
Research Statement

Shachar Itzhaky

My research agenda is to design programming systems to support the tremendous effort of developing software
today. I want to build on our growing understanding of automated logical reasoning and make it applicable
to real-world systems, drawing on user insight through interaction to address complicated reasoning problems
and scalability issues. Users should be able to harness as much automation as the system has to offer, without
having to resort to completely manual methods in situations where the system fails to deliver: instead, the
user provides more hints that guide the systems. This is largely done in two ways: (a) pointing out the
general structure of the solution or a programming construct to use, such as recursion, memoization, etc., and
(b) by decomposing a large problem into smaller, easier to handle ones. Human programmers usually develop
good intuition concerning the latter, and such hints are not only invaluable for purposes of automation, but
also serve as documentation for program understanding during the software life cycle. The hope is that such
systems will improve software quality and reliability, while also increasing productivity and reducing costs.

My expertise draws from two primary areas: my doctoral work on the use of decidable logics to reason
about complicated program invariants, and my later work on using synthesis, essentially involving undecid-
able problems but allowing a higher level of reasoning. A mixture of the two can be very appealing since
we can identify interesting sub-problems in the overall process that can be formulated in a decidable logic,
providing a more predictable behavior for automatic systems. For example, checking preconditions for sim-
plifying expressions, such as the condition “x∗a < 0”, which can be simplified to “x < 0” if a is known to be
positive. This precondition can be decided via a procedure for integer linear arithmetic. The message is, that
an undecidable problem can become more friendly, if we introduce bits and pieces of decidable sub-problems
to construct the solution from.

The vision of a programming system, as I see it, is of an environment that allows high-level manipulation
of computer programs using mathematical principles and axioms, based on a theory of sound transformation.
The underlying philosophy is that programs and program data are mathematical objects, hence our usual
abstractions from the math world would apply to them. That said, computer programs are fundamentally
different from mathematical equations due to the way we use programming languages as opposed to the
language of mathematics. In math, the trivial parts are usually skimmed through using natural language,
introducing formalism where it serves an acute purpose; in computer programming, everything must compile,
so the finest detail has to be spelled out in a formal language. The latter is also true for machine-checked
proofs, which are regarded to be a particular kind of computer programs. The consequence is that computer
programs grow quite large, but they are full of mundane details that do not convey any insight about the
system – most frequently, they obscure the high-level concepts that underlie it. For this reason, the traditional
pencil-and-paper approach used by mathematicians is impractical. At the same time, while mathematics
is extremely versatile, having many different fields and sub-fields which vary greatly, software reasoning
revolves mostly around first- and second-order logic, some arithmetic, and very basic algebra. There are,
of course, niche applications of numerical nature that require more background theory, but their treatment
can often be localized to small parts of the code. This provides an opportunity for specialization of generic
proof assistants toward their more extensive use in software development.

My main insight is that human intuition is a vital ingredient in the process, hence a lot of consideration
has to be put into interactivity aspects. At the same time, the growing availability of computing power, as
well as recent developments in constraint solving technology, provide great opportunities for automation. I
intend to focus on software synthesis approaches, which have shown great promise in the last decade as they
gradually scale up from code snippets of just a few instructions to real-world programs including ciphers,
database transactions, and image processing kernels. These can leverage human intuition and creativity while
reducing the volume of mundane, repetitive, and monotonous tasks usually associated with the programming
process.

With these tools I have a vision to tackle a long-standing problem of programming by refinement. The
concept of refinement was suggested by computer scientists of the 20th century, but was not brought to
fruition and eventually went out of style, mostly due to the large amount of menial effort required by the
methods of the time. According to the refinement discipline, software is structured by starting at a very
high level of abstraction, where it is easy to convince oneself that desired functionality is specified correctly.

1



This layer is then refined to get it closer to an implementation by adding more details. By a process of
gradual step-wise refinement, the programmer eventually arrives at a full implementation of the system. At
each layer, a formal proof of correctness, relative to the layer above, is provided. In the early refinement
systems, proof had to be supplied by the developer, which made the process very rigorous and demanding.
Today, however, we are equipped with a rich toolbox of automated reasoning techniques that can not only
find many of the proofs, but also suggest pieces and building blocks for the next layer of the refinement.

Refinement guides the development process by making the programmer’s intuition explicit and anchoring
it in the code. The artifact is thus not just the lowest layer, but the entire construction, which can greatly
improve the understandability and maintainability of the software. Large systems obtained this way are
easier to debug due to greater introspection capabilities, e.g. the ability to request running traces or logs at
a high level of abstraction and have the data automatically collected from the lower levels. I envision this
becoming the new “gold standard” for high quality software; whereas today the standard is to have design
documents, a test suite, etc., the expectation may be, in the future, to have a refinement-style break down
of the system into traceable layers with machine-verified proofs.

Past and Present Projects

EPR reasoning for linked data structures (Ph.D. thesis). During my doctoral studies, I was re-
searching a way to automatically reason about pointer reachability properties in a complete way that always
terminates, and either reports validation of the required property or provides the user with a counterexample
that de-proves it. For this purpose, I managed to formulate the problem using effectively propositional logic,
a decidable fragment of first-order logic, in a way that accommodates many natural properties of linked lists
and several other linked data structures such as union-find (used, for example, in Kruskal’s algorithm). As
an extension and to improve usability, my collaborations led me to an integration of the method in Bradley’s
IC3 algorithm to facilitate automatic discovery of loop invariants in programs. This work has been used as
a basis to follow-up work at the PL group at Tel Aviv University, and is used as the core in some ongoing
projects.

Bellmania. As a demonstration of the efficacy of synthesis in non-trivial scenarios and as a response to
a challenge introduced by Prof. Charles Leiserson at MIT, I designed an developed a formal framework for
mechanized derivation of cache-oblivious implementations for sequential and parallel dynamic programming
algorithms. Dynamic programming is pervasive in several applications of computer science and can greatly
speed up otherwise intractable computations, but requires large amounts of memory, which puts stress
on memory access bandwidths and creates performance bottlenecks. These problems can be alleviated by
more effective utilization of the machine’s fast memory caches, but doing so requires complex reordering
of memory accesses to achieve desired spatial and temporal locality properties. By building up on recent
developments in parallel high-performance computing, in particular recursive divide-and-conquer applied to
dynamic programming, and by restating it as a refinement problem that starts from a näıve, inefficient loop
implementation and targets a better, equivalent implementation, which is also cache-oblivious. I encoded
the concepts underlying the divide-and-conquer technique as program transformation steps set up in an
interactive environment where the user chooses which transformations to apply and the system continuously
verifies semantic soundness of each step. This allowed me to produce verified implementations of several
dynamic programming algorithms using a handful of transformation rules.

TransCal. In an effort to extend the efficacy of interactive derivational synthesis beyond the domain of
dynamic programming, I am currently developed a calculus that can be used in the context of a “Synthesis
Assistant”, which I consider as the software development equivalent of proof assistants the likes of Coq and
Isabelle/HOL. The calculus is based on a set of rewrite rules that induce a program equivalence graph,
that is, a compact representation of many equivalent programs for functional program terms and sub-terms.
With TransCal, the user is manipulating a functional program by exploring the space of equivalences and
selecting a rewrite step to take next, as well as indicating particular sub-terms for generalization into new
rewrite rules. The system compiles these generalized terms into subroutines; for example, if the user marks
a sub-term as “fact n” and later rewrites the term as “n ∗ fact (n− 1)”, then the extracted code would be

2



“fact n = if n > 0 then n ∗ fact (n− 1) else ”. Filling in the placeholder “ ” for the corner case involved
solving a local synthesis problem, which would typically be small and therefore tractable.

Object Spreadsheets. This is a new programming model based on reactive programming and focusing
on empowering a pervasive reactive environment – the spreadsheet. Although not originally thought of as
a programming tool, spreadsheets have become considered as such as more programming-like functionalities
are added to them. In my collaboration with the Software Design Group at MIT CSAIL, we sought to
extend the data model provided by spreadsheets so it can be used in application development. Code requires
structure, and traditional spreadsheets basically offer a two-dimensional array where semantics of cells are
implicit, and any nontrivial data access require the use of functions that compute cell addresses. In Object
Spreadsheets, we incorporated the notion of a schema, based on an entity-relationship model, similar to ones
used in database system design and XML service oriented architectures. This structure admits hierarchy,
which we identified as painfully missing from traditional spreadsheets while desired by most applications. We
adapted the formula language to intrinsically support the new structure, such that referencing cells across the
hierarchies and object references is natural, while preserving the functional, reactive nature of spreadsheet
formulas, where change propagates through data dependencies. We evaluated our tool by implementing Web
applications designed according to requirements from real-life scenarios were routine organizational tasks,
such as scheduling a parent-teacher conference or cycling through group members to restock supplies, can
benefit from collaborative automation. As a vision, by simplifying the developer interface and minimizing
the amount of code that has to be written, Object Spreadsheets would enable end users to write applications
that suit their needs with the same ease as filling a spreadsheet.

Future Research Plans

I plan to build on TransCal and continue to evolve it, incorporating more automation and scaling the
mechanisms to support larger use cases. I intend to explore the application of inductive synthesis techniques
— ones that observe the program’s behavior on a set of constructed inputs — to draw conclusions about
rewrite rules that can be used and guide the search process more efficiently. In the presence of non-terminating
rewrite systems, for example, “x = −(−x)”, the program equivalence graph cannot be saturated and success
to find the desired solution depends very much on the ranking of rules and terms, such that more likely steps
are explored first. Rewrites that grow the term arbitrarily are considered harmful and the system should
avoid them if possible; however, these are occasionally required to reach the goal, so they cannot be deferred
indefinitely.

A central issue to the applicability of a synthesis assistant to the software development process is the
design of an effective user interface, in particular one that exhibits discoverability and, to the extent possible,
isomorphism with users’ perceived concepts and thought patterns. Contemporary proof assistants struggle
to achieve adoption due to a steep learning curve and too little investment in user experience, especially for
learners. Designing such an interface for a programming system would have to involve some form of user
study; although for a development tool that typically requires its user to read some tutorial or manual to
learn how to use it, the common model of studies involving 1–2 hour sessions with participants is impractical.
A better environment for such evaluation would be a workshop or as an extra credit project in class.

The level of automation will distinguish these synthesis assistants from existing synthesis approaches
based on proof assistants like Coq. On the other hand, the guarantees for correctness provided would not
be inferior, which distinguishes them from various refactoring tools built into existing IDEs such as Eclipse.
I fully expect this new paradigm to revolutionize the way we think about programming through the next
decade.

3


