Lattices and Homomorphic Encryption, Spring 2013

Instructors: Shai Halevi, Tal Malkin

LWE Hardness

March 12, 2013

We sketch the proof due to Regev [Reg09] and Peikert [Pei09] that (under certain conditions) it is possible to relate the *average-case* hardness of the learning with errors problem (LWE) to the *worst-case* hardness of bounded distance decoding in a given lattice (BDD).

Preliminaries. We have the following parameters:

 $\begin{array}{l} n \text{ - security parameter.} \\ \alpha \text{ - noise parameter } (= \frac{1}{\operatorname{poly}(n)}). \\ q \text{ - modulus } (\gg \frac{1}{\alpha}, \, \text{sometimes even } q = \exp(n)). \end{array}$

We use \mathcal{D}_s to denote the continuous Gaussian distribution with parameter s, and $\mathcal{D}_{L,s}$ to denotes a discrete distribution over a lattice (or coset of a lattice) L, such that every vector $\vec{z} \in L$ has probability mass proportional to $\mathcal{D}_s(\vec{z})$.

1 The Main Lemma

In addition to an oracle that solves LWE, the reduction from BDD in a lattice \mathcal{L} to the averagecase LWE, also needs access to an oracle that samples short vectors in \mathcal{L}^* . (Regev [Reg09] and Peikert [Pei09] show how to construct such a sampling oracle in specific settings, see Section 3). Additionally it relies on the following properties of the LWE error distribution:

- The LWE error distribution $\Phi_{\alpha q}$ is a continuous one-dimensional Gaussian, which is a projection of the spherical *n*-dimensional distribution $\mathcal{D}_{\alpha q}$ onto its first coordinate.
- The distribution $\mathcal{D}_{\alpha q}$ is smooth in the following sense: If \mathcal{L} is some lattice (or coset of a lattice) with $\lambda_n(\mathcal{L}) \ll \alpha q$, then if we choose $\vec{x} \leftarrow \mathcal{D}_{\mathcal{L},r}$ and $\vec{y} \leftarrow D_s$ such that $r^2 + s^2 = (\alpha q)^2$ then the induced distribution on $\vec{x} + \vec{y}$ is close to the continuous distribution $\mathcal{D}_{\alpha q}$.

Lemma 1 ([Reg09]). There is an efficient algorithm that takes as input a basis B of an ndimensional lattice $\mathcal{L} = \mathcal{L}(B)$, another parameter $r \gg \frac{q}{\lambda_1(\mathcal{L})}$ and a point $\vec{x} \in \mathbb{R}^n$ such that $\operatorname{dist}(x, \mathcal{L}) < \frac{\alpha q}{\sqrt{2}r}$ and has access to two oracles:

- A "global" solver for LWE[n, α, q] ("global" in the sense that it is unrelated to the input lattice).
- A "lattice specific" sampler from $D_{\mathcal{L}^*,r}$.

The algorithm finds (with overwhelming probability) the (unique) point $\vec{v} \in \mathcal{L}$ closest to \vec{x} .

2 Proof Sketch of Lemma 1

Let $\vec{v} \in \mathcal{L}$ be the closest point to \vec{x} in \mathcal{L} and let $\vec{t} \in \mathbb{Z}^n$ be the coefficients of \vec{v} when expressed in basis B (i.e., $\vec{v} = B\vec{t}$) and denote $\vec{s} \stackrel{\text{def}}{=} \vec{t} \mod q$. We show a procedure that uses the sampler for $\tilde{D}_{\mathcal{L}^*,r}$ to generate instances of the distribution $\mathsf{LWE}_{\vec{s}}$. Then, we use the LWE solver to find \vec{s} . (Note that \vec{s} was not chosen uniformly at random in this case, but we previously showed a random self reduction for LWE from a random \vec{s} to any specific \vec{s} .) Later we show how from \vec{s} one can find \vec{t} thereby solving BDD. **LWE-Generate** (B, \vec{x}) (With access to $\tilde{D}_{\mathcal{L}^*,r}$)

- 1. Draw a sample $\vec{y} \leftarrow \tilde{D}_{\mathcal{L}^*,r}$. Let \vec{a} be the coefficients of \vec{y} in basis B^* (i.e. $\vec{a} = B^T \vec{y}$).
- 2. Draw an error term $e \leftarrow \Phi_{\frac{\alpha}{2\sqrt{\pi}}}$.
- 3. Output $(\vec{a}, b = \langle \vec{x}, \vec{y} \rangle + e \mod q)$.

Claim 1. The output of LWE-Generate is statistically close to the LWE distribution with secret \vec{s} , LWE_s, except that the error parameter is some $\beta \leq \alpha$.

Proof. We need to show that (A) \vec{a} is close to uniform in \mathbb{Z}_q^n , and (B) once \vec{a} is fixed, $\vec{b} = \langle \vec{s}, \vec{a} \rangle + \Phi_{\beta q}$ for some $\beta \leq \alpha$.

(A.) Consider the lattice $q \cdot \mathcal{L}^*$ and all its q^n cosets

$$\vec{a}$$
-coset = { $B^*\vec{a} + q\mathcal{L}^*$ } = { $B^*\vec{z} : \vec{z} = \vec{a} \mod q$ }

The vector \vec{a} output by the LWE-Generate procedure is exactly the coset of \vec{y} . Due to our choice of parameters, all cosets are (almost) equally likely. Indeed, since $r \gg \frac{q}{\lambda_1(\mathcal{L})} \geq \frac{q\lambda_n(\mathcal{L}^*)}{n}$ then $\tilde{D}_{\mathcal{L}^*,r}$ is nearly uniform among the cosets.

(B.) Conditioned on any fixed $\vec{a} \in \mathbb{Z}_q^n$, the vector \vec{y} is chosen from the discrete distribution on the \vec{a} -coset, $\vec{a} + D_{q\mathcal{L}^*,r}$. Denoting $\vec{w} \stackrel{\text{def}}{=} \vec{x} - \vec{v}$ we have

$$\begin{split} \vec{x}, \vec{y} &\rangle = \langle \vec{v} + \vec{w}, \vec{y} \rangle \\ &= \langle \vec{v}, \vec{y} \rangle + \langle \vec{w}, \vec{y} \rangle \\ &= \langle B\vec{t}, \vec{y} \rangle + \langle \vec{w}, \vec{y} \rangle \\ &= \langle \vec{t}, B^T \vec{y} \rangle + \langle \vec{w}, \vec{y} \rangle \\ &= \langle \vec{s}, \vec{a} \rangle + \langle \vec{w}, \vec{y} \rangle \mod q \end{split}$$

hence $b = \langle \vec{s}, \vec{a} \rangle + \langle \vec{w}, \vec{y} \rangle + e \mod q$. Notice that \vec{s}, \vec{a} and \vec{w} are fixed and the random part is just \vec{y} and e.

Recall that $\Phi_{\frac{\alpha}{2\sqrt{\pi}}}$ is the projection of $\mathcal{D}_{\frac{\alpha}{2\sqrt{\pi}}}$ onto the first coordinate, namely $\langle \vec{e_1}, \mathcal{D}_{\frac{\alpha}{2\sqrt{\pi}}} \rangle$ and since \mathcal{D} is spherical then this is also the same as $\langle \vec{u}, D_{\frac{\alpha}{2\sqrt{\pi}}} \rangle$ for any other unit vector \vec{u} . In particular, $\Phi_{\frac{\alpha}{2\sqrt{\pi}}} \equiv \langle \vec{w}, \mathcal{D}_{\frac{\alpha}{2\sqrt{\pi}}} \rangle \frac{1}{||\vec{w}||} \equiv \langle \vec{w}, \mathcal{D}_{\frac{\alpha}{2\sqrt{\pi}}||\vec{w}||} \rangle.$ Hence $\langle \vec{w}, \vec{y} \rangle + e \equiv \langle \vec{w}, \vec{y} \rangle + \langle \vec{w}, \vec{z} \rangle = \langle \vec{w}, \vec{y} + \vec{z} \rangle$ where $y \in_R \mathcal{D}_{\vec{a}+q\mathcal{L}^*,r}$ and $z \in_R \mathcal{D}_s$ where $s = \frac{\alpha}{2\sqrt{\pi}||\vec{w}||}$. Now $||\vec{w}||$ is "short" so s is "large". The parameters r, s are chosen large enough so that $\mathcal{D}_{q\vec{a}+\mathcal{L}^*,r}$ is close to the continuous \mathcal{D}_t where $t = \sqrt{r^2 + s^2}$. Therefore $\langle \vec{w}, \vec{y} \rangle + e \approx \langle \vec{w}, \mathcal{D}_t \rangle = \Phi_{||\vec{w}||\cdot t}$ and the parameters are such that $||\vec{w}|| \cdot t \leq \alpha q$.

To solve BDD for \vec{x} we can apply the LWE-solver with samples from LWE-Generate to find the vector \vec{s} . However, to solve BDD we need to find \vec{t} (recall $\vec{s} = \vec{t} \mod q$). To do this, first observe that $\vec{v} = B\vec{t} = B\vec{s} + B(q\vec{z})$ for some $\vec{z} \in \mathbb{Z}^n$ and consider $\vec{x'} = \frac{\vec{x} - B\vec{s}}{q} = \frac{\vec{x} - \vec{v}}{q} + B\vec{z}$. Notice that by this calculation, the vector $\vec{x'}$ is at distance $\frac{||\vec{w}||}{q}$ (where $\vec{w} = \vec{x} - \vec{v}$) from the lattice (specifically the point $B\vec{z}$). If we could find the closest lattice point to $\vec{x'}$ we would have \vec{z} and therefore also \vec{v} . To do this just repeat the above argument again and again and at each iteration the distance from the lattice is reduced by a factor of q. After n such iterations we can solve the problem by using, e.g., Babai's nearest plane algorithm.

3 The Lattice-Specific Sampler

Regev [Reg09] described a quantum algorithm for implementing the lattice-specific sampling oracle, thus obtaining a quantum reduction of BDD to LWE. Peikert observed [Pei09] that in some cases the sampler can also be implemented using a standard (non-quantum) efficient algorithm, specifically when the parameter α is small enough relative to $\lambda_1(\mathcal{L})$. This yields a reduction from the problem of approximating the number $\lambda_1(\mathcal{L})$ to LWE: Roughly we try the reduction with different size of α until it fails, and that value of α is an approximation of $\lambda_1(\mathcal{L})$. Peikert's observation is based on the following theorem of Gentry et al. [GPV08]:

Theorem 1 (Informal). Given a basis $B = (b_1 \dots b_n)$ for a lattice $\mathcal{L} = \mathcal{L}(B)$, it is possible to sample efficiently from the discrete Gaussian distribution distribution $\mathcal{D}_{\mathcal{L},s}$ for a parameter $s \geq poly(n) \cdot \max_i \|b_i\|$.

(The poly(n) term can be as small as \sqrt{n} .) Moreover, using the LLL algorithm we can find a basis B^* for \mathcal{L}^* such that $\max_i ||b_i^*|| \leq 2^{n/2}\lambda_1(\mathcal{L}^*) \leq 2^{n/2}n/\lambda_1(\mathcal{L})$. Hence we can use the GPV sampler to sample from $D_{\mathcal{L}^*,r}$ whenever (say) $r \geq 2^n/\lambda_1(n)$.

Theorem 2 ([Pei09] Let $\alpha = 1/\text{poly}(n)$, $\gamma = n/\alpha$ and $q = \exp(n)$. Given oracle access to a solver for LWE[m, α, q). and any basis B for an n-dimensional lattice $\mathcal{L} = \mathcal{L}(B)$, we can approximate the number $\lambda_1(\mathcal{L})$ to within a γ factor.

Proof. We first use LLL to find an approximation β such that $\lambda_1(\mathcal{L}) \leq b \leq 2^{n/2}\lambda_1(\mathcal{L})$. For $i = 0, 1, 2, \ldots$ we define $\beta_i = \beta/\gamma_i$.

Below we describe a procedure to distinguish the two cases $\lambda_1(\mathcal{L}) < \beta_{i+1}$ and $\lambda_1(\mathcal{L}) \geq \beta_i$. Running this procedure and denoting by i^* the first index in which the procedure outputs " $\lambda_1(\mathcal{L}) \geq \beta_i$ ", it is clear that β_{i^*} is a λ approximation, as needed. I.e., if $\lambda_1(\mathcal{L}) \in [\beta_{i+1}, \beta_i)$ for some i, the we would output either β_{i+1} or β_i .

Distinguishing procedure. The following gets as input a basis B or $\mathcal{L} = \mathcal{L}(B)$ and a number d, and it needs to distinguish the two cases $\lambda_1(\mathcal{L}) < d$ and $\lambda_1(\mathcal{L}) \ge d \cdot \gamma$.

 $\frac{\text{Distinguish}(B, d)}{0. \text{ Set } d' = d \cdot \sqrt{n}/2}$ 1. For j = 1 to N = poly(n) do:

- (i) Draw w_i uniformly at random from the *n* dimensional sphere of radius d';
- (ii) Reduce $w \mod \mathcal{P}(X)$ to get $x = w \mod \mathcal{P}(B)$;
- (iii) Run the algorithm from Lemma 1 on input basis B, parameter $r = q \cdot \sqrt{2n}/(d\gamma)$ and point x. For the two oracles use:
 - The LWE solver that you have access to as the "global" oracle
 - The GPV sampler using an LLL-reduced basis for B^* , for the "lattice specific" oracle
- (iv) Let v be the point that the algorithm from Lemma 1 returns (set v = 0 if the algorithm fails). If x - w = v then record a vote for " $\lambda_1(\mathcal{L}) \ge d\gamma$ ", else record a vote for " $\lambda_1(\mathcal{L}) < d$ ".
- 2. Output " $\lambda_1(\mathcal{L}) \geq d\gamma$ " if all votes say " $\lambda_1(\mathcal{L}) \geq d\gamma$ ", else output " $\lambda_1(\mathcal{L}) < d$.

Analysis. We show that (a) when $\lambda_1(\mathcal{L}) \geq d\gamma$ then all the conditions of Lemma 1 are satisfied and the closest lattice point to x is x - w, so in this case the algorithm from Lemma 1 will return x - w, and (b) when $\lambda_1(\mathcal{L}) < d$ then the view of the algorithm from Lemma 1 does not determine a unique w, so with non-negligible probability it will return a point different from x - w.

Case (a): $\lambda_1(\mathcal{L}) \geq d\gamma$. Recall that the distance between x and the lattice \mathcal{L} is less than $d\sqrt{n}/2 = d \cdot \frac{\alpha \gamma \cdot q}{\sqrt{n}q\sqrt{2n}} = \frac{\alpha q}{\sqrt{2}r}$, as needed for the lemma. Also we have $r = \frac{q\sqrt{2n}}{d\gamma} > \frac{q\sqrt{2n}}{\lambda_1(\mathcal{L})}$. Finally, since $q = \exp(n)$ then the GPV sampler gives good enough samples. Hence the reduction works and we always get the unique closes point to x, which is x - w.

Case (b): $\lambda_1(\mathcal{L}) < d$. Let y be the shortest nonzero vector in \mathcal{L} , $||y|| = \lambda_1(\mathcal{L}) < d$, then with non-negligible probability both x - w and x - w - y are within distance d' from x. Hence both are equally likely given the view of the algorithm, so it will output x - w with probability at most 1/2.

References

- [GPV08] Craig Gentry, Chris Peikert and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions, In 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pages 197–206. ACM, 2008.
- [Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pages 333–342. ACM, 2009.
- [Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. JACM, 56(6), 2009.