curve. The constant term α makes the detection of nonconvex
objects easier and it increases the speed of convergence. In fact
α is chosen so that α + κ does not change sign. In literature,
the term α is sometimes called the balloon force as it acts
as a constant force pushing the curve from outside or inside
depending on its sign.

g (|∇I) is the stopping term which forces the evolving front
to attain zero speed as it gets closer to the object boundaries.
Caselles et al. [4] give g (|∇I) as follows:

g (|∇I) =
1

1 + |Gσ ∗ ∇I|
(17)

Where |Gσ ∗ ∇I| is the convolution of the gradient of the
image with a Gaussian kernel of standard deviation σ.

Caselles et al. [4] formulated their active contour model
directly in terms of level sets. Thereby, they provided a
numerically stable and efficient model that can handle to
topological changes.

In a sequence of papers Caselles et al. [6], [7] introduced
geodesic active contours model which is based on an intrinsic
weighted Euclidean length. What makes the geodesic active
contours an important model is its correspondance to Kass
et al.’s [1] classical snake model. Caselles et al. [7] use the
following energy functional introduced by Kass et al. [1]

J1(c) = α

∫ b

a

|c′(q)|2dq + λ

∫ b

a

g2 (|∇I(c(q))|) (18)

Using the functional in 18, Caselles et al. [7] arrive at
another energy functional which is intrinsic, i.e. independent
of parametrization:

J2(c) =
∫ b

a

g (|∇I(c(q))|) |c′(q)| (19)

If we compare J2(c) to the classical definition of a curve(
L =

∫ b

a
|c′(q)|dq

)
we observe that J2(c) can be seen as a

new length by weighting the Euclidean length. The weight is
g (|∇I(c(q))|) , which contains information regarding object
boundaries. Caselles et al. [7] define a new metric for which
they seek for geodesic, hence the name geodesic active con-
tours.

Caselles et al. [6], [7] formulate the solution to (19) in terms
of level sets and arrive at the following level set expression:

∂u

∂t
= g(|∇I|)(κ + α)(|∇u|) + 〈∇g,∇u〉︸ ︷︷ ︸

pull back term

(20)

This equation is similar to equation (15) and has an ad-
ditional term 〈∇g,∇u〉, which attracts the curve further to
the boundary. If the front propagates and crosses the goal
boundary, this force pulls it back to the desired location.

D. Weighted Area Gradient Flow

Siddiqi et al. [10] [11] introduce an area based active
contour model which minimizes a weighted area functional
given by

A(c) = −1
2

∫ L

0

g (|∇I|) 〈c(s), N〉ds (21)

where L is the length of the curve, and c(s) is the arc length
parametrization of the curve and g (|∇I|) is the weighting
function as defined in equation (4). Then the area minimizing
flow takes the following form:

∂c

∂t
=

(
g (|∇I|) +

1
2
〈c,∇g (|∇I|)〉

)
N (22)

The level set representation of area minimizing flow is given
by

∂u

∂t
=

1
2
div

[(
x
y

)
(g (|∇I|))

]
|∇u| (23)

where x and y are the (x, y) coordinates of the given image.
Siddiqi et al. [11] then combine the weighted area minimizing
flow in (23) with the Caselles et al.’s weighted length mini-
mizing flow in equation (20). The combined equation in level
set form is given by

∂u

∂t
=

 g(|∇I|)(κ + α)(|∇u|) + 〈∇g,∇u〉+
λ
2 div

[(
x
y

)
(g (|∇I|))

]
|∇u| (24)

where λ is a constant. The term
div

[(
x
y

)
(g (|∇I|))

]
|∇u| provides additional attraction

force when the front is in the vicinity of an edge.

E. Active Contours Without Edges

Geodesic active contours and area minimizing flows pre-
sented thus far provide efficient and stable algorithms to detect
contours in a given image. The presented methods handle
changes in topology and provide robust stopping terms to
detect the goal contours. However, structures such as interior
of objects, e.g. interior of discs are not segmented. Because
of level set formulation the final contours are always closed
contours. In addition, in images where the objects object
boundaries are noisy and blurry these methods face some
difficulties. Some recent work in active contours consider these
issues.

There are some objects whose boundaries are not well
defined through the gradient e.g smeared boundaries. Chan and
Vese [12], [13] introduce a new active contour model, called
”without edges”. The main idea is to consider the information
inside the regions not only at their boundaries. Chan and Vese
define the following energy
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F (φ, β1, β2) =



µ

∫
Ω

δ(φ)|∇φ|︸ ︷︷ ︸
length of c

+v

∫
Ω

H(φ)dxdy︸ ︷︷ ︸
area inside c

+

λ1

∫
Ω

|u0 − β1|2H(φ)dxdy︸ ︷︷ ︸
fitting term I

+

λ2

∫
Ω

|u0 − β2|2 (1−H(φ)) dxdy︸ ︷︷ ︸
fitting term II

(25)
where u0 is the original image, β1, β2 are some constants

and H(φ)is given by:

H(φ) =
{

1 if φ ≥ 0
0 if φ < 0 (26)

This model looks for the best approximation of image u0 as
a set of regions with only two different intensities (β1 and β2 ).
One of the regions represents the objects to be detected (inside
of c), and the other region corresponds to the background
(outside of c ). The snake c will be the boundary between these
two regions. This model is related in spirit to the Mumford-
Shah functional [14] , which can be given as

FMS(c, u) =


µ length(c) + v area (inside(c))∫

Ω

|u− u0|2dxdy︸ ︷︷ ︸
fitting term

(27)

where u is the cartoon image approximating u0 , u is smooth
except for jumps on the set c of boundary curves and the
contour c segment the image into piecewise constant regions.
The method in (25) is a simple approximation to (27) in
that only two subregions are allowed in which u is piecewise
constant. So u for (25) can be written as

u = β1H(φ) + β2 (1−H(φ)) (28)

Returning to equation (25), the last two terms are fitting
terms which guide the curve to the boundaries of the object.
The first fitting term F1(c) gives the error resulting from ap-
proximating the original image inside c with β1 and the second
fitting term F2(c) gives the error resulting from approximating
the original image outside c with β2. The first two terms in
(25) are smoothing terms which smooth out sharp corners of
the evolving contour.

The solution can be obtained by approximating H(φ) and
δ(φ) and by solving the following three equations

β1 =
∫

Ω
u0H(φ)dx∫
Ω

H(φ)dx

(
average of
u0 inside c

)
β2 =

∫
Ω

u0(1−H(φ))dx∫
Ω
(1−H(φ))dx

(
average of
u0 outside c

)
∂φ
∂t = δ(φ)

(
µ div

(
∇φ
|∇φ|

)
− |u0 − β1|2 + |u0 − β2|2

)
(29)

where the last term is the Euler-Lagrange of equation (25).

(a) Geodesic active contours (b) Area minimizing flow

(c) Active contours without
edges

Fig. 1. Results for 2D synthetic image.

III. RESULTS

We implemented geodesic active contours, area minimizing
flows and active contours without edges for segmenting 2D/3D
synthetic data and the boundaries of brain from an MRI data.
To implement the level set methods we made use of a level set
toolbox developed by Ian Mitchell [16]. We will present the
segmentation results for 2D/3D synthetic data and 3D MRI
data, respectively.

A. 2D-3D Synthetic Data

Figure 1 shows the results of applying geodesic active
contours, area minimizing flows and active contours without
edges to a 2D data. The steps of used algorithms can be
seen in figures 4, 5, 6. The 2D synthetic data we used holds
two letters of alphabet, ”G” and ”S”, and is a monochromatic
image having precisely two intensity values. Two letters are
used to see how the active contours can handle the topological
changes. In addition, ”G” and ”S” were chosen in order to
test the capability of contours entering into concavities of the
shapes.

As for the performance of the used methods, all methods
were able to segment the two letters successfully. The results in
figure 1 show that all methods were able to handle changes in
topology as all of the methods are based on level set methods.

For geodesic active contours and area minimizing flows we
selected the initial contour such that the region of interests fall
inside the initial contour. We want to note that both methods
are sensitive to initialization. Either the contour has to contain
the two letters completely or the contour has to be completely
inside the letters. In the first case we select α > 0 so that
the contour contracts; in the second case α < 0 so that the
contour inflates. In order to let the evolving contour enter into
concavities of the letters we selected the balloon force term
|α| > min(κ) so that the contraction(inflation) of the contour
is assured. It can be stated that both geodesic active contours
and area minimizing flows perform similarly. However, we can
state that due to the additional attraction term in equation (24)
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(a) Original image (b) Geodesic active contours

(c) Area minimizing flow (d) Active contours without
edges

Fig. 2. Results for 3D synthetic image

area minimizing flow performs slightly better than geodesic
active contours. In addition, area minimizing flow is rather
insensitive to the parameter α whereas α has to be tweaked
for geodesic active contours.

Active contours without edges performed far more better
than the other two methods in our 2D/3D synthetic data. This
is due to the fact that active contours without edges try to
approximate the given image using two intensity values, which
is perfect for our setup. In addition, active contours without
edges are insensitive to initialization. To show this property we
initialized the contour to several circles distributed uniformly
on the image (see figure 1(c)). It should be noted that some
of the circles contracted whereas others inflated, which is not
possible with the other two methods. Active contours without
edges has the fastest convergence rate among all methods and
its computational burden was the least among all methods.
Area minimizing flow has a slightly better convergence rate
than geodesic active contours; however, its computational bur-
den was more than geodesic active contours due the additional
attraction term in equation (24).

The synthetic 3D we used is similar to the 2D synthetic
data we used before. It again consists of two letters, ”G” and
”S”, and is a monochromatic 3D image consisting only from
two intensity values. The results for 3D synthetic data can be
seen in figure 1 and the iterations can be seen in figures 7, 8,
9. Again the figures show how all methods were successful in
segmenting the two letters and handling topological changes.
All methods were easily extended to three dimensions using
the same framework as in the two dimensions. As for the
performance of the three methods in 3D, similar comments as
in the 2D case apply to the 3D case.

B. MRI Data

We applied all the three active contour models to an
MRI(128x128x38) image, the slices of which can be seen
in figure 10, with the aim of segmenting the boundaries of
brain. The results for this part can be seen in figure 3 and the
intermediate steps for each algorithm can be seen in figures
11, 12, 13.

(a) Geodesic active contours (b) Area minimizing flow

(c) Active contours without
edges

Fig. 3. Results for segmenting the boundaries of brain from an MRI image

The comments made about topological changes, conver-
gence rates, computational burden, parameter sensitivities and
sensitivities to initialization in the previous section are still
valid for the MRI data. However, some additional remarks
can be made about the performance of the three methods.

All three methods were succesful in roughly locating the
boundaries of the brain. In order to segment the boundaries
of the brain, in geodesic active contours and area minimizing
flows we started the contour completely inside the brain and
inflated the contour till the boundaries. In segmenting the
boundaries of the brain these two methods were more suc-
cessful as they minimize an edge based functional. However,
as the edges in the MRI image are quite blurry they smooth
out the boundaries.

For the case of active contours without edges, again it
was insensitive to initialization. However, it was not that
successful in locating the boundaries of the brain. This is due
to the fact that active contours without edges seek for the
best approximation to the image using two intensity values.
Therefore, in an MRI image, where the intensity values of
different regions are close to each other and where there
are blurry edges, active contours without edges necessarily
introduce smoothing. What it does in fact is segmenting dark
regions from bright ones.

IV. CONCLUSION

With the aim of developing a medical image segmentation
procedure we used three level set based active contour models,
namely geodesic active contours, area minimizing flows and
active contours without edges. Firstly, we briefly stated the
governing equations of these methods. Afterwards we applied
these methods to 2D/3D synthetic data and to an MRI image
with the aim of segmenting the boundaries of brain.

As all of the methods were based on level set methods, they
handled topological changes during iterations implicitly and
all of the methods were applicable to three dimensions. We
can state that all methods have their cons and pros. Geodesic
active contours and area minimizing flows differ only slightly
in their performance. However, we can state that due to the
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additional attraction term in equation (24) area minimizing
flow performs slightly better than geodesic active contours.
In addition, area minimizing flow is rather insensitive to
the parameter α whereas α has to be tweaked for geodesic
active contours.Area minimizing flow has a slightly better
convergence rate than geodesic active contours; however, its
computational burden was more than geodesic active contours
due the additional attraction term in equation )24=.

Active contours without edges are formulated differently
than the geodesic active contours or area minimizing flows.
They seek for the best approximation to a given image using
only two intensity values. Therefore, if the region of interest
is significantly different in intensity values from other regions
as in our synthetic 2D/3D data active contours without edges
perform best among all methods we implemented. However, if
the region of interest is defined through its edges as in the MRI
data the results cannot be considered satisfactory. All in all,
active contours without edges are insensitive to initialization,
have a rather high convergence speed and its computational
requirements are far more less than the geodesic active con-
tours or area minimizing flows. In conclusion, according to
our results level set based active contours are quite promising
for medical image segmentation.
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(a) Initial State (b) 25 iterations (c) 50 iterations (d) 75 iterations (e) 100 iterations (f) 125 iterations

(g) 150 iterations (h) 175 iterations (i) 200 iterations (j) 225 iterations (k) 250 iterations

Fig. 4. The results for the 2D synthetic image using geodesic active contours. Note the changes in topology. Observe the front entering into concave parts
of the image. This is done by choosing α > min(κ).

(a) Initial State (b) 25 iterations (c) 50 iterations (d) 75 iterations (e) 100 iterations (f) 125 iterations

(g) 150 iterations (h) 175 iterations (i) 200 iterations (j) 225 iterations (k) 250 iterations

Fig. 5. The results for the 2D synthetic image using area minimizing flows.

(a) Initial State (b) 25 iterations (c) 50 iterations (d) 75 iterations (e) 100 iterations (f) 125 iterations

(g) 150 iterations (h) 175 iterations (i) 200 iterations (j) 225 iterations (k) 250 iterations

Fig. 6. The results for the 2D synthetic image using active contours without edges.
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(a) Original Image (b) Initial State (c) 50 iterations (d) 100 iterations (e) 150 iterations (f) 200 iterations

(g) 250 iterations (h) 300 iterations (i) 350 iterations (j) 400 iterations (k) 450 iterations (l) 500 iterations

(m) 550 iterations (n) 600 iterations (o) 650 iterations

Fig. 7. The results for the 3D synthetic image using geodesic active contours

(a) Original Image (b) Initial State (c) 50 iterations (d) 100 iterations (e) 150 iterations (f) 200 iterations

(g) 250 iterations (h) 300 iterations (i) 350 iterations (j) 400 iterations (k) 450 iterations (l) 500 iterations

(m) 550 iterations (n) 600 iterations (o) 650 iterations

Fig. 8. The results for the 3D synthetic image using area minimizing flow
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(a) Original Image (b) Initial State (c) 50 iterations (d) 100 iterations (e) 150 iterations (f) 200 iterations

(g) 250 iterations (h) 300 iterations (i) 350 iterations (j) 400 iterations (k) 450 iterations (l) 500 iterations

(m) 550 iterations (n) 600 iterations (o) 650 iterations (p) 700 iterations (q) 750 iterations (r) 800 iterations

(s) 850 iterations

Fig. 9. The results for the 3D synthetic image using active contours without edges

(a) 8’th slice (b) 10’th slice (c) 12’th slice (d) 14’th slice (e) 16’th slice (f) 18’th slice

(g) 20’th slice (h) 22’th slice (i) 24’th slice (j) 26’th slice (k) 28’th slice (l) 30’th slice

(m) 32’th slice (n) 34’th slice (o) 36’th slice (p) 38’th slice

Fig. 10. MRI slices
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(a) Initial State (b) 50 iterations (c) 100 iterations (d) 150 iterations (e) 200 iterations (f) 250 iterations

(g) 300 iterations (h) 350 iterations (i) 400 iterations (j) 450 iterations (k) 500 iterations (l) 550 iterations

(m) 600 iterations (n) 650 iterations (o) 700 iterations (p) 750 iterations

Fig. 11. The results for segmenting the boundaries of brain from an MRI image using geodesic active contours

(a) Initial State (b) 50 iterations (c) 100 iterations (d) 150 iterations (e) 200 iterations (f) 250 iterations

(g) 300 iterations (h) 350 iterations (i) 400 iterations (j) 450 iterations (k) 500 iterations (l) 550 iterations

(m) 600 iterations (n) 650 iterations (o) 700 iterations (p) 750 iterations

Fig. 12. The results for segmenting the boundaries of brain from an MRI image using area minimizing flow

(a) Initial State (b) 50 iterations (c) 100 iterations (d) 150 iterations (e) 200 iterations (f) 250 iterations

(g) 300 iterations (h) 350 iterations (i) 400 iterations (j) 450 iterations (k) 500 iterations (l) 550 iterations

(m) 600 iterations (n) 650 iterations (o) 700 iterations (p) 750 iterations

Fig. 13. The results for segmenting the boundaries of brain from an MRI image using active contours without edges


