
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

SIS-based Signatures
February 26, 2013 Scribe: Fernando Krell

Basics

We will use the following parameters:

• n, the security parameter.

• q=poly(n).

• m ≈ 2n log q

• s ≥ 2
√
n log q, the Gaussian parameter.

For a matrix A ∈ Zn×mq and vector ~u ∈ Znq denote

L⊥(A) = {~x ∈ Zmq | A~x = 0 mod q}
L⊥~u (A) = {~x ∈ Zmq | A~x = ~u mod q}

Micciancio and Peikert 2012 [MP12] describe the following useful procedures (A, t)← TrapSamp(r,m, q, s)
such that:

• A is nearly uniform in Zn×mq .

• Given A and t, it is easy to solve SIS in L⊥(A). Even more, we have a procedure ~y ←
PreImageSamp(A, t, s, ~u) such that ~y is close to discrete Gaussian in lattice L⊥~u with small
parameter s ≈ m. Namely ~y ∼ DL⊥

~u
(A),s.

Note that DL⊥
~u
(A),s = DZn

q ,s|Ax = ~u mod q. That is, sampling from discrete Gaussian over the

lattice L⊥~u (A), is the same as sampling from Gaussian in Znq conditioned on that the sampled points
~x satisfy Ax = ~u mod q.

Definition 1 (Signature Scheme). A signature scheme is a tuple of three polynomial time algorithms
KeyGen, Sign, and Verify such that

• (pk, sk)← KeyGen(1n)

• σ ← Sign(m, sk).

• Accept/Reject ← Verify(σ,m, pk). For all (pk, sk) ← KeyGen(1n), and for every message
m and for every possible σ ← Sign(m, sk), it holds that

Pr[Verify(σ,m, pk)] = 1

1

Definition 2 ([GMR86]). A signature scheme S = (KeyGen, Sign, Verify) is strong existentially
unforgeable under adaptive chosen message attack is for every feasible attacker F that is given a
public key pk, corresponding to secret key sk, and oracle access to Sign(·, sk), and outputs pair
(m∗, σ∗)

Pr[Verify(σ∗,m∗, pk)| (m∗, σ∗) 6= (mi, σi) ∀ i] = negl(n)

Where mi denotes the i-th message queried to the oracle Sign(·, sk), and σi its answer.

The GPV signature scheme presented next is secure in the sense of the above definition, in the
Random Oracle Model (ROM), under the assumed hardness of SIS problem.

The Random Oracle Model. Schemes in this model have access to a function H : Σ∗ → Znq . In the
security analysis, we pretend that this function is a truly random function, that is, H assigns to
every message a uniformly random vector ~y = H(m) ∈ Znq .

The GPV Signature Scheme [GPV08]

Let H : Σ∗ → Znq be a hash function. The GPV signature scheme using H consists of the following
algorithms:

• KeyGen(1n): Run TrapSamp(n,m, q, s) to get pair (A, t). Output (pk = A, sk = (A, t)).

• Sign(m, sk = (A, t)): Compute ~y = H(m), and output short vector ~u← PreImageSamp(A, t, s, ~y

• Verify(~u,m, pk = A): Compute ~y = H(m). Output Accept if and only if A~u = ~y and
||~u|| < 6n log q.

Remark 1. We need to make sure that we always output the same signature for the same message.
Otherwise, the scheme can be broken. We can do this by keeping a table of all signatures computed
so far, or by using a pseudorandom function, computing the “random” coins for the PreImageSamp

procedure as PRF(m).

Correctness

Since the vector ~u was computed using PreImageSamp algorithm, it is distributed close to DL⊥
~y
,s,

thus A~u = ~y. Moreover, using s = 2
√
n log q > η2−n(L⊥(A)) with high probability1, so it’s expected

size is ≤ 2s
√
m = 4

√
2n log q < 6n log q, and Pr[||~u|| > 6n log q] < 2−n.

Remark 2. Recall from lecture 5 that the smoothing parameter ηα of a lattice L is the smallest
Gaussian parameter s such that ρ1/s(L∗ \ {0}) ≤ α. Where ρs(~x) = e−π(||x||/||s||)

2
is the Gaussian

probability density function with parameter s (centered at ~0). If α is not too large then ηα ≥
1

λ1(L∗) ≥ λn(L). Also, a vector ~x sampled from this distribution has length ≤ s
√
k with high

probability, where k is the dimension of the lattice.

1We prove this later

2

Security

We prove security by showing that if a forger F , running in time T , has success probability ε
relative to a random function H, then there is a solver S that uses F to solve the SIS problem with
probability ∼ ε in time ∼ T .

F

pk

m1

mi

σ1

σi

...

mi

H(mi)

(m∗, σ∗)

Solver

A ∈ Zn×m
q ~u ∈ L⊥(A)

The solver S: gets as input matrix A. To run the forger F , S need to provide a public
key, oracle response to hash function and oracle response to signatures queries.

• Set A as the public key.

• For each random oracle query H(mi), sample xi ← DZn,s. set ~yi = A~xi mod q, reply with
H(mi) = yi. Record tuple (mi, ~xi, ~yi) for future queries.

• For each signature query Sign(mi). get H(mi) executing the procedure above. Finds
tuple (mi, ~xi, ~yi) and outputs ~xi as the signature.

At the end of the interaction F outputs a forgery (m∗, ~u∗). S now execute one more random
oracle query on m∗ to get ~x∗ and returns ~x− ~u as the SIS solution.

To prove that S solves SIS with probability ∼ ε, we need to show two things:

1. The answers that F gets from S are distributed close to the same distribution as when F
interacts with the scheme.

Proof. In the scheme H(m) = ~ym ∈R Znq ⇒ ~x ← DL⊥
~y
,s. In contrast, the solver chooses first

~x from DZm,s and compute ~y as Ax mod q. Conditioned in ~y, we can see this as sampling ~x
from DL⊥

~y
,s

If s > η2−n(L⊥(A)), then ~x reduced modulo basic cell of L⊥(A) is nearly uniform. In problem
set 4, problem 2, we prove that this implies that A~x = ~y is nearly uniform in Znq . Thus, the
distribution of ~y is teh same as in the scheme.

At the same time, the distribution of ~x conditioned on ~y are also the same in the scheme
and in the solver since DL⊥

~y
(A),s is the same as DZm,s conditioned on the outcome satisfying

A~x = ~y.

3

2. If (m∗, u∗) is a valid forgery, then S outputs a solution to SIS (with high probability).

Proof. By the proof above F outputs a valid forgery with probability ∼ ε when interacting
with S. This implies that for y∗ = H(m∗), it holds that ~y = A~u∗ = Ax∗, hence A(~x∗−~u∗) = 0
mod q, and thus (~x∗ − ~u∗) ∈ L⊥(A).

Also, ||~u∗|| < 6n log q because ~u∗ is a valid forgery. Now, ||~x∗|| < 6n log q because ~x∗ was
sampled from a Gaussian distribution with parameter s. Therefore, ||~x∗ − ~y∗|| < 12n log q.

We need to prove that ~x∗ 6= ~u∗. Two cases to analyze:

• If F asked for a signature of m∗, then it received ~x∗, thus ~u∗ 6= ~x∗, since ~u∗ is a valid
“new” forgery.

• If F did not asked for a signature on m∗ then F can only know about ~x∗ what’s implied by
~y∗. So from F point of view, the min-entropy of ~x∗ is H∞(DL⊥

~y
(A)). If s > η2−n(L⊥~y (A)),

then ~x has min entropy ≥ n bits. Hence, Pr[~x∗ = ~u∗] < 2−n.

We end the security proof by showing that s is lager than the smoothness parameter with
parameter α = 2−n.

Claim 1. s > η2−n(L⊥(A)).

Proof. Denote L(A) = {~u ∈ Zn| ∃~v ∈ Zn such that ~u = ~vA}. Observe that this lattice is almost
dual of L⊥(A). In fact, (L⊥(A))∗ = L(A)/q. We show that with high probability over A ∈R Zn×mq ,
λ∞1 (L(A)) > q

4 . Where λ∞1 denotes the successive minima in infinity norm.
Fix any short non-zero vector ~u ∈ Zn such that ||~u||∞ < q

4 . What is the probability that
~u ∈ L(A)?

Pr
A

[~u ∈ L(A)] = Pr
A

[∃~v ∈ Znq such that ~vA = ~u mod q]

≤
∑

~v∈Zn
q \{~0}

Pr
A

[~vA = ~u mod q]

≤ q−mqn

There are ≤
(q
2

)m
possible vectors ~u 6= 0 with ||~u||∞ ≤ q

4 (coordinates between -q/4 and q/4).
Hence

Pr[∃~u 6= 0 ∧ ||~u||∞ ≤
q

4
∧ ~u ∈ L(A)] ≤

(q
2

)m
qn−m

≤ qn

2m

≤ 2−n

Where last inequality holds since m ≥ 2n log q. This implies that λ∞1 (L⊥(A)∗) = λ1(L(A))
q > 1

4 .
Thus,

4

η2−n(L⊥(A)) ≤ 1

λ∞1 ((L⊥(A))∗)

√
log(2n(1 + 2n))

π

≤ 4

√
log n+ n+ 2

π

≤ 4
√

log n+ n < s

[GMR86] S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. In SIAM Journal of Computing, 1988.

[GPV08] C. Gentry, C. Peikert, V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In STOC, 2008.

[MP12] D. Micciancio, C. Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In
Advances in Cryptology - EUROCRYPT 2012.

5

