
Verified Lifting of Stencil Computations

Shoaib Kamil
Adobe, USA

kamil@adobe.com

Alvin Cheung
University of Washington, USA
akcheung@cs.uwashington.edu

Shachar Itzhaky
Armando Solar-Lezama

Massachusetts Institute of
Technology, USA

shachari,asolar@csail.mit.edu

Abstract
This paper demonstrates a novel combination of program
synthesis and verification to lift stencil computations from
low-level Fortran code to a high-level summary expressed us-
ing a predicate language. The technique is sound and mostly
automated, and leverages counter-example guided inductive
synthesis (CEGIS) to find provably correct translations. Lift-
ing existing code to a high-performance description language
has a number of benefits, such as maintainability and per-
formance portability. Our experiments show that the lifted
summaries allow domain specific compilers to do a better job
of parallelization as compared to an off-the-shelf compiler
working on the original code, and can even support fully auto-
matic migration to hardware accelerators such as GPUs. We
have implemented verified lifting in a system called STNG
and have evaluated it using microbenchmarks, mini-apps, and
real-world applications. We demonstrate the benefits of veri-
fied lifting by first automatically summarizing Fortran source
code into a high-level predicate language, and subsequently
translating the lifted summaries into Halide, with the trans-
lated code achieving median performance speedups of 4.1×
and up to 24× as compared to the original implementation.

Categories and Subject Descriptors TODO [todo]: todo

General Terms todo

1. Introduction
Until recently, writing high-performance code meant pro-
gramming in a low-level language like C or Fortran in order
to have fine-grain control over all aspects of the execution.

The downside of this kind of performance programming was
that platform specific optimization tricks would become en-
twined with the application logic itself, making the resulting
code difficult to read and reason about. Furthermore, after the
original developers have moved on, maintaining the heavily-
tuned code became a nightmare—porting such code to new
architectures and runtimes is extremely tedious and is an
invitation for introducing new bugs.

In the last few years, high-performance domain specific
languages (DSLs) have shown that starting from a high-
level program, it is possible to generate implementations
that are significantly more efficient than what a state of
the art compiler can produce starting from carefully hand-
optimized low-level code [1, 13, 47, 55, 56, 64]. High-
level domain specific code can be a better starting point for
optimization because the compiler is not tied down by low-
level implementation decisions embedded in the program, and
is able to explore a broad implementation space much more
efficiently and systematically than a human programmer.

Stencil computations represent one domain where high-
performance DSLs have been especially successful. Stencil
computations correspond to nearest neighbor computations
on a multi-dimensional grid; each point in the grid is updated
as a function of its value and the value of its neighbors. This
kind of computation is commonly found in machine learning,
scientific computing and image processing, and quite often is
the computational bottleneck of such applications. As a result,
a number of high performance domain-specific languages
for stencils have been developed to make it possible to
obtain good performance with relatively low programmer
effort [14, 16, 30, 37, 47, 56], and many DSLs also leverage
customized hardware (e.g., GPUs and Many-Integrated Cores
accelerators) for additional performance gains. Unfortunately,
the performance gains obtained by these high-performance
DSLs cannot benefit existing applications written in general
purpose languages, so their impact is limited to new code
developed in the DSL or to existing code that is manually and
expensively rewritten.

This paper demonstrates a technique called verified lifting
that can address this problem for stencil computations. Ver-
ified lifting takes as input a block of potentially optimized



code written in an imperative general-purpose language, and
infers a summary of it expressed in a high-level predicate
language that is provably equivalent to the semantics of the
original program. The lifted summaries expressed using the
predicate language are found automatically using inductive
program synthesis. Once found, such summaries can be trans-
lated to different high-performance DSLs, and subsequently
retargeted to execute on different architectures as needed.

Verified lifting can be seen as a form of de-compilation,
but is quite different from traditional de-compilation both in
terms of scope and in terms of underlying techniques. A tradi-
tional de-compiler is not that different from a traditional com-
piler; its goal is to translate from a low-level general purpose
notation (usually assembly language) to another low-level no-
tation like C while applying transformations that improve the
readability of the resulting code, for example by introducing
structured control flow when possible. By contrast, verified
lifting is actually solving an algorithm identification prob-
lem, where it needs to discover, for example, that a complex
sequence of nested loops is actually implementing a simple
five point stencil. Recovering the original algorithm behind
a hand-optimized piece of low-level code is difficult to do
with traditional compiler technology. Instead, verified lifting
leverages inductive synthesis technology. The system makes
hypotheses by generalizing from observed behavior of the
code, and then tests the hypotheses by attempting to verify
them. By leveraging recent advances in inductive synthesis
and verification based on SAT/SMT solving, our system is
able to synthesize high-level representations from complex
real-world stencils in a matter of minutes in most cases.

The general technique of verified lifting was first proposed
by Cheung et al. in the context of database-backed applica-
tions [15]. In that context, the goal was to lift imperative code
performing data manipulations up to a high-level SQL query
that could then be implemented efficiently in the database.
Adapting the technique to stencil computations, however,
poses a number of new challenges which are addressed in
this paper. These challenges arise from the fact that the low-
level code we are targeting requires much more complex loop
invariants, making the synthesis and verification problems
fundamentally more difficult, and requiring new techniques
to solve them. For example, the largest stencil computation
for which we applied our system required it to automatically
infer five loop invariants each with five universally quantified
variables and 457 AST nodes.

We have implemented verified lifting for stencil com-
putations in a prototype called STNG, which can automat-
ically identify and find high-level summaries of stencils from
general-purpose code written in Fortran. The summaries are
expressed using a predicate language based on the theory of
arrays [10]. To demonstrate how the lifted summaries can
be used, STNG translates them into a high-performance sten-
cil DSL called Halide [47]. Translating the summaries to

Halide allows the stencil implementations to be automatically
parallelized and even ported to be executed on GPUs.

Overall, this paper makes the following contributions:

• We describe verified lifting of stencil computations, a
technique that combines recent advances in inductive syn-
thesis and verification to lift code in a low-level language
to its equivalent in a high-level predicate language.

• We describe inductive template generation, a new tech-
nique that uses combined concrete and symbolic execu-
tion of the original implementation to guide the search for
the high-level summary of the stencil and the invariants
necessary to prove it correct.

• We demonstrate the use of Skolemization and partial
Skolemization to make the synthesis of universally quan-
tified invariants tractable.

• We present our implementation of verified lifting in STNG,
which identifies stencils from Fortran code and lifts them
to summaries expressed in a predicate language. To show
the benefits of lifting, STNG translates the summaries
into Halide, a high-performance DSL. By running the
Halide code on microbenchmarks, mini-apps, and real-
world applications, our results demonstrate that, combined
with autotuning, the translated Halide code can improve
performance by up to 17× on non-trivial real-world
applications.

2. Overview
The input to the STNG compiler is Fortran code with loop
nests that implement stencil kernels1, and the output is Halide
code for each of the stencils, together with a new version of
the original Fortran code that has been modified to invoke the
Halide generated implementations in place of its original
kernels. The process of lifting occurs in two steps: first,
we discover a summary of the loop nest that captures, in
a mathematical formula, the changes to the output arrays
after the kernel has executed. We then use this formula to
generate code in the backend language (Halide in this case).

To demonstrate STNG, we show how it lifts the simple
stencil shown in Figure 1(a). Though this example is simpler
than stencils used in real world code, it allows us to show
the issues that arise in lifting low-level code to a high-level
predicate language.

2.1 Checking Source to DSL Equivalence
To understand verified lifting, it is important to first under-
stand how one would go about verifying that a given solution
is correct. Specifically, given the code in Figure 1(a), suppose
somebody tells us that the code behaves according to the
summary shown in Figure 1(b).

1 We use the term stencil kernel to denote a single loop nest that writes to one
or more multidimensional arrays, computing each output point as a function
of other multidimensional input arrays.



procedure sten(imin,imax,jmin,jmax,a,b)
real (kind=8), dimension(imin:imax,jmin:jmax) :: a
real (kind=8), dimension(imin:imax,jmin:jmax) :: b
do j=jmin,jmax
t = b(imin, j)
do i=imin+1,imax
q = b(i,j)
a(i,j) = q + t
t = q

enddo
enddo

end procedure (a)
post(a, b) ≡ ∀imin+1 ≤ i ≤ imax, jmin ≤ j ≤ jmax.

a(i,j) = b(i-1,j) + b(i,j)

(b)
invariant(a, b, j) ≡ j ≤ jmax+ 1 ∧
∀imin+1 ≤ i ≤ imax, jmin ≤ j′ < j.
a(i,j′) = b(i-1,j′) + b(i,j′)

(c)

int main() {
ImageParam b(type_of<double>(),2);
Func func; Var i, j;
func(i,j) = b(i-1,j) + b(i,j);
func.compile_to_file("ex1", b);
return 0; }

(d)

Figure 1. Simplified stencil example. (a) Original Fortran
stencil function. (b) Synthesized postcondition. (c) Synthe-
sized outer loop invariant. (d) Halide program to create stencil
object file and header.

Formally speaking, determining whether Figure 1(b) is a
correct summary of the computation from Figure 1(a) corre-
sponds to deciding whether Figure 1(b) is a valid postcondi-
tion for the code. A postcondition is a predicate that will be
true at the end of a block of code under all possible executions
as long as the inputs to the block of code satisfy some given
precondition. For STNG, the postcondition is also the lifted
summary that we are looking for.

There is an extensive literature on how to verify that
a block of code is valid with respect to a given pre- and
postcondition (e.g., [42, 61]). The idea is to construct a
verification condition—a formula that if true, implies that the
code is valid with respect to its pre- and postconditions. There
is a standard approach for constructing verification conditions
for a given block of code based on Hoare logic [29], but the
approach requires a loop invariant, an inductive hypothesis
that allows us to prove the postcondition will hold regardless
of how many times the loop iterates.

For example, consider the outer loop from Figure 1(a).
The loop invariant for that loop is shown in Figure 1(c). To
prove the postcondition, we need to prove three statements:

(1) ∀s. pre(s)→ invariant(s)
(2) ∀s. invariant(s) ∧ cond(s)→ invariant(body(s))
(3) ∀s. invariant(s) ∧ ¬cond(s)→ post(s)

Outer Loop
initialization Ij(a, b, jmin)

loop exit Ij(a, b, j) ∧ (j > jmax)→ post(a, b)

preservation (by inner loop initialization & exit)
Inner Loop
initialization Ij(a, b, j) ∧ (j ≤ jmax)→ Ii(a, b, j, imin+ 1)

loop exit Ii(a, b, j, i) ∧ (i > imax)→ Ij(a, b, j+ 1)

preservation Ii(a, b, j, i) ∧ (i ≤ imax)→
Ii
(
a
[
(i, j) 7→ b(i-1,j)+b(i,j)

]
, b, j, i+ 1

)
Figure 2. Verification conditions for the running example.
Ii,Ij are the unknown loop invariants for the loops over i and
j, respectively, and post is the unknown postcondition. The
expression v[i 7→e] means that v contains the same value
as before except that the i-th entry is set to e. The program
variables a, b, i, j, etc. are implicitly universally quantified.

First, we must prove that if the precondition is true for state
s, then the invariant is also true (1). Then we must prove that
for all states, if the invariant holds and the loop condition
is true for some state s, then the invariant should hold for
the state obtained after executing the body of the loop once
on s (2). Notice that body includes the counter increment
operation j=j+1, which in Fortran is implicit. Finally, for
all states where the invariant holds but which do not satisfy
the loop condition, the postcondition should hold as well (3).
The conjunction of these three conditions is the verification
condition for the loop. If it holds, as is the case with the
invariant in Figure 1(c) and the postcondition in Figure 1(b),
then the postcondition is sound for the given code.

Figure 2 shows the constructed verification conditions for
the running example; they are written in terms of the loop
invariants for the inner loop (Ii) the outer loop (Ij) and the
postcondition of the block of code (post). In general, veri-
fication conditions like these can be generated completely
mechanically by a syntax-driven algorithm [61] and their va-
lidity can be checked using an off-the-shelf theorem prover or
SMT solver. This, however, is only possible if the postcondi-
tion is known and somebody has provided loop invariants for
every loop in the program. In our setting, though, the whole
point is that we do not have a postcondition, let alone any
loop invariants, so the challenge is to discover postconditions
and invariants that make these verification conditions hold.

2.2 From Verification to Synthesis
STNG uses syntax guided synthesis [3, 52] to search a large
space of possible invariants and postconditions, with the
goal to find an invariant for each loop and a postcondition
that together lead to a verification condition that an off-
the-shelf theorem prover can certify as valid. Moreover,
because our end goal is to generate a program in a DSL,
we have an additional restriction on our postcondition: like
the postcondition in Figure 1(b), the postconditions generated
by our system should be of a form that we can trivially extract
a target DSL program.



Code%%
Fragment%%
Iden.fier%

Parser% VC%
Computa.on%

Postcondi.on%%
Synthesizer%
Formal%%
Verifier%

Summary%Searcher% Halide%
Code%

%Generator%

Compiled%
App%

Halide%
Compiler%

Fortran%
Compiler%

Fortran%
Source%%

Iden.fied%
Fragments%

Li@ed%
Summaries%

Figure 3. The STNG compiler toolchain

The key concept behind syntax-guided synthesis is that
given a space of possible functions and a formula that uses
those functions, the synthesizer should be able to efficiently
discover the function (or predicate) that will cause the formula
to be valid. The syntax guidance in syntax-guided synthesis
comes from the fact that the space of programs is defined syn-
tactically, for example via a grammar. The problem of finding
invariants and a postcondition such that the verification con-
dition is valid fits nicely into this framework. In particular,
the requirement that the postcondition should be translatable
to a DSL program is easy to express as a syntactic constraint
on the form of the solution.

The problem of syntax-guided synthesis has been suitably
formalized into a format called SyGuS with an annual compe-
tition for SyGuS solvers [2]. Unfortunately, the problems that
arise in our problem domain are difficult beyond the scope
of any of these solvers. In particular, there are three features
that make our synthesis problems particularly challenging.

First, the goal of the synthesizer is to discover postcon-
ditions like the one in Figure 1(b), and invariants like the
one in Figure 1(c). One aspect that makes these predicates
harder to synthesize relative to what existing solvers can
handle is the presence of universal quantifiers (∀) in all of
them. The presence of quantifiers makes the synthesis prob-
lem significantly more challenging and puts it beyond the
scope of any SyGuS solver. Additionally, the space of possi-
ble invariants and postconditions is astronomically large, so a
naive encoding of the space inevitably leads to an intractable
synthesis problem. These constitute the main technical chal-
lenges addressed by this paper. §4 explains the key ideas used
to solve these problems, but at a high-level, the key idea is to
leverage what we can learn from observing the execution of
the original problem to narrow the search space, and to rely
on a combination of abstraction and heuristics to make the
problem tractable.

2.3 From an Algorithm to a System
The approach outlined above, of generating a verification
condition and then synthesizing postconditions that describe
its behavior, is the core algorithm behind verified lifting, but
making the algorithm work in the context of a real system
poses some additional challenges. Figure 3 shows the overall
design of STNG based on the approach described.

Preprocessing To simplify later steps in the process, we
begin by preprocessing the code using a frontend built on top
of the ROSE [19] compiler framework. The preprocessing
step, described in §5.1, includes finding candidate loop nests
that could be stencils, translating each identified loop nest
into a simpler intermediate language for synthesis, and gener-
ating code to interface with the optimized implementations
after each stencil has been converted into DSL code. This in-
termediate language elides a number of complicated Fortran
constructs, converting them into simpler forms.

Generating DSL Code Once a valid postcondition (i.e.,
lifted summary) has been found, it is straightforward to
translate it into code in the Halide domain specific language.
STNG produces a C++ source file that, when compiled and
executed, produces an object file that can be linked with
the original program. Along with the object file, STNG also
produces “glue code” for interfacing between native Fortran
arrays and Halide’s C++ representation. Thus, the user only
needs to modify the build to define a single preprocessor
macro; the rest of the build process remains the same as the
original code. The generated Halide code can be optimized
using empirical autotuning [9] with a Halide autotuner built
on top of the OpenTuner [5] program autotuning framework,
which automates the search over possible execution schedules
for each stencil kernel. The generated Halide code for our
running example is shown in Figure 1(d), and §5.3 describes
the code generation process in more detail.

3. Synthesis Primer
STNG relies on syntax guided synthesis to discover the
unknown invariants and postconditions and to ensure that
the resulting postconditions are in a form that can be readily
converted into a DSL program.

The key idea behind syntax guided synthesis is to make
the synthesis problem more tractable by imposing syntactic
restrictions on the space of programs that the synthesizer will
consider [3]. Besides making synthesis tractable, the use of
syntactic restrictions has the additional benefit of providing
control over the kind of solution that the system will produce.
This is crucial in our setting, because there is a large number
of possible postconditions that can apply to a given piece
of code—i.e., predicates that will be true at the end of its
execution—but we are interested in a very specific kind of
predicate, one of the form:

∀~x ∈ D. out[~x] = expr(~x)

where ~x is the vector of all relevant indices for out, D is
the domain of indices of out, and expr is an expression
that can be converted to the target DSL. If the code under
consideration is a stencil, a postcondition like this will allow
us to immediately extract what that stencil is. When a loop
writes to multiple output arrays, the postcondition is written
as a conjunction, and each conjunct is handled separately.



A number of different techniques have been proposed to
solve syntax guided synthesis problems, including techniques
based on explicit enumeration with pruning [57], stochastic
search based on the Markov Chain Monte Carlo method [51]
and symbolic search based on constraint solving [54]. For
this paper, we rely on the open source SKETCH synthesis
infrastructure, which uses constraint-based techniques and
includes a full-featured language that makes it possible to
efficiently describe complex spaces of programs [52].

The key challenge in synthesis is that the correctness of
the desired function is often defined in terms of its behavior
under all possible values of some universally quantified
variables. In other words, synthesis is an ∃.∀ problem where
the goal is to check that there is a function such that for
all inputs a predicate involving the unknown function and
the inputs is true. For example, in the case of the verification
conditions presented in §2, the unknown invariants invariant
and postcondition post must make the verification condition
valid for all possible states s of the program.

∃post , invariant . ∀s. V C(post , invariant , s)

Synthesizers, including SKETCH, cope with this challenge
by relying on Counter-Example Guided Inductive Synthesis
(CEGIS) [52]. The key idea behind CEGIS is that instead of
searching for a function that satisfies the desired predicate
for all possible values of the universally quantified variables,
we can search for functions that work correctly under a set
of concrete scenarios. For example, instead of checking that
the verification condition holds under all possible program
states, we can focus on the behavior over some specific state
and make sure the invariants and postconditions work for that
state. By focusing on concrete states, CEGIS will generate a
hypothesis that can then be checked to see if it generalizes to
all possible states. If so, we are done. Otherwise, the checking
procedure produces a counterexample that is added to the set
of concrete states used to produce a new hypothesis.

3.1 Checking Candidate Solutions
At every iteration of CEGIS, the synthesizer must check
that the candidate invariants and postcondition satisfy the
verification condition for all possible values of the universally
quantified variables.

In the case of our system, the checking problem is particu-
larly challenging because the invariants themselves also in-
volve universal quantification. This can be problematic given
that the checking procedure has to be run a large number of
times until the algorithm converges on a correct solution. To
address this, SKETCH uses a hierarchy of checking proce-
dures, starting with purely random search, which finds coun-
terexamples very efficiently in the early stages of the algo-
rithm, and then moving to bounded symbolic checking where
it considers inputs up to a small bound. When bounded check-
ing succeeds, our system relies on an SMT solver (Z3 [20])
to do sound validation of the resulting formula.

This final verification step leads to a problem of quantified
SMT, which is undecidable in general; however, the number
of quantifiers is typically small, ranging over array indices,
with the number of array elements updated by any loop-
free code block being bounded. In practice, this means that
the quantifier instantiation mechanisms built into state-of-
the-art SMT solvers, such as Z3 and CVC4, prove very
effective. As we will see later in the paper, being able to rely
on the SMT solver to do full verification of the quantified
formula means that the synthesizer can perform even unsound
approximations because if those lead to incorrect solutions,
such solutions will be caught in the verification step.

4. Summarizing Stencil Computations
In this section, we describe in detail several new ideas that
allow STNG to summarize complex stencil requiring large
quantified loop invariants.

4.1 Syntactic Restrictions
Following the syntax guided synthesis paradigm, the space
of possible invariants and post-conditions is restricted by
exploiting the assumption that the code is a stencil. The
predicate language, shown in stylized form in Figure 4, is
based on the theory of arrays [10] but is restricted to stencil-
like operations on multidimensional arrays. The predicate
language can represent more than just affine operations,
including arbitrary function calls (as long as the functions are
pure) and indirect array accesses. Output arrays are seen as
functions of a neighborhood of points around the output point,
for some contiguous subsets of the overall multidimensional
array.

In the figure and throughout this paper we show multi-
dimensional arrays for simplicity, but STNG actually oper-
ates on flattened arrays, which complicate the reasoning. We
choose to use this representation based on examining highly-
optimized stencil codes in C/C++ in several domains, including
high performance computing and image processing; in all
of the codes we examined, the stencils operate on flat arrays
and use custom indexing macros to access the appropriate
points in the array. We make our representation as general as
possible in order to facilitate extending the system to C/C++

stencils in the future.
As stated earlier the syntactic restrictions are not just

to improve the scalability of synthesis; they also force the
synthesizer to avoid trivial postconditions and to ensure that
the generated postconditions accurately describe the stencil
computation. To this end STNG imposes some additional
restrictions on top of those imposed by the grammar. For
example, the grammar defines post as a conjunction of
universally quantified outEq constraints. Our system imposes
the additional restriction that each of these conjuncts must
refer to a different output variable out and that all output
variables of the kernel should be constrained by such a
constraint. Our system also requires that the range of the



post :=
∧

i
∀ lb1 < v1 < ub1, . . . , lbN < vN < ubN . outEqi

invariant :=
∧

i
ineqi ∧ ∀ v1, . . . vN .

(∧
k
boundi,k

)
→ outEqi

bound := lb < vi < ub
∣∣ lb < vi < bndExp

outEq := out[v1, . . . , vN ] = exp

ineq :=
∧

i

(
vi (< | ≤) bndExp

)
bndExp := intvar

∣∣ c ∣∣ intvar op bndExp
∣∣

max(bndExp, bndExp)
∣∣ min(bndExp, bndExp)

exp := term op exp

term := w ∗ in[inIndex1, . . .]
∣∣ floatvar ∣∣ f(term)

inIndex := vi + c
∣∣ intvar ∣∣ c ∣∣ in[inIndex1, . . .]

op := +
∣∣ − ∣∣ / ∣∣ ×

out ∈ output arrays
in ∈ input arrays
lb ∈ loop lower bounds
ub ∈ loop upper bounds
vi ∈ index variable symbols
f ∈ mathematical (pure) functions
w ∈ floating point constants
c ∈ integer constants
intvar ∈ integer variables

and loop counters
floatvar ∈ floating point variables

Examples of candidate inner loop invariants:
∀ imin+ 1 < vi < i, jmin ≤ vj < j . a[vi, vj ] = b[vi − 1, vj ] + b[vi − 1, vj ]
∀ imin+ 1 < vi < i, jmin ≤ vj < j . a[vj , vi] = b[vi + 1, vj ] + b[vj , vi − 3]× b[vi, vj ] + 2.0

Examples of candidate postconditions:
∀ imin+ 1 < vi < imax, jmin ≤ vj ≤ jmax . a[vi, vj ] = b[vi − 1, vj + 1] + b[vi + 2, vj − 1]

∀ imin+ 1 < vi < imax, jmin ≤ vj ≤ jmax . a[vi, vj ] = b[vi − 1, vi + 2] + 2.0

Figure 4. Predicate language for expressing loop invariants and postconditions in stylized form (top), with potential loop
invariant and postcondition candidates for the running example (middle and bottom).

variables vi to vn should match the range of array locations
modified by the kernel. This restriction is a little too strong
in that it prevents the system from finding post-conditions for
implementations with boundary conditions. The limitation is
not fundamental, as supporting these would simply require
relaxing the syntactic restrictions, but it is not something we
have explored.

STNG also places restrictions on the structure of the
loop invariants. In particular, the invariants are quantified
over different subsets of loop variables depending on the
nesting structure of the loops and the locations of operations
within the loops. The restricted structure of the invariants
prevents us from discovering loop invariants for arbitrary
loops, but is sufficient to construct valid loop invariants for
many important stencil problems.

The syntactic restrictions ensure that the postconditions
can be lifted to a DSL, but not all DSLs are complete
for the domain of stencils. For example, inputs in Halide
are currently restricted to a maximum of four dimensions.
Similarly, until the most recent versions of Halide, it was
impossible to construct a single Halide function with multiple
outputs of different dimensionalities. Since Halide is one of
our DSL targets, we work around this by generating code
that consists of multiple calls to Halide functions, one for
each dimensionality. It is important to point out, however, that
conversion to Halide is just one of many possible applications
for Verified Lifting.

4.2 Inductive Template Generation
Even after the restrictions above, the space of possible invari-
ants and postconditions represented by the predicate language
is extremely large, resulting in a potentially intractable search
space, especially for kernels with multiple input and output
arrays. In order to further narrow the space, we analyze each

stencil kernel to discover its overall structure and use this
to restrict the structure of postconditions and invariants. Our
technique is inspired by concrete dependency tree creation
in Helium [43], which converts from binary traces to image
processing code. The algorithm works in two steps.

Symbolic Execution First, STNG performs a combined
concrete-symbolic execution on the kernel. We first set loop
bounds and array sizes to small, random concrete values,
while setting all other inputs to symbolic values, including
the values of array elements. Then, the loop nest for the
kernel is executed by a simple interpreter that utilizes the
SymPy [35] computer algebra system to handle any symbolic
values. In this way, values in the output arrays become
formulas that consist of a mixture of symbolic and concrete
values, since the values in the input arrays are symbolic.
For example, when the kernel from Figure 1 is run through
this interpreter, the output a(6, 3) will have the symbolic
value b[5, 3]+ b[6, 3] and, similarly, output a(4, 2) equals the
symbolic value b[3, 2] + b[4, 2].
Template Generation The next step is to find templates
that are sufficiently general to capture all the observed expres-
sions, but narrow enough that the search space is still tractable.
Our system errs on the side of simplicity for this stage. Our
approach is to compute the intersection of all the expressions
for a given array. More specifically, given two symbolic ex-
pressions e1 and e2 where each expression is either a terminal
or a recursive expression of the form ex = (op, ex1, . . . exn)
we can compute u(e1, e2) as follows:

u (e1, e2) :=



e1 = e2
leaf (e1)

e1

e1 =
(
op {e1i}i

)
e2 =

(
op {e2i}i

) (
op {u (e1i, e2i)}i

)
else MakeHole(e1, e2)



Whenever two subexpressions do not agree, they are replaced
by a hole created by MakeHole that is able to generate the
appropriate set of expressions. In the case of the running
example, this process will produce a template of the form
b[pt()] + b[pt()], where where pt() denotes a hole—an
expression to be discovered during synthesis. This structure
doesn’t include the exact accesses, but does encode that each
point in the output array is the sum of exactly two distinct
points in array b.

The process of generalizing from concrete instances to
infer a general structure is known as anti-unification in
the inductive programming community and there are many
sophisticated algorithms for it [12, 46, 48]. The procedure
above is very simple relative to the state of the art in inductive
learning, but it works quite well, especially because we do not
consider stencils with conditionals or boundary conditions. In
order to generalize to conditionals and boundary conditions
we would need to either include conditionals in the symbolic
structure or we would need to aggregate trees into multiple
“classes” of computations. Even for the uniform case, a more
aggressive anti-unification might discover, for example, that
the second parameter is always the same for both array
accesses, or that the first one is always an offset by one. There
is a tradeoff, however, between how aggressively we reduce
the search space through anti-unification and the risk that we
specialize too much and end up ruling out the correct solution.
We did not explore this tradeoff aggressively because we were
able to get good results with the simple procedure above.

4.3 Quantifier Elimination With Partial Skolemization
As discussed in §3, synthesis is naturally formulated as a ∃.∀
problem. However, the presence of universal quantification in
the invariants introduces an additional quantifier alternation
into the formula. To illustrate this problem, consider the
encoding of one of the clauses of the verification conditions
from our running example in Figure 2. Focusing on the loop
exit clause, we want to know if ∃Ij , post such that

∀a, b, j, jmax. ¬Ij(a, b, j) ∨ ¬(j > jmax) ∨ post(a, b)

Inside the invariant Ij , though, is another quantification
of the form ∀j′ < j. e, which, because it occurs in negative
context, normalizes into ∃j′ and gives the overall constraint
to be solved the form ∃.∀.∃ rather than the accepted ∃.∀. As
a result, we cannot apply existing constraint-based synthesis
techniques directly to this type of problem.

The standard approach for eliminating these quantifiers is
Skolemization [62], which takes a statement of the form
∀x∃y and replaces the existentially quantified variable y
with a new Skolem function f(x), where the input to f
is the universally quantified variable x. In other words,
Skolemization replaces y with a function that determines
y based on x. This can be applied repeatedly to eliminate
multiple existential quantifiers.

For our SKETCH instance, Skolemization requires finding
this function f . One possible approach would be to synthesize

the function by building a template based on the loop structure
and control flow of the stencil computation, but such a
function potentially would need to include conditionals to
select its value, based on the current values of the inputs.
Instead, we use partial Skolemization, which replaces the
quantifier ∃y with ∃y ∈ fS(x) for small set fS(x) that
depends on x. The idea is that if y sometimes has to be
equal to some value x+ i and sometimes has to equal some
value x + j, with full Skolemization, the skolem function
needs to know exactly when to return which, but with partial
Skolemization, it can return a set containing x+ i and x+ j,
and then ∃y.P (x, y) just becomes P (x, x+ i)∨P (x, x+ j).
This makes the check a little more complicated than with
full Skolemization but saves complexity in synthesizing the
Skolem function.

4.4 Dealing With Floating Point Arithmetic
Many stencils work on floating point data and use compli-
cated math functions such as exponentiation. Floating point
types complicate synthesis and verification because the data
require many bits to represent and because, in general, re-
ordering floating point operations results in slightly different
values.

To simplify synthesis with floating point data, we model
floating point numbers as an integer field modulo 7, which
eliminates dealing with floating point inaccuracies and in
practice generates good code. For final verification, we model
floating point numbers as real numbers, which guarantees that
the summarization is correct with respect to reals. Aiming for
a higher level of fidelity with respect to floating point numbers
would be futile and unnecesarily restrictive, given that Halide
only guarantees correctness relative to real numbers and
performs aggressive reordering of operations.

STNG handles math functions, which are side-effect-free,
by modeling them as uninterpreted functions. The combina-
tion of these techniques allows us to deal with computations
over floating point data in a tractable manner.

4.5 Other Optimizations
For each stencil, we generate multiple synthesis problems,
each with different optimization strategies, to speed up the
search. In particular, some generated problems try to take
advantage of common stencil patterns or other simplifica-
tions to make the synthesis problem simpler. We run all of
the generated problems and for each one that successfully
completes, we check the generated postconditions and loop
variants using a full verifier.

By default, SKETCH employs bounds checks on arrays
for each access. For general synthesis problems, this often
speeds up solving time by introducing additional restrictions
on the search space, but for our problems, due to the large
number of array accesses, these additional assertions make
synthesis more difficult. For most of our synthesis templates,
we remove bounds checks on arrays, as the quantifiers over



the arrays are sufficient to avoid solutions that would result
in incorrect accesses.

Because the array accessor functions are synthesized,
we consider grid dimensions to be inputs. Our sketches
incrementally increase the number of bits for these inputs; in
practice, we find 2–4 bits to be sufficient to construct correct
invariants and postconditions.

Our overall strategy involves running multiple synthesis
problems in parallel, but for each of these problems, we also
use a recent feature in SKETCH that allows us to parallelize
each synthesis problem [33]. SKETCH does this by choosing
some small set of important control bits to concretize, and,
for each possible concretization, runs a separate search. If
these important values are concretized to the correct value,
synthesis proceeds extremely quickly.

5. Architecture and Implementation
In this section, we describe how STNG preprocesses input For-
tran code by compiling it into an intermediate representation,
and how STNG generates glue code that invokes the converted
stencil implementation in Halide from Fortran. We also show
how annotations can be added to the original source code to
eliminate some corner cases that hinder conversion.

5.1 Code Preprocessing
As discussed in §2, STNG performs a series of analyses to find
candidate loops for translation. In this section we describe
the steps involved in this process.

Identify Candidate Loops STNG first iterates through the
entire source code to identify intraprocedural loop nests and
their outermost enclosing loop construct. For each such loop
construct, STNG performs the following lightweight analysis
to determine those that are candidates for transformation:

• Array uses. STNG checks if the loop nest uses arrays,
and filters out those that do not along with those whose
indices are indirect array accesses or return values from
function calls. Any loop that contains such accesses are
not considered as candidate.

• Pointer uses. STNG supports pointers to arrays. The only
complication is that their bounds need to be determined
using runtime mechanisms (to be discussed below). Other-
wise they are treated the same way as non-pointer arrays.

• Conditionals, function calls, and unstructured control
flow. STNG currently does not handle loop nests that con-
tain conditional statements, make calls to Fortran proce-
dures (except for pure functions and intrinsics that are
modeled as uninterpreted functions in our intermediate
language, as described in §4), or contain unstructured
control flow statements such as break and continue.
There are no fundamental reasons for not handling such
constructs except for engineering effort; for instance,
rewriting unstructured control flow using standard algo-

rithms [65] would allow us to handle them, and condition-
als pose no difficulties for axiomatic semantics.

If consecutive (in terms of control flow) loop nests satisfy
the criteria listed above, they are combined into a single code
fragment to be considered for conversion. An example of this
would be two consecutive loop statements.

Processing Selected Loops Each loop construct that passes
the checks listed above is compiled to an intermediate repre-
sentation, which is a simplified version of the original Fortran
code (e.g., all loops are rewritten as while loops, complex
expressions are broken down into binary ones, etc). To al-
low easy integration of the translated code, STNG extracts
each candidate loop into a separate Fortran function with
appropriate parameters that are passed in and returned. If the
loop can be converted into Halide, it is passed to the backend
code generator. In addition, the original loop is replaced by
a call to the generated Halide code, with appropriate setup
parameters passed to it. These include starting and ending
indices for the stencil computation, the array contents to be
operated on, and any other program variables that are needed
for the computation. For those loops that fail translation, the
original Fortran code is retained instead. The entire toolchain
is automatic and does not involve any developer intervention.

5.2 Annotations
While the process described above is completely automatic,
there are certain cases where STNG fails to convert the input
code due to conservative assumptions. In such cases, STNG
allows users to provide additional preconditions about the
source code using annotations. For example, one construct we
observed in real-world code is an array accessor of the form
a[i*(sz0-sz1)], where i is a loop counter. If sz0 = sz1,
these accesses all refer to the same element, which may make
it impossible to find a loop invariant for this array without
running expensive pointer analysis.

Instead, users can provide assumptions on the input code
using Fortran comments of the form STNG: assume(e). Here,
e is a boolean-valued expression that the user specifies and is
assumed to be true. For the example mentioned, an annotation
STNG: assume(sz0 != sz1) can be used to indicate distinct
accesses to the array. We do not anticipate users needing to
provide many annotations. In fact, of the 77 loops that were
translated, only 6 required annotations in order to be lifted.

5.3 Code Generation
Once STNG synthesizes the postcondition for a code fragment,
it constructs a Z3 script to verify the postcondition is correct.
If this succeeds, the synthesized fragment is transformed
into backend code in Halide. The backend code consists of
a small C++ program that specifies both the algorithm and
the schedule, which describes how to execute the algorithm.
When executed, this program generates an object file and
header that STNG uses to replace the original code.



We use Halide’s autotuner, based on the OpenTuner [5]
framework, to tune the schedules for the backend code.
The autotuner uses an ensemble of techniques combined
with a multi-armed bandit to search over the large space
of candidate schedules. In general, the space of possible
schedules is far too large to explore exhaustively, so the
combination of multiple machine learning techniques is
essential to discovering best schedules while searching only
a fraction of the space.

Two complications make the transformation from postcon-
ditions to Halide non-trivial: in Halide, all loop bounds are
implicit and come from the logical sizes of the output grids.
Unlike our intermediate representation, which uses flattened
single-dimensional infinite arrays, Halide operations occur
on logical multidimensional grids.

To resolve this issue, STNG synthesizes accessor functions
for input and output arrays in terms of the constants that are
live at the entry to the code fragment. We use symbolic in-
terpretation to convert these accessors back into multidimen-
sional grid accesses, by considering a neighborhood of points
and matching points with the resulting one-dimensional array
access. This symbolic interpretation mechanism is built on
top of SymPy [35], the symbolic math library for Python.

In addition to using symbolic simplification for array
accesses, STNG also simplifies the postcondition to make
the Halide code shorter and more readable. As an illustration,
the generated Halide code from our running example is shown
in Figure 1(d), with the schedule elided due to space.

Loop bounds are calculated from the original code. As part
of the conversion process described in §5.1, STNG outputs
“glue code” that converts loop bounds and array sizes into
Halide data structures with logical bounds such that the
Halide code operates on the same array elements as the
original code.

5.4 Limitations
Our current prototype cannot handle code fragments that
contain conditional statements. It also only handles loops
with monotonically increasing loop variables. Handling these
aspects requires more engineering effort and we do not
believe they represent any fundamental limitations of our
approach.

6. Experimental Results
We evaluate STNG by using it to lift stencil kernels from
microbenchmarks, mini-apps, and full applications in Fortran,
followed by converting the lifted summaries into Halide. In
this section, we describe the experiments we conducted and
evaluate the effectiveness of STNG.

6.1 Experimental Setup
All experiments are run on a 24-node cluster of dual-socket
Intel Xeon E5-2695v2 machines running at 2.4GHz. Each
socket has 12 cores, and each node has 128 GB of memory.

The cluster runs Ubuntu Linux 14.04 LTS (kernel version
3.13.0-52-generic, GCC 4.8.4, LLVM 3.4, Intel Compiler
16.0.0). Halide code is autotuned for 3600 minutes to find
optimal schedules, using the OpenTuner framework [5]. We
test STNG on the following examples.

The StencilMark microbenchmarks [36] are a set of sten-
cil microbenchmarks for performance and compiler experi-
mentation. We choose the four 3D kernels in the suite and
port them manually to Fortran.

NAS MG [6] is a standard benchmark that implements
the multigrid algorithm in 3D to solve a discrete Poisson
equation using multigrid V-cycles and multiple levels of
refinement. It is a challenging problem for STNG due to
existing optimizations in the code.

CloverLeaf [40] implements a Lagrangian-Eulerian hy-
drodynamics code on a Cartesian grid using an explicit
second-order method. Part of the mantevo [28] mini-apps
project, it solves the compressible Euler equations on a 2D
staggered grid.

TERRA [8] simulates mantle convection/circulation us-
ing a spherical shell model. The code uses five- and six-
dimensional arrays to represent simulation quantities. We
were provided one of the computational kernels from this
application to test our methodology by one of the authors of
the code.

NFFS-FVM[58, 59] simulates 3D fluid mechanics and
heat transfer for viscoplastic non-Newtonian flows using
the finite volume method. This full application consists of
many stencil kernels and has been used to study OpenMP
parallelization for finite volume fluid simulation. We were
provided a copy of this code by one of the authors.

Challenge Problems We manually constructed a set of 27-
point 3D stencils based on optimizations used in real-world
stencils found in prior work [18, 37]. These stencils use a
combination of loop tiling and unrolling to improve cache
utilization. The resulting code is complex, with non-affine
loop bounds and deeply-nested loops.

6.2 Lifting Effectiveness

Candidates Translated Untranslated Non
Stencils Stencils

StencilMark 4 3 1 0
NAS MG 9 3 5 1
CloverLeaf 45 40 4 1
TERRA 1 1 0 0
NFFS-FVM 29 25 1 3
Challenge 5 5 0 0
Total 93 77 11 5

Table 2. Summary of lifted kernels. Because our front-end
processing liberally marks loop nests as potential stencils, we
also show how many actual stencils STNG was not able to
translate.



We first address the generality of the approach and its ability
to lift stencil kernels from a variety of applications. Table 2
summarizes the results of applying STNG to our suite of
test codes. The Candidates column in Table 2 states how
many loops were flagged as candidates for translation, and
the Translated column indicates how many out of those were
actually stencils and are translated by STNG. As described
in §5.1, the criteria for flagging a loop for analysis is quite
liberal, so not everything that is flagged as a candidate stencil
is actually a stencil; the column Untranslated Stencils in
Table 2 indicates how many of the kernels that were flagged
but not translated were actually stencils. Table 1 shows the
full array of stencils translated and their details. Although we
show the number of AST nodes just for the postcondition, the
sizes of the invariants are almost exactly the same.

A few of the kernels in our sample were relatively simple
and could have been translated with a less sophisticated
technique based, for example, on pattern matching. However,
out of the kernels we translate there were a total of at least 23
that involved some form of manual optimization and required
non-trivial reasoning from the synthesizer.

For example, the 3D kernels in NAS MG, NFFS-FVM,
StencilMark, and the challenge suite, as well as the 5D
kernels in TERRA, are among the most challenging to lift
and represent the longer synthesis times shown in Table 1.
Our verified lifting methodology generates more complex
synthesis problems in higher dimensions and when many
points from the same input kernels are used. The former is
due to needing to represent larger flattened arrays, while
the latter is due to the increased search space even after
applying inductive template generation. The complexity of
the synthesis problems can be seen from looking at the control
bits in Table 1, which range from 4 bits for simple kernels to
thousands for the highest-dimensional complex stencils. In
addition, the size of the synthesized postcondition (in terms
of the number of syntax tree nodes) is shown in the rightmost
column. From these two measures, it is apparent that STNG is
able to synthesized complex postconditions and invariants for
complex stencils that result in difficult synthesis problems.

Of all the translated kernels, 6 require programmer annota-
tion to enable correct invariant and postcondition construction.
The programmer annotation required in each case specified
that the dimensions of the array were at least as large as
loop iteration space, meaning that no out of bounds accesses
occurred and not all writes were to the same array location.

Of the 11 kernels we could not translate, 9 failed due to
engineering issues that are not fundamental to our algorithm.
For example, our system is currently restricted to increment-
ing loops, so 4 kernels failed because they used decrementing
loops, but would have otherwise succeeded. Only 2 timed out
for scalability reasons.

The most challenging kernel in our suite is a 27-point
kernel with tiling, resulting in a 4-deep loop nest with each
invariant requiring an expression of 455 AST nodes. This

produces a synthesis problem with over 3500 nodes. STNG
is able to find the summary for this extremely large problem
after 17 hours.

6.3 Performance of Lifted Code
We next consider whether lifting allows us to take advantage
of domain-specific languages and their specialized compilers.
The first column of Table 1 shows the performance of the
lifted code after the summary is translated to Halide and
autotuned using OpenTuner [5] to run on a single 24-core
node, relative to the original code compiled with gfortran.
The median speedup is 4.1× across the 77 kernels, ranging
up to 24×, with a minimum speedup of 1.84×. Thus, for
every kernel, lifting and translating to Halide plus autotuning
increases performance. For reference, we also show the
performance of the original code using ifort -parallel in
the second column. In the vast majority of cases, lifting and
translating to a DSL outperforms auto-parallelization; in fact,
the median speedup with that approach is 1.0×.

6.4 Lifted Code Portability
Lifting also makes it possible to execute code on new plat-
forms, by taking advantage of DSL backends. We execute the
lifted code on a GPU by leveraging the ability of Halide to
target multiple platforms. In this case, we construct a naı̈ve
GPU version in Halide by changing a single line of code in
our code generation. Thus, using STNG, we can make the
kernels execute on the GPU in a fully-automatic way. Table 1
shows the speed of running the generated Halide on the GPU
both with and without the time to transfer results back. Note
that we had to reduce the sizes of the data in order to get it to
fit on our GPU (Nvidia K80) compared to the CPU version.
Even with the cost of transfering data between the CPU and
GPU, several kernels execute far faster on the GPU; many of
these compute reductions, so have little data to commuinicate.
Others, such as ackl106, which gets a 7.8× speedup, are tra-
ditional 2D stencils with lots of computation. The autotuning
system provided by OpenTuner does not tune for the GPU, so
there is room to further increase performance. Nevertheless,
this shows the ability of lifting to take advantage of code
generation for new architectures, increasing portability.

6.5 Lifting as Deoptimization
Finally, we look at a last use of lifting. It is difficult for com-
pilers to easily reason about and transform hand-optimized
code, because these optimizations often introduce artificial
complexity such as non-affine loop bounds caused by tiling.
When STNG creates a summary for a kernel, it doesn’t con-
tain the complex control flow and transformed code that was
present in the original hand-optimized version. Thus, the sum-
mary can be seen as a clean deoptimized version of the input
code.

To test this hypothesis, we implement a simple serial code
generator from STNG summaries to C++, and look at the suite
of challenge problems (the last 5 rows of Table 1). For the



ones with the most complicated transformations, the Intel
compiler is unable to obtain any speedup— in fact, the codes
perform much worse, as seen in the second column of the
table, which shows the speedup over GCC of running the
Intel compiler with auto-parallelization on the original code.
The third column, which is the performance of running the
auto-parallelizing compiler on the generated code, however,
shows up to 9× speedups on these codes. This is because
it essentially gets the performance of heat27, the non-hand-
optimized version of the code. Note that this doesn’t apply
in all cases; for some codes, the Intel compiler is unable to
auto-parallelize the code. Clearly, however, in some cases
deoptimization through lifting makes the job of applying
transformations in the compiler easier.

In summary, we have shown that STNG can successfully
lift a large set of stencils from real-world codes, benchmarks,
and hand-optimized implementations. The sizes of invariants,
postconditions, and the resulting synthesis problems are very
large, reflecting the true complexity of the stencils we lift.
Lifting enables leveraging domain-specific compilers for
performance, enables portability, and simplifies code that
has been hand-optimized.

7. Related Work
Stencil DSLs Domain-specific languages for stencil com-
putations are a rich area of recent work, due to their im-
portance and the poor performance obtained through most
stencil libraries. PATUS [16] and Kamil et al. [37] build auto-
tuned systems that attempt to transform Fortran code into
optimized code using a library of transformations, but nei-
ther has any soundness guarantees. PolyMage [44] is a DSL
similar to Halide that uses polyhedral compilation instead of
user-guided optimization. Pochoir [56] uses a cache-oblivious
parallel approach to stencils, defining a DSL embedded in
C++ for defining them. It is particularly successful at optimiz-
ing multi-timestep stencils. The corresponding cache-aware
approach is called time-skewing [63]. In both cases, develop-
ers need to rewrite their existing code to take advantage of
the specialized implementations. A mixed polyhedral/SIMD
code generation approach [39] for optimizing stencils can
take a very restricted inner loop and create an optimized
SIMD code generator.

The earliest implementations of SKETCH only worked on
small finite programs. Solar-Lezama et al. [53] describes a
transformation that reduces stencils to a circuit, making it
tractable to synthesize with early versions of SKETCH.

Compiler Optimizations There has been a lot of work done
in optimizing the kinds of loop nests that describe stencils,
both in the programming systems and high-performance
computing research communities. Much of this work has
concentrated on polyhedral optimization [4, 22, 26, 27, 31],
where loop nests are optimized by treating the iteration space
as a polyhedron and determining an efficient traversal of
the space. The polyhedral method applies to more than just

stencil computations, and we see it as a complementary
approach: STNG can rewrite optimized stencils to simpler
forms amenable for polyhedral optimization. Recent work
has also applied synthesis to convert code to utilize SIMD
instructions [7].

Aside from DSLs, there is a rich history of stencil-specific
optimization techniques [24, 49] and this continues to be
an important area of research. Most recently, Helium [43]
uses brute-force analysis of binary traces to attempt to derive
equivalent Halide kernels from executions of image process-
ing code. The technique is dynamic and unsound, while STNG
is static, based on source code, and is sound.

Superoptimization [41] is another technique used to im-
prove code performance by finding more efficient implemen-
tations. While there has been systems constructed to optimize
general-purpose code [34, 50], including a recent system to
generate code for specialized architectures [45], we are not
aware of any such systems that target stencil-specific codes.

Inferring Invariants Inferring loop invariants has been
an active area of research. Classical approaches include
using predicate refinement [23], and dynamic detection [21].
Unlike most prior work, STNG does not aim to discover
the strongest loop invariant and postconditions. Instead, we
aim to find postconditions that are strong enough for the
purpose of lifting the given loop. As is commonly known in
verification, the required strength of the invariant depends on
the desired postcondition—stronger postconditions usually
require richer invariants. IC3 [11] takes advantage of this
by directing the search towards an invariant that is sufficient
to prove the postcondition. It was originally developed as a
hardware model-checking technique, but proved useful for
software as well [17, 38]. STNG focuses on a certain family
of postconditions, namely those that admit a semantically
equivalent implementation in Halide, which naturally implies
a corresponding family of adequate invariants. This makes
inferring the invariant more tractable while not limiting the
synthesis. In principle, STNG can use strong invariants from
an external source if they are available, and conversely, an
invariant generated by STNG can also be used as a starting
point, e.g. for IC3, when a refinement of it is more desirable.
Recent work for inferring numerical invariants [25] constructs
more general invariants than STNG, but those invariants are
far simpler.

In the database research community, there has been work
in inferring invariants and postconditions in transforming
imperative code into database queries [15, 32, 60]. We follow
QBS [15] in using constraint-based program synthesis to
come up with invariants and postconditions. Unlike QBS,
however, the language of postconditions in STNG is based on
the theory of arrays, and we devised a completely new set
of optimization techniques to speed up synthesis given the
difference in application domain.



8. Conclusion
In this paper we presented STNG, a novel system for lifting
stencil computations. Rather than using traditional syntax-
driven techniques to optimize input programs, STNG uses
verified lifting to convert the input code written in a general-
purpose language into a high-level representation, which
can then be compiled to a DSL and leverage its special-
ized optimization techniques. We have implemented a pro-
totype of STNG and evaluated using real world benchmarks,
showing STNG’s ability to lift complicated kernels from real-
world code without boundary conditions, including hand-
optimizations used by stencil programmers. Generating DSL
code from the STNG summaries results in median perfor-
mance improvements of 4.1× and as much as as 24×.

References
[1] Apache Hive. http://hive.apache.org.

[2] Syntax-Guided Synthesis Competition. http://www.sygus.
org.

[3] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K.
Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh
Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 1–17, 2013.

[4] Saman P Amarasinghe, Jennifer-Ann M Anderson, Monica S
Lam, and Chau-Wen Tseng. An overview of the suif compiler
for scalable parallel machines. In PPSC, pages 662–667, 1995.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan
Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and
Saman Amarasinghe. Opentuner: An extensible framework for
program autotuning. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, PACT
’14, pages 303–316, New York, NY, USA, 2014. ACM.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. The nas parallel bench-
marks&mdash;summary and preliminary results. In Proceed-
ings of the 1991 ACM/IEEE Conference on Supercomputing,
Supercomputing ’91, pages 158–165, New York, NY, USA,
1991. ACM.

[7] Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar
Kunz, and Mark Marron. From relational verification to simd
loop synthesis. In Proceedings of the 18th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming,
PPoPP ’13, pages 123–134, 2013.

[8] John R. Baumgardner. Three-dimensional treatment of convec-
tive flow in the earth’s mantle. Journal of Statistical Physics,
39(5-6):501–511, 1985.

[9] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Dem-
mel. Optimizing matrix multiply using phipac: A portable,
high-performance, ansi c coding methodology. In Proceedings
of the 11th International Conference on Supercomputing, ICS
’97, pages 340–347, New York, NY, USA, 1997. ACM.

[10] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s
decidable about arrays? In Proceedings of the 7th International
Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI’06, pages 427–442, Berlin, Heidelberg,
2006. Springer-Verlag.

[11] A.R. Bradley. SAT-based model checking without unrolling.
2011.

[12] Peter E Bulychev, Egor V Kostylev, and Vladimir A Zakharov.
Anti-unification algorithms and their applications in program
analysis. In Perspectives of Systems Informatics, pages 413–
423. Springer, 2010.

[13] Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste Asanovic,
James Demmel, Kurt Keutzer, John Shalf, Kathy Yelick, and
Armando Fox. SEJITS: Getting productivity and performance
with selective embedded JIT specialization. In Workshop on
Programmable Models for Emerging Architecture (PMEA),
2009.

[14] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel
programmability and the chapel language. International
Journal High Performance Computing Applications, 21(3):291–
312, 2007.

[15] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden.
Optimizing database-backed applications with query synthesis.
In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’13, pages 3–14, New York, NY, USA, 2013. ACM.

[16] M. Christen, O. Schenk, and H. Burkhart. Patus: A code
generation and autotuning framework for parallel iterative sten-
cil computations on modern microarchitectures. In Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE Inter-
national, pages 676–687, May 2011.

[17] A. Cimatti and A. Griggio. Software model checking via IC3.
2012.

[18] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David Patterson, John Shalf,
and Katherine Yelick. Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures. In Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomput-
ing, SC ’08, pages 4:1–4:12, Piscataway, NJ, USA, 2008. IEEE
Press.

[19] Kei Davis and Daniel J. Quinlan. Rose: An optimizing transfor-
mation system for c++ array-class libraries. In Workshop Ion
on Object-Oriented Technology, ECOOP ’98, pages 452–453,
London, UK, UK, 1998. Springer-Verlag.

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[21] Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program invari-
ants to support program evolution. In Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99,
pages 213–224, New York, NY, USA, 1999. ACM.

[22] Paul Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20(1):23–53,

http://hive.apache.org
http://www.sygus.org
http://www.sygus.org


1991.

[23] Cormac Flanagan and Shaz Qadeer. Predicate abstraction
for software verification. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’02, pages 191–202, New York, NY, USA,
2002. ACM.

[24] Matteo Frigo and Volker Strumpen. Cache oblivious stencil
computations. In Proceedings of the 19th Annual International
Conference on Supercomputing, ICS ’05, pages 361–366, New
York, NY, USA, 2005. ACM.

[25] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Nei-
der. ICE: A robust framework for learning invariants. In Armin
Biere and Roderick Bloem, editors, Computer Aided Verifi-
cation, volume 8559 of Lecture Notes in Computer Science,
pages 69–87. Springer International Publishing, 2014.

[26] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayap-
pan, and Sven Verdoolaege. Hybrid hexagonal/classical tiling
for gpus. In Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’14,
pages 66:66–66:75, New York, NY, USA, 2014. ACM.

[27] Tobias Grosser, Sven Verdoolaege, Albert Cohen, and P. Sa-
dayappan. The relation between diamond tiling and hexagonal
tiling. Parallel Processing Letters, 24(03):1441002, 2014.

[28] Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier,
James M. Willenbring, H. Carter Edwards, Alan Williams, Ma-
hesh Rajan, Eric R. Keiter, Heidi K. Thornquist, and Robert W.
Numrich. Improving performance via mini-applications. Tech-
nical report, Sandia National Laboratory, 2009.

[29] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

[30] Intel. The X10 parallel programming language. http://
x10-lang.org.

[31] Francois Irigoin and Remi Triolet. Supernode partitioning.
In Symposium on Principles of Programming Languages
(POPL’88), pages 319–328, San Diego, CA, January 1988.

[32] Ming-Yee Iu and Willy Zwaenepoel. HadoopToSQL: A
MapReduce query optimizer. In Proceedings of the 5th
European Conference on Computer Systems, EuroSys ’10,
pages 251–264, New York, NY, USA, 2010. ACM.

[33] Jinseong Jeon, Xiaokang Qiu, Armando Solar-Lezama, and
Jeffrey S. Foster. Adaptive concretization for parallel program
synthesis. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part II, pages 377–394, 2015.

[34] Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: A goal-
directed superoptimizer. SIGPLAN Not., 37(5):304–314, May
2002.

[35] David Joyner, Ondřej Čertı́k, Aaron Meurer, and Brian E.
Granger. Open source computer algebra systems: Sympy. ACM
Commun. Comput. Algebra, 45(3/4):225–234, January 2012.

[36] Shoaib Kamil. A cross-domain stencil benchmark suite. In
Workshop on Optimizing Stencil Computations, 2013.

[37] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel
Williams. An auto-tuning framework for parallel multicore
stencil computations. In IPDPS, pages 1–12, 2010.

[38] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam
Rinetzky, and Sharon Shoham. Property-directed inference
of universal invariants or proving their absence. In Computer
Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I, pages 583–602, 2015.

[39] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti,
Louis-Noël Pouchet, and P. Sadayappan. When polyhedral
transformations meet simd code generation. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 127–
138, New York, NY, USA, 2013. ACM.

[40] A.C. Mallinson, D.A. Beckingsale, W.P. Gaudin, J.A. Herd-
man, J.M. Levesque, and S.A. Jarvis. Cloverleaf: Preparing
hydrodynamics codes for exascale. In Cray User Group, 2013.

[41] Henry Massalin. Superoptimizer: A look at the smallest pro-
gram. In Proceedings of the Second International Conference
on Architectual Support for Programming Languages and Op-
erating Systems, ASPLOS II, pages 122–126, Los Alamitos,
CA, USA, 1987. IEEE Computer Society Press.

[42] John Matthews, J. Strother Moore, Sandip Ray, and Daron
Vroon. Verification condition generation via theorem prov-
ing. In Proceedings of the 13th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR’06, pages 362–376, 2006.

[43] Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil,
Jonathan Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman
Amarasinghe. Helium: Lifting high-performance stencil ker-
nels from stripped x86 binaries to halide dsl code. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, June 2015.

[44] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula.
Polymage: Automatic optimization for image processing
pipelines. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 429–443, New
York, NY, USA, 2015. ACM.

[45] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah,
Nishant Totla, Sarah Chasins, and Rastislav Bodik. Chloro-
phyll: Synthesis-aided compiler for low-power spatial architec-
tures. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI
’14, pages 396–407, New York, NY, USA, 2014. ACM.

[46] Gordon D Plotkin. A note on inductive generalization. Machine
intelligence, 5(1):153–163, 1970.

[47] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Syl-
vain Paris, Frédo Durand, and Saman Amarasinghe. Halide:
A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, 2013.

[48] John C. Reynolds. Transformational systems and the algebraic
structure of atomic formulas. In Bernard Meltzer and Don-
ald Michie, editors, Machine Intelligence 5, pages 135–151.
Edinburgh University Press, Edinburgh, Scotland, 1969.

http://x10-lang.org
http://x10-lang.org


[49] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations
for 3d scientific computations. In Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, SC ’00, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[50] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic
superoptimization. SIGPLAN Not., 48(4):305–316, March
2013.

[51] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic
optimization of floating-point programs with tunable precision.
In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, page 9, 2014.

[52] Armando Solar Lezama. Program Synthesis By Sketching. PhD
thesis, EECS Department, University of California, Berkeley,
Dec 2008.

[53] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav
Bodk, Vijay A. Saraswat, and Sanjit A. Seshia. Sketching
stencils. In Jeanne Ferrante and Kathryn S. McKinley, editors,
PLDI, pages 167–178. ACM, 2007.

[54] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit
Seshia, and Vijay Saraswat. Combinatorial sketching for finite
programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XII, pages 404–415, New York,
NY, USA, 2006. ACM.

[55] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark
Rompf, Hassan Chafi, Martin Odersky, and Kunle Olukotun.
Delite: A compiler architecture for performance-oriented em-
bedded domain-specific languages. ACM Trans. Embed. Com-
put. Syst., 13(4s):134:1–134:25, April 2014.

[56] Yuan Tang, Rezaul Chowdhury, Bradley C. Kuszmaul, Chi
keung Luk, and Charles E. Leiserson. The pochoir stencil
compiler. In In SPAA, 2011.

[57] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh,
Sela Mador-Haim, Milo M. K. Martin, and Rajeev Alur.
TRANSIT: specifying protocols with concolic snippets. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013, pages 287–296, 2013.

[58] Diego Vasco, Nelson Moraga, and Gundolf Haase. Parallel fi-
nite volume method simulation of three-dimensional fluid flow
and convective heat transfer for viscoplastic non-newtonian
fluids. J. Numerical Heat Transfer, Part A: Applications,
66(2):990–1019, 2014.

[59] Diego Vasco, Nelson Moraga, Aurel Neic, and Gundolf Haase.
OpenMP parallel acceleration of a 3D finite volume method
based code for simulation of non-Newtonian fluid flows. In
Sergio Gutiérrez, Daniel Hurtado, and Esteban Sáez, editors,
Cuadernos de Mecánica Computacional, pages 108–117, Con-
cepción, Chile, 2011. Sociedad Chilena de Mecánica Computa-
cional.

[60] Ben Wiedermann, Ali Ibrahim, and William R. Cook. Inter-
procedural query extraction for transparent persistence. In
Proceedings of the 23rd ACM SIGPLAN Conference on Object-
oriented Programming Systems Languages and Applications,
pages 19–36, 2008.

[61] Glynn Winskel. The Formal Semantics of Programming
Languages: An Introduction. MIT Press, Cambridge, MA,
USA, 1993.

[62] Christoph M. Wintersteiger, Youssef Hamadi, and
Leonardo Mendonça de Moura. Efficiently solving quantified
bit-vector formulas. In Proceedings of 10th International
Conference on Formal Methods in Computer-Aided Design,
FMCAD 2010, Lugano, Switzerland, October 20-23, pages
239–246, 2010.

[63] David Wonnacott. Achieving scalable locality with time
skewing. International Journal of Parallel Programming,
30(3):181–221, 2002.

[64] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur
Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, 2012.

[65] Fubo Zhang and Erik H. D’Hollander. Using hammock graphs
to structure programs. IEEE Trans. Softw. Eng., 30(4):231–245,
2004.



Halide Halide GPU Postcon
Halide icc Before icc After GPU Speedup Sketch Control AST

kernel Speedup Speedup Speedup Speedup (no transfer) Time (s) Bits Nodes
akl81 7.44 1.73 4.53 4.09 10.88 14944 105 143
akl83 4.57 0.95 0.95 3.29 8.27 683 97 129
akl84 4.51 0.71 0.94 2.94 7.88 631 97 129
akl85 4.05 0.95 0.77 2.68 6.85 662 97 129
akl86 4.04 0.97 0.79 2.27 6.00 919 97 129
ackl95 4.19 1.00 1.00 1.94 7.47 1088 80 82
amkl100 3.84 0.93 0.89 1.57 6.72 1512 80 82
amkl101 3.64 1.01 1.00 1.52 5.44 1273 62 83
amkl103 3.42 0.93 0.93 1.99 6.77 176 39 57
amkl105 3.37 0.98 0.98 1.50 5.17 707 70 83
amkl107 3.95 0.94 0.96 2.31 8.71 133 39 57
amkl97 4.19 1.00 1.01 1.96 6.98 4099 115 136
amkl98 5.41 1.31 1.32 1.86 7.12 4191 115 136
amkl99 4.15 0.99 0.98 1.78 7.44 1736 80 82
fckl89 4.75 0.96 0.96 3.07 9.47 425 40 87
fckl90 3.55 0.96 0.93 2.31 6.60 131 56 87
gckl77 2.53 1.00 1.00 1.09 6.53 7 10 23
gckl77 3.65 0.99 0.99 1.02 5.65 8 10 23
gckl79 3.77 0.98 1.00 1.04 6.59 6 10 23
gckl80 2.57 0.99 1.00 1.11 5.78 7 10 23
ickl10 3.37 0.99 0.75 1276.63 3226.12 2 4 25
ickl11 4.09 0.98 1.00 569.34 2090.13 1 8 13
ickl12 6.12 0.99 0.99 924.28 5895.51 1 4 25
ickl13 3.89 1.00 1.00 1462.36 5928.43 1 8 13
ickl14 3.10 1.00 1.00 1.04 5.59 5 5 23
ickl15 2.67 1.00 1.00 1.04 6.67 13 10 23
ickl16 2.82 1.12 1.12 1.04 6.78 7 10 23
ickl8 4.10 1.01 1.00 1344.48 4902.77 1 4 13
ickl9 4.11 1.21 1.22 719.55 2704.02 1 4 13
rfkl109 3.47 0.94 0.95 1.59 6.80 6 10 31
rfkl110 2.85 0.95 0.93 1.22 6.96 5 10 31
rfkl111 3.00 0.94 0.94 1.56 6.78 6 10 31
rfkl112 2.85 0.93 0.92 1.56 7.71 7 10 31
ackl91 5.19 0.91 1.12 2.13 8.24 6361 115 136
ackl92 4.79 0.91 0.90 1.60 7.84 1542 80 82
ackl94 4.77 0.97 0.96 1.95 7.20 4273 115 136
ackl102 5.27 1.02 1.00 2.30 6.16 9153 105 139
ackl106 4.69 1.02 1.00 7.83 24.90 5546 105 139
rkl87 2.99 0.94 0.94 1.55 7.54 5 10 31
rkl88 3.04 0.96 0.95 1.18 6.67 5 10 31
calcph0 6.32 1.08 0.19 1.45 5.96 17 112 90
calcph1 13.35 0.81 0.65 2.47 6.47 69 748 314
geomet0 3.56 0.97 0.98 5.57 6.11 6 4 21
geomet1 3.45 0.99 0.49 6.13 6.13 9 4 13
geomet10 3.75 0.99 0.90 6.75 6.81 8 4 17
geomet11 3.94 0.99 1.00 4.66 4.79 5 4 9
geomet12 6.94 1.18 0.95 13.69 14.37 4 4 11
geomet13 3.44 0.97 0.52 4.47 4.53 8 4 22
geomet14 3.09 1.00 0.92 6.78 6.80 10 4 38
geomet15 5.05 1.00 4.30 4.51 4.54 16 4 38
geomet16 6.47 0.99 4.33 4.51 4.52 13 4 38
geomet17 4.86 1.00 4.29 4.54 4.54 20 4 38
geomet2 3.71 0.99 0.51 6.13 6.11 5 4 9
geomet3 4.09 0.99 0.81 10.80 11.02 13 4 9
geomet4 5.89 0.99 0.78 13.55 13.76 14 4 11
geomet5 3.99 0.99 0.51 4.45 4.52 8 4 22
geomet6 2.96 0.98 0.87 15.93 16.11 8 4 9
geomet7 4.14 0.99 0.81 11.10 11.51 8 4 9
geomet8 5.49 0.99 0.80 13.58 13.58 12 4 11
geomet9 3.70 0.98 0.53 4.50 4.54 6 4 22
initial0 24.14 19.56 1.27 12.82 75.96 32004 4900 537
initial1 4.40 2.52 2.57 1.91 8.11 75 4 33
meclfu0 10.04 8.63 0.89 2.48 11.34 94 1104 246
simple0 5.69 4.72 1.11 2.00 12.54 494 24 54
simple2 11.84 8.27 0.07 1.92 4.23 38 424 171
mgl15 5.69 5.73 1.44 3.69 15.95 8 17 25
mgl18 5.89 6.08 1.47 3.74 13.37 7 17 25
mgl5 17.51 1.52 5.23 2.38 4.30 46422 1100 455
div0 9.69 4.80 0.63 1.54 3.74 6590 224 131
heat0 11.30 1.45 1.10 1.43 3.82 4668 172 131
grad0 6.49 1.18 1.10 4.46 10.32 18557 680 177
heat27 1.84 1.35 1.35 0.28 0.30 49692 2812 457
heat27u 12.27 0.00 9.04 1.10 1.20 9162 2812 457
heat27b1 12.23 0.00 9.01 1.10 1.20 57074 3514 451
heat27b2 12.26 0.00 9.03 0.97 1.06 64439 2110 455
heat27pl 1.84 1.35 1.35 0.28 0.30 49692 2812 457

Table 1. Overall lifting results. Speedups are compared to
gfortran on the original code.


	Introduction
	Overview
	Checking Source to DSL Equivalence
	From Verification to Synthesis
	From an Algorithm to a System

	Synthesis Primer
	Checking Candidate Solutions

	Summarizing Stencil Computations
	Syntactic Restrictions
	Inductive Template Generation
	Quantifier Elimination With Partial Skolemization
	Dealing With Floating Point Arithmetic
	Other Optimizations

	Architecture and Implementation
	Code Preprocessing
	Annotations
	Code Generation
	Limitations

	Experimental Results
	Experimental Setup
	Lifting Effectiveness
	Performance of Lifted Code
	Lifted Code Portability
	Lifting as Deoptimization

	Related Work
	Conclusion

