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Abstract

Computed tomography colonography is a minimally invasive method that al-
lows the evaluation of the colon wall and aids in detecting colonic polyps. Be-
cause imperfect cleansing and distension can cause portions of the colon wall to
be collapsed, covered with water or retained stool, patients are scanned in both
prone and supine positions. Both reading efficiency and computer aided detection
of CTC images can be improved by accurate registration of data from the supine
and prone positions. We propose an automatic registration algorithm based on
matching the shock graphs of the complementary supine and prone data using dy-
namic time warping algorithm. Shock graphs provide a compact representation
of shapes that can be used for registration and segmentation. In order to compute
the shock graph of the segmented colon data we use Hamilton-Jacobi skeletons
proposed by Siddiqi et al. The shock graphs of the complementary supine and
prone CTC data sets will be registered using dynamic time warping algorithm,
which estimates a nonlinear warping function from the supine data to the prone
data based on minimizing a cost function subject to some proper constraints.
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1 Introduction

Compared to endoscopy, computed tomography colonography (CTC) is a mini-
mally invasive method for the examination of the colon CT volume data [1] [34].
In computed tomography a radiologist views a sequence of CT images in order to
detect polyps. Detecting polyps in CT data allow the medical doctors for early di-
agnosis of colorectal cancer which is a common form of a cancer associated with
high mortality rates. The standard imaging process consists of colon cleansing
and air insufflation, followed by CT imaging of the abdomen/pelvis. Detection
of polyps from a single scan is a difficult task as stools adhered to colon wall
could resemble polyps and the location of polyps could be covered with liquid
present in the colon. In order to detect polyps reliably two CT scans is obtained
one in the supine position and one in the prone position. However, in order to
benefit from these two scans, determining the corresponding positions in both
scans is necessary. As the colon wall is a nonrigid structure its position and shape
changes nonlinearly between the scans. Therefore, registering the supine data to
the prone data is a necessary but difficult task. In computed tomography, radiolo-
gists are provided with the 3D rendering of the colon wall which is called virtual
colonoscopy. In virtual colonoscopy the user inspects the colon wall by viewing
3D images taken on a centerline path through the colon. We aim at registering
two centerline paths corresponding to supine and prone views by making use of
dynamic time warping algorithm; therefore, allowing the radiologists to view the
corresponding positions in both scans simultaneously. Registering the whole CT
data might seem a better choice for our task; however, its computational complex-
ity would make it a time consuming task.

Our method to solve the registration problem consists of two steps. First, we
compute the shock graph of the colon in order to obtain the medial axis through
the colon and radius values at each point on the medial axis. Afterwards we apply
dynamic time warping algorithm to register the two shock graphs obtained from
supine and prone scans. In the following paragraphs we will mention the methods
available in literature to compute the shock graph of a shape.
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The shock graph of a shape can be formed from the skeleton of a shape by
writing the skeleton points and the corresponding radius of the maximal spheres
into a graph. The graph formed this way can be used for registration purposes.
The usual definition of the skeleton of a 3D shape is that it is the locus of the
centers of the maximal spheres contained in the shape. However, constructing
skeletons by drawing maximal spheres at all points inside the shape is impractical
as determining the tangency between a point and a noisy shape contour is prob-
lematic. In the literature there are three main approaches to determine the skeleton
points.

Blum(1973) [4] proposed a grassfire model to compute the skeleton of a shape.
In Blums grassfire technique a shape is considered to be filled with dry grass and
a fire is started at the shape boundary. The time of the arrival of the grassfire front
at a point equals the distance of that point from the shape boundary. The skeleton
points correspond to singular points which are formed when the fronts from two
or more directions meet and extinguish themselves. The problem than reduces to
locating these singular points.

Another method is based on a thinning process to realize the Blums grassfire
formulation. Layers are peeled away from the shape boundary while retaining
some special points. Although these methods may preserve the topology of the
shape and are efficient to implement, these methods fail to localize the skeleton
points accurately. As a result they can only provide a coarse approximation to
the shapes when the shape is reconstructed from the skeleton [2] [5]. A third ap-
proach is to compute the skeleton using Voronoi diagrams. This approach ensure
homotopy between objects and their skeletons and accurately localize skeleton
points. However, the results are not invarient under Euclidean transforms [8]. In
our project the focus will be on Blums grassfire model and we implement the
method proposed by Siddiqi to compute the skeleton points.

Blum introduced skeletons in 1973. Osher and Sethian [20] proposed algo-
rithms based on Hamilton Jacobi formulations for propagating fronts moving with
curvature dependent speeds in 1988. Malladi [22] used level set approaches for
front propagation in 1995. Siddiqi [15] proposed Hamilton-Jacobi Skeletons in
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2002. In 2005 Shah [29] [28] introduced gray skeletons which are shape skele-
tons with a significance number attached to each of its points. Shah uses the angle
between the front normals as the significance number which is related to the quan-
tities such as the jump in the gradient of the distance function and the velocity of
the grassfire along the skeleton. Siddiqi proposed that skeletons computed us-
ing Blums grassfire technique can be used for forming shock graphs [13]. These
shock graphs can be used for shape recognition and indexing [10] [31] [32].

Level set methods are Eulerian in nature as they are restricted to grid points
where the locations are fixed. Level set approaches outlined above are capable
of preserving the singularities that develop during the curve evolution process.
However, these methods do not provide a method to detect the singular points. The
singular points may be calculated following a level set based evolution process
and computing maximum curvature points at each iteration. However, such a
method is sensitive to noise and the resulting skeletons are not guaranteed to be a
connected set.

Siddiqi [15] uses Hamiltonian formalism for simulating the eikonal equation
and offers a method to detect the shock points. Based on Blums grassfire flow
model he computes a measure of average outward flux of the vector field under-
lying the Hamiltonian system. He shows that as the region over which this flux
is computed shrinks to a point, the measure has different limiting behaviors de-
pending whether or not that point is singular. Thus he provides an effective way
of distinguishing singular points from the nonsingular ones. A simple threshold
over the computed flux is used to coarsely locate the singular points. Afterwards
a homotopy preserving thinning process is applied to finalize the skeleton compu-
tation [9] [21].

In this project the algorithm proposed by Siddiqi will be implemented to com-
pute the skeleton and the shock graph of the segmented CTC data. The shock
graphs of the complementary supine and prone CTC data sets will be registered
using dynamic time warping algorithm [16] [30] [11].
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2 Related Work

In commercial virtual colonoscopy applications radiologists are provided with
both prone and supine scans. However, the registration has to be done manually
by matching some anatomical points to each other.

Acar et al. [17] [3] introduced an automatic registration algorithm which is
based on heuristics. They first compute the centerline of the colon and deter-
mine the major local extreme points and register the points in one data set to the
other data set using linear stretching and shrinking operations. They do these
stretching and shrinking operation recursively until all local extreme points are
detected. They also evaluate the registration algorithm on 24 patient cases. By
doing the path registration, the mean misalignment distance between prone and
supine identical anatomic landmarks was reduced from 47.08 to 12.66mm, a 73%
improvement. This algorithm relies on linear stretching operations which limited
in its capability to register the two data sets. An algorithm taking into account the
global structure of the data sets might yield better results.

Nain et al. [19] [7] improved Acar et al. [17] [3] technique by taking into ac-
count the global structure of the centerline of colon. Firstly, they compute the
centerline of the colon by considering a heat equation. They suppose that the
boundary of the colon surface to be held at a constant temperature initially. Then
they compute the temperature distribution around the colon surface. The center-
line is formed by the centers of mass of the loops which are the level sets of the
temperature distribution around the colon surface. They also write the radius val-
ues corresponding to each point in the centerline. Supine to prone matching is
done by using dynamic programming where they minimize the sum of Euclidean
distance between the points in the two data sets. They claim that they achieved
94% frame matching in virtual colonoscopy. However, they did not evaluate their
algorithm to match anatomical structures as opposed to Acar et al.’s [17] method.

In a sequence of papers Bouix et al. [25] [23] [24] formulated automatic cen-
terline extraction using Siddiqi et al.’s [15] Hamilton-Jacobi Skeletons. Bouix et
al. compute the 3D skeleton of the segmented colon data. To find the 3D skele-
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ton of the colon Bouix uses Siddiqi et al. Hamiltonian formulation of Blum’s [4]
grassfire model. The algorithm proposed by Bouix provides a robust and efficient
method for automatic centerline extraction. By writing the radius of maximal
spheres to each skeletal point they also form a data set which they call shock
graph.

In our approach to the registration problem we will attempt to combine Bouix
et al’s medial axis extraction algorithm with dynamic time warping algorithm.
By using Bouix et al’s medial axis extraction algorithm we will obtain the shock
graph of the colon data which we will use as an input to the dynamic time warping
algorithm. The dynamic time warping algorithm will allow us to find the optimum
warping function from the shock graph of the supine data to the shock graph of
the prone data by minimizing a proper cost function.

3 Theory

In this section we will present the theoretical background of the methods and algo-
rithms that we used in our registration method. Our registration method consists of
two parts. First, extracting the centerline of the colon data using Hamilton-Jacobi
Skeletons [15] and then matching the data obtained from the first part using dy-
namic time warping algorithm.

Firstly, we will review segmentation techniques and state our segmentation
algorithm for extracting the boundaries of the colon data. Then we will introduce
Blum’s Grassfire Model and state two approaches to this model, namely level set
methods and Hamiltonian formulation. Afterwards, we give the algorithm for
computing Hamilton-Jacobi skeletons. We will conclude this part by giving the
theoretical background for the dynamic time warping algorithm we used.
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3.1 Segmentation

As the Hamilton-Jacobi Skeletonization algorithm works on binary images, it is
necessary to segment the colon wall from the CT data before computing the shock
graph of the colon. In literature there are eminent segmentation algorithms based
on active contours to segment region of interest from medical images [18] [33]
[14] [6] [27] [26] . These methods rely on curve evolution techniques and provide
a reliable and robust segmentation of the regions of interest. In active contour
models, a curve is initialized either inside or outside the region of interest. Af-
terwards the curve moves to the desired structures in the image according to an
edge detector function which is derived from the data itself while maintaining the
smoothness and closeness of the curve. To implement these active contour models
level set methods formalized by Osher and Sethian [20] are used. The use of level
set methods allow the topological changes during the segmentation to be handled
implicitly.

The segmentation methods based on active contour models and level set meth-
ods are the most reliable models to segment region of interest from a CT data.
However, as the amount of noise present inside the colon wall is within an accept-
able level, we used a seed based connected threshold region growing algorithm.
As the region inside the colon is insufflated with air during the CT scan a simple
threshold based segmentation gives satisfactory result for our purposes. The al-
gorithm begins from a voxel inside the colon called “seed” and adds neighboring
voxels if they satisfy certain criteria. A criteria based on the interval of intensity
values and on the connectedness of the region of interest is used. Using the re-
gion growing technique we achieved a segmentation which is considerably faster
than the methods based on active contours and which gave comparable results for
the case of the region inside the colon. After segmenting the colon from the CT
data we computed its shock graph using the Hamilton Jacobi Skeletons which we
explain more in detail in the following sections.
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3.2 Blum’s Grassfire Model

In 1973 Blum [4] proposed a grassfire model to compute the skeleton of a shape.
In Blums grassfire technique a shape is considered to be filled with dry grass and
a fire is started at the shape boundary. The time of the arrival of the grassfire front
at a point equals the distance of that point from the shape boundary. The skeleton
points correspond to singular points which are formed when the fronts from two
or more directions meet and extinguish themselves. The problem than reduces to
locating these singular points.

In Blum’s grassfire model each point on the shape boundary is moving with
unit speed in the inward normal direction. In the following we formulate Blum’s
grassfire model using concepts from curve evolution methods.

Let C be the set of curves in R2 given by:

C =
{

c : [a,b]→ Ω, piecewise C1,c(a) = c(b)
}

(1)

Also let c′ and c′′ denote the first and second derivatives of c, respectively:

c(q) = (c1(q),c2(q),c3(q))

c′(q) =
(

dc1
dq , dc2

dq , dc3
dq

)
|c′(q)| =

√(
dc1
dq

)2
+
(

dc1
dq

)2
+
(

dc1
dq

)2
(2)

Then the evolution of the grassfire front can be written as

{
∂c
∂t = N

c(0,q) = c0(q)
(3)

which is also called as eikonal equation. The eikonal equation in (3) states
that the curve c(t,q) moves along its inward normal direction with unit speed. To

7



simulate the eikonal equation we will present the level set formulation by Osher
and Sethian [20] and Hamiltonian formulation by Siddiqi et al. [14].

3.2.1 Level Set Formulation

Level set methods as introduced by Osher-Sethian [20] [27] provide an efficient
and stable algorithm to solve the eikonal equation (3). The level set methods
introduced by Osher-Sethian simulate a generalized version of equation (3).

{
∂

∂t = FN

c(0,q) = c0(q)
(4)

Equation (4) states that the curve c(t,q) moves along its normal with a speed
F , which may depend on t,c,c′,c′′. The level set formulation is based on the
observation due to Osher-Sethian [?] that a curve can be seen as the zero level set
of a function in higher dimension. For example, a curve in R2 can be represented
as the zero-level line of a function R2 → R. Suppose that there exists a function
such that u : R+×R → such that

u(t,c(t,q)) = 0, ∀q,∀t ≥ 0 (5)

Then by differentiating (5) with respect to t, we get

∂u
∂t

+
〈

∇u,
∂c
∂t

〉
= 0 (6)

Setting the speed term in (4) into (6)

∂u
∂t

+ 〈∇u,FN〉= 0 (7)
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The unit normal is given as

N =− ∇u
|∇u|

(8)

Putting this into (7)

∂u
∂t

(t,c(t,q)) = F |∇u(t,c(t,q)) | (9)

This equation is valid only for the zero-level set of u . But, Osher-Sethian
show in [?] that u can be regarded as defined on the whole domain R+×Ω . Then
the following PDE can be solved

∂u
∂t

(t,x) = F |∇u(t,x) | (10)

For t > 0 and x ∈ Ω if F is defined on the whole space. Then once u is
calculated on R+×Ω the curve c can be obtained by extracting the zero level set
of u . The normal derivative is chosen to vanish on the boundary and u is initialized
to be the signed distance function to the initial curve c0. Then, Osher-Sethian [?]
give the following final model:


∂u
∂t (t,x) = F |∇u(t,x) | f or(t,x) ∈ ]0, inf[×Ω

u(0,x) = d̄(x,c0) (d̄ signed distance)
∂u
∂N = 0 f or(t,x) ∈ ]0, inf[×Ω

(11)

If the curve motion can be expressed as a velocity along the normal direction
of the curve, the model in (11) is useful from several points of view. Firstly,
the evolving function u(t,x) remains a function during evolution as long as F is
smooth. However, the level set u = 0 , so the front c(t,q), may change topology,
break, merge as u evolves. This is the main advantage of level set formulation as
the topological changes should not be taken into account explicitly. Secondly, for
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numerical approximations, a fixed discrete grid in the spatial domain and finite-
difference approximations for spatial and temporal derivatives can be used. A
third advantage is that geometric elements of the front such as the normal vector
and the curvature can be expressed with respect to u. In addition, level set methods
can be extended to higher dimensions.

The eikonal equation (3) can be obtained by setting F = 1 in equation (11).
Then the level set solution to the eikonal equation can be given as


∂u
∂t (t,x) = |∇u(t,x) | f or(t,x) ∈ ]0, inf[×Ω

u(0,x) = d̄(x,c0) (d̄ signed distance)
∂u
∂N = 0 f or(t,x) ∈ ]0, inf[×Ω

(12)

The level set methods introduced by Osher-Sethian gives the governing equations(12)
to simulate the eikonal equation (3). Once the initial surface in 3D is given, then
by using equation (12) the intermediate steps of curve evolution can be obtained.
Then, according to Blum’s grassfire model determining the skeletal points reduces
to finding singular points which form during curve evolution. Singular points dur-
ing curve evolution correspond to points with maximum curvature values at each
time step. Determining points with maximum curvature values is a difficult task
because of the smooth contours present in the shape. Therefore, the level set
methods by Osher-Sethian preserve the singular points which form during the
simulation of the eikonal equation (3); however, they do not provide us with a
direct method of determining the singular points, hence the skeletal points.

3.2.2 Hamiltonian Formulation

Siddiqi et al. [14] [12] formulate the eikonal equation (3) using concepts from
Hamiltonian physics. They also define a criteria to accurately localize the singular
points which form during the curve evolution. They suggest that a measurement
of the net outward flux of the of the gradient vector field of the Euclidean distance
function can be used to localize points where conservation of the energy principle
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is violated. As the singular points correspond to such points they provide a criteria
to effectively localize singular points. Siddiqi et al. begin their formulation by
writing an action function to be minimized as follows

Cq0, t0(q, t) =
Z

γ

Ldt (13)

In this Lagrangian formulation (13) the independent variables are the coor-
dinates q of particles and their velocities q̇. For example, in the context of the
eikonal equation (3) these would be the positions of points along the curve C and
their associated velocities N. Each particle follows the path of least action in
reaching a future location at a future time. In equation (13) γ is an extremal curve
connecting the points (q0, t0) and (q, t) and L(q, q̇) is the Lagrangian. In other
words, of all possible paths connecting (q0, t0) and (q, t), the trajectory γ followed
by the particle is the one that minimizes the action function Cq0, t0. The associated
Euler-Lagrange equation with (13) is

d
dt

∂L
∂q̇

− ∂L
∂q

= 0 (14)

and the momenta are derived quantities given by

p =
∂L
∂q̇

(15)

For the case of a front moving with constant speed, the action function being
minimized is the Euclidean length and hence Cq0, t0 can be viewed as a Euclidean
distance function from the initial curve C0. Furthermore, the magnitude of its
gradient,∇Cq0, t0, is identical to 1 in its smooth regime. The Lagrangian associ-
ated with the action function minimized (13) is given by

L = ‖∂γ

∂t ‖
= ‖q̇‖

(16)
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As the action function minimizes the Euclidean length we redefine Cq0, t0 as
follows

D = Cq0, t0 (17)

where D is the Euclidean distance function to the initial contour C0 and ‖∇D‖=
1 in its smooth regime.

After defining the Lagrangian associated with the eikonal equation, Siddiqi
et al. replaces Lagrangian L(q, q̇) with Hamiltonian H (q, q̇) in order to let the
velocities become derived quantities. This way the equations become linear and
hence trivial to simulate numerically. The transformation from Lagrangian to
Hamiltonian can be done using Legendre transformation, which is given by

H (q, q̇) = p · q̇−L(q, q̇) (18)

With q = (x,y,z) and p = (Dx,Dy,Dz), the curve C̃ ⊂ R6 associated with C ⊂
R3 evolving according to the eikonal equation (3) is given by

C̃ := {(x,y,z,Dx,Dy,Dz) : (x,y,z) ∈C, D2
x +D2

y +D2
z = 1, p · q̇ = 1} (19)

where p · q̇ = 1 results from Huygens principle.

The Hamiltonian function can be obtained by applying Legendre transforma-
tion to Lagrangian L(q, q̇) = ‖q̇‖.

H = p · q̇−L
= 1−

(
D2

x +D2
y +D2

z
)1/2 (20)

The associated Hamiltonian system is
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ṗ = −∂H
∂q q̇ = ∂H

∂p
= (0,0,0) = −(Dx,Dy,Dz)

(21)

C̃ can be evolved under this system of equations, with C̃(t) ⊂ R6 denoting
the resulting contact surface. The projection of C̃(t) onto R3 will then give the
parallel evolution of C at time t,C(t). The interpretation of equation (21) is quite
intuitive. The gradient vector field p does not change with time and the points
on the boundary of the surface move in the direction of the inward normal with
unit velocity.A variety of methods including level set methods can be used to
implement the equation (21).

The important part of equation (21) is that the formation of shocks can be
made explicit. The key idea is to use a measure of the average outward flux of the
vector field of q̇. Siddiqi et al. define the average outward flux as the outward flux
through the boundary of a region containing the point, normalized by the area of
the boundary

R
δR〈q̇,N〉ds
area(δR)

(22)

Where ds is an element of the bounding surface δR of the region R and N is the
unit outward normal at each point of the surface. Using the divergence theorem

Z
δR
〈q̇,N〉ds =

Z
R

div(q̇)dv (23)

where dv is a volume element. Thus the outward flux is related to the diver-
gence in the following way

div(q̇) = lim
4v→0

R
δR〈q̇,N〉ds
4v

(24)

For a volume with an enclosed surface an excess of outward of inward flow
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through the surface indicates the presence of a source or a sink, respectively, in the
volume. The divergence of the vector field at a point div(q̇) is the net outward flux
per unit volume as the as the volume shrinks to zero. Equation (24) cannot be used
where the vector field is singular as the it is not differentiable at singular points.
However, we are interested in singular points; therefore,equation (24) provides a
means to detect the singular points. According to equation (24) the net outward
flux through the surface which bounds a finite volume is just the volume integral
of the divergence of the vector field within that volume. Therefore, location where
the flux is negative, and hence the energy is lost correspond to sinks or skeletal
points.

A finite difference approximation to equation (24) can be used to find points
where the flux is negative. Using a negative threshold over the average outward
flux of the vector field will give a rough localization of the singular points. As
a result Siddiqi et al. introduced a robust and efficient way of evolving curves
in 3D using Hamiltonian formalism to the eikonal equation. In addition, they
defined a criteria based on the average outward flux of the distance transform
which provides an explicit method to localize skeletal points.

3.3 Hamilton-Jacobi Skeletons

Hamilton-Jacobi Skeletons [15] can be computed using the Hamiltonian formu-
lation to the eikonal equation. Hamilton-Jacobi skeleton are based on applying a
threshold to the divergence defined in equation (24) and have a number of useful
properties such as:

• they are a thin set, or they do not contain interior points,

• they are homotopic to the original shape,

• they are invariant under Euclidean transformations such as rotations and
translations
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Algorithm1: Average Outward Flux

Compute the Euclidean distance transform D of the object
Compute the gradient vector field ∇D
Compute the average outward flux of ∇D using Eq. (21)
for(each point x in the interior of the object)

Flux(xi) = 1
n ∑

i=26
i=1 〈N̂i,∇D(xi)〉

(where xi is a 26-neighbor of x and N̂i is the outward
normal at xi of the unit sphere centered at xi )

Figure 1: Algorithm1 : Computing average outward flux

• given the radius of the maximal inscribed circle or sphere associated with
each skeletal point the object can be reconstructed exactly

The skeletal points can be localized by using finite difference approximation
to equation (24) and applying a threshold to the average outward flux field.

Flux(x) =
1
n

i=26

∑
i=1

〈N̂i,∇D(xi)〉 (25)

where xi is a 26-neighbor of x and N̂i is the outward normal at xi of the unit
sphere centered at xi. Figure 1 gives the algorithm to compute the average outward
flux.

However, as the computation of equation (24) is local, global properties such
as the preservation of the object’s topology are not ensured. In addition the skele-
ton obtained by applying a threshold on the divergence field is not guaranteed to
be a thin set. Therefore the divergence computation has be combined with topol-
ogy preserving thinning process, such that as many points as possible are removed
without altering the object’s topology.

A point is called “simple” if its removal does not change the topology of the
object. Hence in 3D, its removal must not disconnect the object, create a hole,
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or create a cavity. Siddiqi et al. [15] use a formal definition for a simple point
introduced by Malandain et al. [9]. Before giving the algorithm for the topology
preserving thinning algorithm we present a review of basic concepts in digital
topology.

3.3.1 Digital Topology

In 3D digital topology, the input is a binary image stored in a 3D array. In a 3D
cubic lattice, a point is viewed as a unit cube with 6 faces, 12 edges and 8 vertices.
For each point three types of neighborhoods are defined as

6-neighbors: two points are 6-neighbors if they share a face

18-neighbors: two points are 18 neighbors if they share a face or an edge

26-neighbors: two points are 26-neighbors if they share a face, an edge or a
vertex

Using the definitions above Malandain et al. [9] defines three types of connec-
tivity, denoted by “n-connectivity” where n ∈ {6,18,26}. Malandain et al. also
define “n-neighborhoods” for x, called Nn(x).(see Figure 2 ). A n-neighborhood
without its central point is defined as N∗

n = Nn{x}. To characterize a point as a
simple point Malandain et al. also gives the following definitions.

• An object A is n-adjacent to an object B, if there exist two points x ∈A and
y ∈ B such that x is an n-neighbor of y

• An “n-path ” from x1 to xk is a sequence of points x1,x2, . . . ,xk, such that
for all xi, 1 < i ≤< k,xi−1 is n-adjacent to xi.

• An object represented by a set of points O is n-connected, if every pair of
points (xi,x j) ∈ O×O, there is an n-path from xi to x j.
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Figure 2: 6-neighborhoods, 18-neighborhoods and 26-neighborhoods in a cubic
lattice [25].

Based on these definitions, Malandain et al. provide a topological classifica-
tion of a point x in a cubic lattice by computing two numbers.

1. C∗: the number of 26-connected components 26-adjacent to x in O∩N∗
26

2. C̄: the number of 6-connected components 6-adjacent to x in Ō∩N18

A point in 3D cubic lattice is simple if it satisfies the following criteria

C∗ = 1
C̄ = 1

(26)

In addition, in 3D cubic lattice an end point of a 26-connected curve is defined
as a point x whose 26-neighborhood O∩N26∗ contains only one object which is
in the of the object.

3.3.2 Distance Ordered Thinning

For a volume with an enclosed surface, an excess of inward flow through the sur-
face indicates the presence of a sink in the volume. These sink points correspond
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exactly to skeletal points. According to equation (25) the total outward flux of
the gradient vector field of the Euclidean distance function is negative at such
points; therefore, they correspond to skeletal points. In addition, the magnitude
of the total outward flux is proportional to the amount of energy absorbed. There-
fore, the points where the outward flux is below a threshold value can be used a
candidates for skeletal points. However, using only a threshold value does not as-
sure the preservation of the object’s topology the thinness of the result. Therefore
the flux computation has be combined with topology preserving thinning process,
such that as many points as possible are removed without altering the object’s
topology.

The solution proposed by [21] is to order the thinning process such that simple
points closest to the surface are removed first. The simple points closest to the
surface correspond to points having the lowest Euclidean distance D(x) values.
This distance ordered thinning algorithm can be combined with the flux value
obtained from (25) such that points having a value smaller than a threshold value
are considered as candidate skeletal points. The thinning process should stop
when all the points left are not simple or are not end points. End points should be
handled explicitly as they are simple points; but, they must not be removed during
the thinning process. Using a distance ordered thinning algorithm combined with
flux value obtained from (25), preserving the end points in the set assure that the
resulting set is thin. In addition, the thinning algorithm preserves the topology of
the skeleton. To make the thinning algorithm efficient a heap implementation is
used. Firstly, the simple points on the shape boundary is inserted into a list. Then
for all points in this list the neighboring simple points are inserted into heap if
they are simple. Then the points in the heap which has the lowest distance from
the surface is removed first. The implementation of Heap makes the thinning
algorithm considerably fast as inserting and removing from a heap can be done in
O(log(n)). Figure 3 summaries the distance ordered thinning algorithm.
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Algorithm2: Distance Ordered Homotopic Thinning

for (each point x on the boundary of the object)
if (x is simple ) then

insert into Heap (x) with D(x) as the sorting key for insertion

while (Heapsize > 0)
x = Remove Maximum from Heap
if (x is simple) then

if (x is an end point of a 3D curve) and (Flux(x) < Thresh) then
mark x as a skeletal point

else
Remove x from the Heap

for (all neighbors y of x)
if (y is simple) then

insert into Heap (x) with D(y) as the sorting key for insertion

Figure 3: Algorithm2 : Distance Ordered Homotopic Thinning
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3.3.3 Obtaining the Shock Graph

The result of the distance ordered thinning algorithm gives the skeleton of the
shape. However, the skeleton might consists of several branches. In order to
obtain the centerline through the colon pruning the skeleton is necessary in order
to obtain the centerline. Pruning the skeleton corresponds to obtaining the longest
path in the skeleton. As the longest path should end at end end point, we begin
by marking all end points in the skeleton. To find the longest path we begin by
selecting an end point at random. Then, we compute the endpoint which has
the longest distance along the path of the skeleton to the selected point. As the
skeleton of the colon is guaranteed to be a thin set without loops, the found end
point is assured to be an end point of the longest path. Then, we compute the
farthest end point to the found end point. The longest path through the colon, i.e.
the centerline, is path connecting these last two endpoints.

As the region obtained from segmentation could contain disconnected regions,
the centerline has to be computed for all connected sets. Afterwards we obtain the
centerline of the colon by combining the centerlines of all connected sets. The
locations between the successive centerlines are interpolated linearly in order to
obtain a single connected centerline through the colon. The shock graph of the
colon can be formed by writing radius values obtained from the distance transform
of the segmented shape to each point in the centerline. Again the radius values
of missing parts are linearly interpolated to give a single connected shock graph.
Figure 4 gives the pseudo-code of the algorithm for obtaining the shock graph of
the colon.

3.4 Dynamic Time Warping

To register the shock graphs of supine and prone CTC data sets a warping function
from the supine data to the prone data will be estimated based on minimizing a
cost function. The minimization problem can be stated as follows. Both the supine
and prone data sets will be considered as two sequences:
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Algorithm3: Obtaining Centerline and Shock Graph

for (all connected sets in the skeleton)
Find end points in the connected set
x = PickAnEndPoint
y is the farthest point from x according to its distance along skeleton
y = FarthestPoint( x )
z = FarthestPoint( y )
c is the centerline in the current dataset
c = GetConnectingPath( y, z )
s is the shock graph

s = WriteRadiusValues( c )

C is the connection of centerlines in the subsets
C = connect( c1, c2, . . . )
S = connect( s1, s2, . . . )

interpolate the broken parts
C = LinearInterpolateMissingParts( C )
S = LinearInterpolateMissingParts( S )

Figure 4: Algorithm3 : Obtaining Centerline and Shock Graph
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(
fx,y,z,r i = 1, . . . ,M

gx,y,z,r i = 1, . . . ,N

)
(27)

where x,y,z denote x,y,x coordinates of skeletal points and r denotes the radius
at that position. M,N are the lengths of the supine and prone data sets respectively.

The distance between two elements of fx,y,z,r and gx,y,z,r can be given by:

d(i, j) =

{
α

[
( fx(i)−gx( j))2 +( fy(i)−gy( j))2 +( fz(i)−gz( j))2

]
+

(1−α)( fr(i)−gr( j))2
(28)

where the subindices x,y,z,r of f and g denote the x,y,z coordinates of the
skeleton and the maximal fitting sphere to the corresponding location, respec-
tively. α is the weighting coefficient which is selected to yield optimum results.
The dynamic time warping algorithm computes the best possible warp between
fx,y,z,r and gx,y,z,r by minimizing the total distance [11] [30]. The alignment warp
Φ relates the indices of the two sequences fx,y,z,r and gx,y,z,r

Φ(k) =
(
Φ f (k),Φg(k)

)
where

k = 1,2, . . . ,K

1 ≤ Φ f ≤ M Φ f ∈ N
1 ≤ Φ f ≤ N Φ f ∈ N

(29)

The alignment warp Φ aligns the indices of fx,y,z,r and gx,y,z,r via the following
point to point mapping

f
(
Φ f (k)

)
⇐⇒ g(Φg(k)) 1 ≤ k ≤ K (30)

We define D as the cost of matching one data set to the other. D can be given

22



the sum of distance of the corresponding points of fx,y,z,r and gx,y,z,r as defined in
equation (28). D gives the total distance between the two sequences as follows

D( fx,y,z,r,gx,y,z,r) =
K

∑
k=1

d
(

fx,y,z,r
(
Φ f (k)

)
,gx,y,z,r (Φg(k))

)
(31)

The optimum alignment minimizes the total cost in equation (31)

D( fx,y,z,r,gx,y,z,r) = minΦ DΦ ( fx,y,z,r,gx,y,z,r)
= minΦ f ,Φg ∑

K
k=1 d

(
fx,y,z,r

(
Φ f (k)

)
,gx,y,z,r (Φg(k))

) (32)

The minimizer of this function provides us with the optimum warping func-
tion. However, we want the optimum warping function Φ to satisfy some addi-
tional criteria. First of all, the warping function Φ should match the end points of
the sequences fx,y,z,r and gx,y,z,r

beginning point Φ f (1) = 1 Φ f (1) = 1
end point Φ f (K) = M Φ f (K) = N

(33)

As this equation suggest the lengths of the the matched sequence do not have
be same. In addition to the end points, the warping function Φ has to satisfy a
monotonicity condition as we want conserve the order of sequences.

Φ f (k +1) > Φ f (k)
Φg(k +1) > Φg(k)

(34)

Furthermore, in order minimize the potential loss of information in the two
sequences we apply a continuity constraint on the warping function Φ

Φ f (k +1)−Φ f (k)≤ 2
Φg(k +1)−Φg(k)≤ 2

(35)
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The minimization problem in equation (32) can be solved using dynamic pro-
gramming [16]. The solution makes use of the fact that each portion of the op-
timum warping function Φ has to be also optimum. As we are working in the
discrete domain this idea corresponds to a recursive structure which can be given
as

Dopt(1,1) = d(1,1) initialization (36)

Dopt(Φ f (k),Φg(k)) = min


Dopt(Φ f (k)−2,Φg(k)−1)+3d

(
Φ f (k),Φg(k)

)
Dopt(Φ f (k)−1,Φg(k)−1)+2d

(
Φ f (k),Φg(k)

)
Dopt(Φ f (k)−1,Φg(k)−2)+3d

(
Φ f (k),Φg(k)

)


where the initialization step matches the first index of each sequences, hence
satisfying the end point conditions. From this recursion we can note that Dopt

satisfies both the monotonicity and continuity conditions in equations (33,35).
The iterations end when

Dopt(Φ f (K),Φg(K)) = Dopt(M,N) (37)

The recursive structure in equation (36)can be turned into an iterative structure
by using dynamic programming [16]. The order of the complexity of the algorithm
is given by O(M,N) where M, and N are the lengths of the supine and prone data
sets respectively.

4 Results

We evaluated our registration algorithm on a database of ten CT scans. The CT im-
ages consists of [512x512x258] voxels sampled at an interval of [0.78125,0.78125,1.5]mm’s
in x, y and z directions, respectively. For each of the ten data sets, a radiologist
marked five points by simultaneously viewing the supine and prone views. The
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marked points might correspond to anatomical points or recognized polyp struc-
tures. We took the points marked by the radiologist as the gold standard and
evaluated our algorithm based on a performance of matching those points.

We are also provided with a centerline drawn by the radiologist. We first
segmented the colon data and then computed its centerline using the Hamilton-
Jacobi skeletons. As the points marked by the radiologist might not lie on the
medial axis we found, we marked the points on the skeleton closest to the marked
points as marked points. Then we measured the distance along path between
corresponding points in supine and prone data sets before and after registration
for all ten CT scans. We present the reduction in the distance along path before
and after the registration as our performance measure.

In this section we will provide the results of our registration algorithm. We
will first present the results of segmentation followed by the results of applying
Hamilton-Jacobi skeletons on the colon data. Then we will state the results of
registering the shock graph of corresponding supine and prone data sets using
dynamic time warping algorithm

4.1 Segmentation of the Colon Data

Figure 5 shows the results of segmentation for three patients. As it can be seen
from the figure, seed based region growing algorithm give considerably good re-
sults. However, it can be observed that the segmented colon consists of several
disconnected regions. This is due to collapsing of the colon at those regions. Al-
though the colon is insufflated with air during the CT scan at some locations the
colon might collapse. The region growing algorithm cannot handle these collapses
as it only segments regions filled with air. Better results can be obtained by using
active contour models for the segmentation as they are capable of segmenting the
colon wall by making use of curve evolution techniques.
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(a) Supine data (data:S036) (b) Prone data (data:S036)

(c) Supine data (data:Y031) (d) Prone data (data:Y031)

(e) Supine data (data:Y057) (f) Prone data (data:Y057)

Figure 5: The segmentation results for three different patients. The segmentation
is done using seed based region growing algorithm.
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4.2 Hamilton-Jacobi Skeletons

Figure 6 7 and 8 show three results for the Hamilton-Jacobi skeletons of the seg-
mented colon data. As the figures also indiccate the applied algorithm successfully
located skeletal points inside the colon. The centerline through the colon can be
obtained by pruning the skeleton of the colon. Figures 6(c), 6(f), 7(c), 7(f), 10(c)
and 6(c) indicate that the centerlines obtained by pruning the skeleton of the colon
give very close results to the medial axis drawn by the radiologist. Therefore, we
claim that extracting centerline of the colon using Hamilton-Jacobi skeletons is a
reliable method if a good segmentation of the colon is provided. The bottle neck
of our algorithm is that the extracted shock graph heavily depends on the segmen-
tation. As we used a simple region growing algorithm to segment the colon data,
the colon consists of several regions, which causes the skeleton to be a collection
of connected sets. A single connected set through the colon can be obtained if a
good segmentation of the colon is provided. We segmented the air inside colon
wall; however, if methods to segment the colon wall can be used, our algorithm
would perform much better.
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(a) Supine data (S036) (b) Shock graph of the data (c) Pruned shock graph + medial axis

(d) Prone data (S036) (e) Shock graph of the data (f) Pruned shock graph + medial axis

Figure 6: Shock graph of the colon data of the first patient (S036). a) Segmented
colon (supine data) b) Hamilton-Jacobi skeleton before pruning c) Pruned skele-
ton(red) is shown together with the radial axis drawn by the radiologist (blue).
d)-f) Same as a)-c) but for the prone data.
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(a) Supine data (Y031) (b) Shock graph of the data (c) Pruned shock graph + medial axis

(d) Prone data (Y031) (e) Shock graph of the data (f) Pruned shock graph + medial axis

Figure 7: Shock graph of the colon data of the second patient (Y031). a) Seg-
mented colon (supine data) b) Hamilton-Jacobi skeleton before pruning c) Pruned
skeleton(red) is shown together with the radial axis drawn by the radiologist
(blue). d)-f) Same as a)-c) but for the prone data.
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(a) Supine data (Y057) (b) Shock graph of the data (c) Pruned shock graph + medial axis

(d) Prone data (Y057) (e) Shock graph of the data (f) Pruned shock graph + medial axis

Figure 8: Shock graph of the colon data of the third patient (Y057). a) Segmented
colon (supine data) b) Hamilton-Jacobi skeleton before pruning c) Pruned skele-
ton(red) is shown together with the radial axis drawn by the radiologist (blue).
d)-f) Same as a)-c) but for the prone data.
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4.3 Registration

Figure 9: Sequences in supine and prone data sets are shown together (data:
S036). The first figure shows x and y coordinates of the shock graph. The second
figure whos the z coordinates and the corresponding radius values. Supine data is
shown with solid lines and prone data is shown with dashed lines. Dynamic time
warping finds an optimum warping function such that the shape of the prone data
resembles the prone data while fulfilling proper constrains.

After obtaining the shock graph of the colon (see figure 9) we use the shock
graphs corresponding to supine and prone data sets as input to the dynamic time
warping algorithm. Figure 10 shows that dynamic time warping algorithm finds a
warping function such that the Euclidean distance between the supine and prone
data sets are minimized. Note that in figure 10 the peaks of the prone data are
matched to the peaks of the supine data.

Figures 11 and 12 summaries our results for matching the ten data sets we
used. Figure 11 clearly shows that for each patient the sum of distances decreased
after applying our algorithm. Figure 12 shows the overall performance of our al-
gorithm. The regression line on the plot suggest that our algorithm has achieved
its goal of decreasing the distance between marked points. We can roughly state
that our algorithm decreases the distance between the marked points by a constant
of 0.24 while adding a constant of 5.0. However, we should make some remarks
for our data sets. Although the marked points are provided by a radiologist and
we take them as the gold standard, the marked points are determined according to
a medial axis drawn by the radiologist. We map the marked points to its closest
points in the shock graph. Therefore, the results might not be considered reliable
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for our purposes. However, the result clearly indicate that our algorithm signifi-
cantly decreased the distance between marked points after applying our matching
algorithm.

After applying our algorithm the mean distance between the marked points
decreased from 230mm to 73mm which accounts for a %68 decrease on average.
In the mean time, the standard deviation of the distance between marked points
decreased from 88.5mm to 28.1mm which makes a %68 decrease on average.
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(a) z-coordinates of shock graph (S036) (b) z-coordinates of shock graph (Y031)

(c) z-coordinates of shock graph (Y057)

Figure 10: Supine to prone matching using dynamic time warping. Prone data
is matched to the supine data. Note the nonlinear stretching and shrinking oper-
ations. Supine data is shown in green, prone data in red and the matched prone
data is shown in blue dashed lines.
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Figure 11: The sum of total distance along path for all five marked points for each
patient. Note the decrease in matching error after applying dynamic time warping
algorithm.
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Figure 12: The scatter plot of marked points before and after matching. x-axis
shows the distance between marked points before matching and y-axis shows the
distance between marked points after applying dynamic time warping algorithm to
the shock graph of the colon. The linear regression line suggests that our algorithm
decreases the matching error with a linear constant of 0.24 while adding a constant
of 5mm to each marked point.
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5 Conclusion

We proposed an automatic registration algorithm based on computing the shock
graph of the colon and applying dynamic time warping algorithm to match the
shock graphs corresponding to supine and prone data. We begin by segmenting
the colon from the CT scan by using a seed based region growing algorithm. Then
we compute the shock graph of the colon by Siddiqi [15] et al.’s Hamilton-Jacobi
skeletons. Thereby, we obtain the centerline through the colon and radius of max-
imal spheres at each centerline point. We use the computed shock graph of the
supine and prone data sets as an input to the dynamic time warping algorithm.
Using dynamic time warping algorithm we obtain a warping function which min-
imizes the Euclidean distance between the two data sets (see 32). BY using the
computed warping function we register the prone data to the supine data.

We provide a performance measure for our algorithm where we register 50
points marked by a radiologist in a total of 10 CT scan sets. Our algorithm de-
creased the mean of the distance between marked points from 230mm before
mathing to 73mm after matching, a %68 percent decrease on average. Also
the standard deviation decreased from 88.5mm before matching to 28.1mm af-
ter matching. The results we achieved with our algorithm are comparable to the
results obtained by Acar [17] et al..

Our algorithm can be further improved if segmentation methods based on ac-
tive contours are used, as in our algorithm the computation of a reliable shock
graph of the colon is heavily dependent on segmentation results.
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