
Zero-One Permanent is #P -Complete, A Simpler ProofAmir Ben-Dor� Shai HaleviyDept. of Computer ScienceTechnionHaifa, Israel 32000February 22, 1995

�This research was supported by United States-Israel Binational Science Foundation grant 88-00282yThis research was supported by the Miriam and Aharon Gutwirth memorial fellowship0

AbstractIn 1979, Valiant proved that computing the permanent of a 01-matrix is #P-Complete. In this paper we present another proof for the same result. Our proofuses \black box" methodology, which facilitates its presentation. We also prove thatdeciding whether the permanent is divisible by a small prime is #P-Hard. We con-clude by proving that a polynomially bounded function can not be #P-Complete under\reasonable" complexity assumptions.

1

1 IntroductionThe permanent has been the object of study by mathematicians since �rst appearing in thework of Cauchy and Binet in 1812. Despite its syntactical similarity to the determinant,no e�cient procedure for computing the permanent is known. In 1979, Valiant provideda reason for this di�culty. In a landmark paper ([Val79a]) he showed that the permanentfunction is complete for the class #P of enumeration problems. Moreover, Valiant provedthat even for 01-matrices, the problem remains #P-Complete.Valiant's proof has two parts. In the �rst part, a many-one reduction from countingthe number of satisfying assignments for a CNF formula to computing the permanent of aninteger matrix is presented. In the second part, Valiant proved (using the Chinese Remain-der Theorem) that computing the permanent of an integer matrix can be done e�cientlygiven access to an oracle that computes the permanent of 01-matrices. This reduction usespolynomially many queries to the 01-permanent oracle.The proof we present here is similar in some ways to the original proof. In particular, italso consist of two parts as the original proof. There are, however, some di�erences betweenour proof and the original one. In the �rst part, we use a \black box" approach, whichsimpli�es the presentation of the reduction as well as the veri�cation of its validity. First, webuild a gadget with some desirable properties. Then we construct a graph using many copiesof that gadget, one per every clause in the original 3-CNF formula. We use the properties ofthe gadget (as a \black box") to prove the correctness of our construction. The constructionof the gadget itself (and the proof of its properties) is described separately. In retrospect onemay observe that the �rst part of Valiant's reduction could also be presented using \blackbox" approach.In the second part, we prove that computing the permanent of an integer matrix can bedone e�ciently using a single query to an oracle that computes the permanent of 01-matrices.This is done in three steps.1. First, we reduce the integer permanent problem to the problem of computing thepermanent of a non-negative integer matrix.2. Next, we reduce the non-negative permanent problem to the problem of computing thepermanent of an integer matrix, with entries that are either zero or powers of two.3. Finally, we reduce the last permanent problem to the 01-permanent problem.The reductions we present in the second part are all many-one. A di�erent and somewhatmore complicated many-one reduction was presented in [Zan91].In the rest of the paper we consider the problem of deciding whether Perm(A) �0 (mod p) for a given matrix A and integer p. We show that this problem is #P-Hard,even when the integer p is presented in unary. This is done by presenting an algorithm thatcomputes Perm(A) modulo p using an oracle that decides whether Perm(A) � 0 (mod p)(and using the Chinese Remainder Theorem). It was shown in [VV85] that computingPerm(A) modulo k for any �xed k that is not a power of two is NP-Hard (with respectto randomized polynomial reductions). From our algorithm it follows that for any primep 6= 2, deciding whether Perm(A) � 0 (mod p) is also NP-Hard with respect to the samereductions. 2

Finally, we prove that polynomially bounded functions can not be #P-Complete (undersome \reasonable" complexity assumptions).2 PreliminariesWe de�ne the notions #P and #P-Hardness as usual [Val79b].De�nition 1: Let f be a function f : �? ! N . We say that f 2 #P if there exists abinary relation T (�; �) such that� If (x; y) 2 T then the length of y is polynomial in the length of x.� It can be veri�ed in polynomial time that a pair (x; y) is in T .� for every x 2 �?; f(x) = j fy : (x; y) 2 Tg jDe�nition 2:� Given two functions f; g : �? ! N , we say that there is a polynomial Turing-reductionfrom g to f (and denote g / f) if the function g can be computed in polynomial timeusing an oracle to f . We say that there is a many-one reduction from g to f if one callto the f -oracle su�ce.� A function f : �? !N is #P-Hard if for every g 2 #P there is a polynomial reductiong / f .� A function f is #P-Complete if it is both #P-Hard and in #P.It was shown in [Val79b] that the problem of counting the number of satisfying assignmentsfor a 3-CNF formula is #P-Complete, with respect to many-one reductions. Let us denotethis problem by #3-SAT.De�nition 3: Given a n� n matrix A, the permanent of A is de�ned asPerm(A) def= X� nYi=1 ai;�(i)where the summation is over the n! permutations of f1; 2; : : : ; ng. We denote the problemof computing the permanent of a 01-matrix by 01-Perm.Throughout the paper we refer interchangeably to matrices and their correspondingweighted directed graphs.De�nition 4: We say that a n-node weighted directed graph G and a n � n matrix Acorrespond to one another if for every {; | 2 f1; : : : ; ng; A{;| is the weight of the edge {! |.De�nition 5: A cycle-cover of a weighted directed graph G = (V;E) is a subset R � Ethat forms a collection of node-disjoint directed cycles that cover all the nodes of G. Theweight of R, denoted by W (R), is the product of the weights of the edges in R.From the above de�nitions it follows that ifG is a weighted directed graph that correspondto a matrix A, then the permanent of A equals to the sum of weights of all the cycle-coversof G. We use Perm(G) to denote this sum. 3

3 Main ResultWe present another proof for the following result (that was proved in [Val79a] combined with[Zan91]).Theorem 1: 01-Perm is #P-Complete (with respect to many-one reductions).Proof sketch: Let � be a 3-CNF formula with n variables and m clauses. We denote byS(�) the number of satisfying assignments of �. The reduction goes as follows:� First we construct a weighted directed graph G� with weights from the set f�1; 0; 1; 2; 3gand size linear in m and n such thatPerm(G�) = 12m � S(�)The graph G� can be constructed from � in polynomial time. The construction isdescribed in Section 4. This construction proves that computing the permanent of aninteger matrix is #P-Hard (with respect to many-one reductions).� In order to prove that 01-Perm is #P-Complete (with respect to many-one reductions),we describe in Section 5 a chain of three transformations from an integer matrix to a01-matrix that maintain the permanent of the matrix.Therefore, there is a many-one reduction from #3-SAT to 01-Perm.4 Constructing G� for a formula �Given a 3-CNF formula � with m clauses and n variables, we construct a weighted directedgraph G� such that there is a mapping between assignments for � and cycle-covers in G�.This mapping satis�es the following conditions:� The sum of weights of all the cycle-covers that correspond to each satisfying assignmentof � equals 12m.� The sum of weights of all the other cycle-covers equals 0.Clearly, this graph satis�es Perm(G�) = 12m � S(�).In the construction of G� we use a special clause component as a \black box". The graphG� consist of m clause components (one for each clause in �), and n additional nodes (onefor each variable in �). Assuming the clause component has some desirable properties, weprove that Perm(G�) = 12m � S(�). In Appendix A we describe the structure of the clausecomponent (which is independent of �), and prove its properties. We remark that Valiant'sconstruction yields a di�erent constant (45) rather then 12.4

4.1 Construction of G� Using Clause ComponentsThe graph G� is constructed as follows:� For each variable xi in � there is a node in G�. We refer to theses nodes as variablenodes.� For each clause cj = (�1 _ �2 _ �3) in �, there is a clause component in G�, denotedby Hj . The clause component has three input edges labeled I1; I2; I3, and three outputedges labeled O1; O2; O3. These edges connect the component to other components orto variable nodes. Intuitively, the edges Ik and Ok (1 � k � 3) of Hj correspond to theliteral �k in cj .� For each variable xi in � we form two \cycles" in the graph G�.{ Let cj1 ; : : : ; cj` be the clauses that contain the literal xi in the order they appearin �. The T-cycle of xi starts at the variable node xi, visits the clause componentsHj1 ; : : : ;Hj` and goes back to xi. If xi is the k'th literal in a clause cj , then theT-cycle of xi enters Hj through the input edge Ik and exits it through the outputedge Ok.{ Let cj01; : : : ; cj0r be the clauses that contain the literal :xi in the order they appearin �. The F-cycle of xi starts at the variable node xi, visits the clause componentsHj01 ; : : : ;Hj0r in a similar way and goes back to xi.Formally, there is an edge from the output edge Ok1 of Hj1 to the input edge Ik2 of Hj2if the next occurrence of the k1'th literal of the clause cj1 is as the k2'th literal of theclause cj2.If the literal xi does not appear in �, then the T-cycle of xi is a self loop, and the samegoes for :xi. The weights of all the edges in the T -cycles and F -cycles of every literalare one.We call the edges inside the clause components internal edges and the edges between theclause components (or between clause components and variable nodes) external edges. Noticethat every external edge belong to either the T-cycle or the F-cycle of some variable. Anexample of a graph G� for some formula is presented in Figure 1.4.2 Correspondence between assignments and cycle-coversThe construction of G� yields a natural correspondence between cycle-covers in G� andassignments for �.De�nition 6: We say that a cycle-cover R of G� induces an assignment v if for eachvariable x in � holds:� If v(x) = TRUE then R contains all the external edges in the T-cycle of x and noneof the external edges in the F-cycle of x.5

X1

X3

X2 H1 H2

I1

I2

I3

O1

O2

O3

I1

I2

I3

O1

O2

O3

Figure 1: The graph G� for the formula � = (x1 _ x2 _ :x3) ^ (:x1 _ x2 _ x3).T-cycles are solid and F-cycles are dashed.� If v(x) = FALSE then R contains all the external edges in the F-cycle of x and noneof the external edges in the T-cycle of x.Observation 1:� There are cycle-covers of G� that do not induce any assignment.� Every cycle-cover ofG� can induce at most one assignment, as two di�erent assignmentsmust have at least one variable on which they disagree.� All the cycle-covers that induce the same assignment agree on their external edges.Intuitively, the structure of G� ensures that the clause component Hj contributes amultiplicative factor of 12 to the weight of the cycle-covers that induce an assignment whichsatis�es the clause cj, and a multiplicative factor of zero to the weight of the cycle-covers thatdo not induce such assignment. To formalize this intuition, we need the following de�nition.De�nition 7: We say that a cycle-cover is proper with respect to a clause component H if1. At least one of H's input edges is in R.2. For every 1 � k � 3, the edge Ik is in R if and only if the edge Ok is in RThe clause component is constructed such that it contributes a multiplicative factor of 12to the weight of cycle-covers that are proper with respect to it, and a multiplicative factorof zero to the weight of the other cycle-covers.6

Lemma 1: A cycle-cover R induces a satisfying assignment if and only if R is proper withrespect to every clause component in G�.Proof: We �rst show that a cycle-cover that induces a satisfying assignment is proper withrespect to every clause component in G�. Let R be a cycle-cover that induces a satisfyingassignment v. Let c be a clause in � andH be the corresponding clause component. Considerthe literal �k in cj , assume w.l.o.g. that �k = xi.If v(xi) = TRUE, then R contains all the external edges in the T-cycle of xi. Byde�nition of the T-cycle of xi, it contains both the external edges Ik and Ok of H. Hencethese edges are in R.Otherwise, v(xi) = FALSE, so R does not contain any of the external edges in theT-cycle of xi. Therefore, neither Ik nor Ok of H are in R.It follows that for each literal �k in every clause, either both Ik and Ok are in R (If �k issatis�ed by v), or neither Ik nor Ok are in R (If �k is not satis�ed by v). Hence R satis�esthe second condition in the de�nition of properness, with respect to every clause component.As v is a satisfying assignment for �, every clause c has at least one literal that is satis�ed byv. Thus the input edge of H that corresponds to that literal must be in R. Thus R satis�esthe �rst condition as well.We now show that a cycle-cover that is proper with respect to every clause componentmust induce a satisfying assignment. Let R be a cycle-cover that is proper with respect toevery clause component. We de�ne an assignment vR so that a variable x in � is assignedtrue if the external edge in R that goes out of the variable node xi belongs to its T-cycleand false otherwise. Let x be some variable in �.If vR(x) = TRUE then the �rst edge in the T-cycle of x is in R. Notice that it impliesthat the �rst edge in the F-cycle of x is not in R (since R is a cycle-cover). Let c be a clausethat contains either x or :x and let H be the corresponding clause component. Since R isproper with respect to H, either both the input and output edges that correspond to thatliteral are in R, or neither are. It follows by easy induction that all the edges in the T-cycleof x and none of the edges of the F-cycle of x are in R. The case where vR(x) = FALSE istreated similarly. Therefore, R induces the assignment vR.Finally we show that the assignment vR satis�es �. Again, let c be a clause in � andH be the corresponding component clause. As R is proper with respect to H, at least oneinput edge of H is in R. Therefore, H must be on some T-cycle or F-cycle of some variable.Hence, the corresponding literal in c must be satis�ed by vR. Thus R induces vR which is asatisfying assignment.4.3 The properties of the Clause ComponentAs the condition of Lemma 1 depends only on the external edges, we can partition thecycle-covers of G� according to their use of external edges. Formally we haveDe�nition 8: Let F be a subset of external edges. We say that a set of internal edges C isa F-completion if F [C is a cycle-cover of G�. We denote by CF the set of all F -completions,and by RF we denote the set of resulting cycle-covers of G�. Note that CF may be empty.7

Since the weight of every external edges in G� is one, the weight of every cycle-coverR 2 RFequals to the product of the weights of its internal edges. Therefore for every set F of externaledges we have XR2RF W (R) = XC2CF W (C)We can partition the edges in every F -completion according to their membership in thedi�erent clause components. For every F -completion C, we denote by Cj the set of internaledges in C from the clause component Hj . Also, we denote the set fCjjC 2 CF g by CFj .Observation 2: For every subset F of external edges, the internal edges in di�erent clausecomponents can be chosen independently to form a F -completion. This is because internaledges in di�erent clause components never share a common node. Therefore, we can computethe sumPC2CF W (C) by computingPCj2CFj W (Cj) for each clause component Hj , and thenmultiplying these sums. That is, for every FXC2CF W (C) = Y1�j�m XCj2CFj W (Cj)The properties of the clause component can be expressed as constraints on F -completions.Let F be a set of external edges in G� and Hj be some clause component in G�:� If F is proper with respect to Hj then PC2CFj W (C) = 12.� Otherwise PC2CFj W (C) = 0.In Appendix A we describe a 7-node component with weights from the set f�1; 0; 1; 2; 3gthat satisfy these conditions.Lemma 2: For each 3-CNF formula � with m clauses, the graph G� satis�esPerm(G�) = 12m � S(�)Proof: The proof follows from these two claims :1. For each satisfying assignment v, the sum of weights of all the cycle-covers that inducev equals 12m.2. The sum of weights of all the other cycle-covers equals zero.Proof of claim 1: Let v be a satisfying assignment for �. Recall that all the cycle-coversthat induce v agree on their external edges. Let us denote this set of external edges by Fv.Notice that the set of the cycle-covers which induce v is exactly RFv . From Observation 2we get XR2RFv W (R) = XC2CFv W (C) = Y1�j�m XCj2CFvj W (Cj)Since v is a satisfying assignment, Fv is proper with respect to every clause component.From the properties of the clause component we have that for every j, PCj2CFvj W (Cj) = 12,and the proof of the �rst claim follows. 8

Proof of claim 2: Consider now the cycle-covers that do not induce any satisfying assign-ment. We partition these into equivalence classes according to their use of the external edgesof G�. Let F be a subset of external edges that is used by such equivalence class. Note thatthe equivalence class is exactly RF .Since the cycle-covers in RF do not induce any satisfying assignment, it follows that Fis not proper with respect to at least one clause component Hj . From the properties of theclause component we have for this j, PC2CFj W (C) = 0. Thus, we haveXR2RF W (R) = XC2CF W (C) = Y1�j�m XCj2CFj W (Cj) = 0and the proof of the second claim follows.5 01-Perm is #P-CompleteIn the previous section we have proved that computing the permanent of an integer matrix is#P-Hard with respect to many-one reductions. Let us de�ne the following three problems:� IntPerm - Given an integer matrix A, compute Perm(A).� NoNegPerm - Given a nonnegative integer matrix A, compute Perm(A).� 2PowersPerm - The same as NoNegPerm, where A entries can only be zeros or powersof 2.To show that computing the permanent of a 01-matrix is #P-Complete, we show the follow-ing chain of polynomial time many-one reductionsIntPerm / NoNegPerm / 2PowersPerm / 01Perm5.1 A Reduction from IntPerm to NoNegPermLet A be an n � n integer matrix in which no entry is larger than � in magnitude. Fromthe de�nition of the permanent it follows that jPerm(A)j � n! � �n. To compute Perm(A)it is su�cient to compute its value modulo Q for Q > 2n! � �n. Formally, given A we do thefollowing :� compute Q = 2n! � �n + 1 .� compute A0 = Amod Q.� compute P = Perm(A0)mod Q.� if P < Q=2 then Perm(A) = P . Otherwise Perm(A) = P �Q.Notice that the transformation from A into A0 is polynomial in n and log �, as the numberof bits that is needed to write Q is polynomial in n and log �.9

W(e) = 2 + 2 + . . . + 2
u v

xrx1 x2

1

1

u v

1

x1

x22

2

xr

1

2

1

1

x1

xr

x2Figure 2: Transforming an edge with weight w5.2 A Reduction from NoNegPerm to 2PowersPermLet G be a n-node weighted directed graph with non-negative weights, where the largestweight in G is W . We describe a transformation from G into weighted directed graph G0such that the weights in G0 are powers of 2, and Perm(G) = Perm(G0). The size of G0 ispolynomial in n and logW . The transformation is performed locally on each edge e in G.The edge e is replaced by a subgraph Le. Each replacement maintains the permanent of thegraph.Let e = (u; v) be an edge in G with weight w. we can represent w as a sum of increasingpowers of 2 - w = 2x1 + 2x2 + � � �+ 2xr ; 0 � x1 < x2 � � � < xr � logwThe subgraph Le is composed of r nodes, and 3r edges (As in Figure 2).There is a natural correspondence between cycle-covers of G and cycle-covers of G0 :Consider some cycle-cover R in G� If e is not in R then the only way to cover the new nodes in Le is to use all the self-loops.As the weight of all the self-loops is 1, the weight of the corresponding cycle-cover R0equals the weight of R.� On the other hand, if e = (u; v) is in R then in all the corresponding cycle-covers inG0 there must be a path from u to v. There are r such cycle-covers , each correspondsto a di�erent path from u to v. As the sum of the weights of these paths equals theweight of e, the sum of the weights of the corresponding cycle-covers equals the weightof R. 10

u v

1

x1

1

x2

1

xr

1 1 1

y1 y2 yr

u v
W(e) = 2 r

Figure 3: Transforming an edge with weight 2r5.3 A Reduction from 2PowersPerm to 01-PermLet G be a n-node weighted directed graph where all the weights in G are powers of 2,with maximal weight 2p. We describe a transformation from G into a digraph G0 (with 0-1weights), Such that Perm(G) = Perm(G0). The size of G0 is polynomial in n and p. Thistransformation is also performed locally on each edge e in G. Every edge with weight > 1 isreplaced by a subgraph Je. Each edge in Je has weight one, therefore the resulting graph G0is an unweighted directed graph. Each replacement maintains the permanent of the graph.Let e = (u; v) be an edge in G with weight w = 2r > 1. The subgraph Je is composed of2r nodes and 6r edges (As in Figure 3).There is a natural correspondence between cycle-covers of G and cycle-covers of G0.Consider some cycle-cover R in G� If e is not in R then the only way to cover the new nodes in Je is to use all the self-loops. As the weight of all the edges is 1, the weight of the corresponding cycle-coverR0 equals the weight of R.� On the other hand, if e = (u; v), with weight w = 2r, is in R then in the correspondingcycle-covers of G0 there must be a path from u to v. There are 2r such possible cycle-covers, each corresponds to a di�erent path from u to v. As each path has weight 1,the sum of weights of all these cycle-covers equals the weight or R.11

6 Related Topics6.1 Computing the Permanent Modulo pWe know that computing the permanent of a 01-matrix is hard, yet deciding whether thispermanent equals zero is easy. We consider the following variant of the above decisionproblem: Given a 01-matrix A and an integer p, is Perm(A) � 0 (mod p) ? We show thatthis problem is #P-Hard. First we show that this problem is hard for integer matrices, andthen we use the reduction from Section 5 to show that it is also hard for 01-matrices.Clearly, given an oracle that computes Perm(A) mod p (for every A and p), one cancompute Perm(A) by choosing a large enough p. Notice also that using the Chinese Re-mainder Theorem, it is su�cient to compute Perm(A) mod p for primes that are smallerthan n2 log �, where n is the size of A and � is the magnitude of the largest entry in A.The only thing left to show is how to compute Perm(A)mod p using an oracle that decideswhether Perm(A) � 0 (mod p).De�nition 9: The language ModPerm is de�ned as followsModPerm def= f< A; p > jPerm(A) � 0 (mod p)gwhere A is an integer matrix, and p is an integer. The language 01-ModPerm is de�nedsimilarly where A is a 01-matrix.The di�culty in using an oracle to ModPerm is that it seems hard to change the per-manent of a given matrix by additive factor. Notice that it is fairly simple to computePerm(A) mod p using an oracle that decides whether Perm(A) � 1 (mod p): One cansimply multiply the �rst row of A by 2 over and over again, until the permanent equals 1(mod p). This trick does not work with oracle to ModPerm. In the following lemma we showan algorithm that computes Perm(A) mod p using an oracle to ModPerm.Lemma 3: LetA be a n�n integer matrix, and let p be a prime. Computing Perm(A)modpcan be done in time polynomial in n and p using at most pn+ 12n2 calls to a ModPerm oracle.Proof: We give a constructive proof, by describing a recursive algorithm that computesPerm(A)mod p using a ModPerm oracle.For a 1 � 1 matrix, Perm(A)mod p can be computed directly. For n > 1, we considertwo cases:1. Perm(A) � 0 (mod p). In this case, one call to the ModPerm oracle is su�cient.2. Perm(A) 6� 0 (mod p). In this case, there is at least one minor of A, denoted by Aj1such that Perm(Aj1) 6� 0 (mod p). Using at most n calls to the oracle, �nd that minor.Assume w.l.o.g. that this minor is A11. The algorithm continues as follows:� Compute Perm(A11) mod p recursively.12

� De�ne a sequence of p� 1 matrices fBigp�1i=1 . For every 1 � i � p� 1, the matrixBi is identical to A, except that b11 = a11 + i. Clearly, for every Bi holdsPerm(Bi) = Perm(A) + i � Perm(A11)As Perm(A11) 6� 0 (mod p), and p is a prime, there is a unique index i such thatPerm(Bi) � 0 (mod p). Note thatPerm(A) � �i � Perm(A11) (mod p)Using at most p� 1 additional calls to the oracle, �nd that index, (denoted by i)and return (�i � Perm(A11)) mod p.The number of calls to the oracle is given by the recurrence T (n) � n+ T (n� 1) + p whichyields T (n) � pn + 12n2.Corollary 2: The language ModPerm is #P-Hard.Using the last two reductions from Section 5 we get,Corollary 3: The language 01-ModPerm is #P-Hard.Proof: We show a reduction ModPerm / 01-ModPerm. Given a matrix A and an integerp - � Compute the matrix A0 = A mod p.� Use the reductions from Section 5 on the matrix A0, and get a 01-matrix A00 such thatPerm(A00) = Perm(A0) � Perm(A) (mod p).� Use an oracle to the language 01-ModPerm, on the input < A00; p > to decide whetherPerm(A) � 0 (mod p).It was shown in [VV85] that computing Perm(A) modulo k for any �xed k that is nota power of two is NP-Hard (with respect to randomized polynomial reductions). Applyingour algorithm, we getCorollary 4: for every prime p > 2, the languageModPermp def= fA j Perm(A) � 0 (mod p)gis NP-Hard with respect to randomized polynomial reductions.
13

6.2 Polynomially bounded functions can not be #P-CompleteAll known #P-Complete functions have exponentially large range. On the other hand, itis easy to construct #P functions with small range, but these functions appear to be easyto compute. We conjecture that #P functions can not have small range unless they can becomputed e�ciently. We give support to this conjecture, by showing that under \reasonable"complexity assumptions, polynomially bounded functions can not be #P-complete. Weremark that there exist even binary functions that are #P-Hard, (e.g., ModPerm). It followsthat, under the same complexity assumptions, such functions can not be in #P.Recall that, by de�nition, PNP � P#P . Moreover, Toda showed ([Tod89]) that theentire polynomial time hierarchy is contained in P#P . Therefore, if PNP = P#P then thepolynomial time hierarchy collapses into �P2 .Lemma 4: Assuming PNP 6� P#P , a polynomially bounded function can not be #P-Complete.Proof: Assume, towards a contradiction, that there is a #P-Complete function f :f0; 1g? ! N such that for every x 2 f0; 1g?; f(x) � Q(jxj) where Q(�) is some polynomial.We de�ne the language Lf as follows:Lf def= f< x; k > j f(x) � kgClearly, one can compute f e�ciently given an oracle to Lf . As f 2 #P, there is a binaryrelation T such that f(x) = j f y : (x; y) 2 T g j. Therefore Lf can be represented asfollows: Lf = (< x; k > there exist k distincty's such that (x; y) 2 T)Since k can be bounded byQ(jxj), it follows that Lf 2 NP. This is because a nondeterministicpolynomial TM can guess k distinct y's and verify that for each of them holds (x; y) 2 T .As f can be computed e�ciently using a Lf -oracle and f is #P-Hard, it follows thatP#P = P f � PLf � PNPThis contradicts the assumption PNP 6� P#P .Acknowledgment: Thanks to Amos Beimel, Benny Chor, Oded Goldreich, Lee-Bath Nel-son, and Erez Petrank for their useful comments.References[Tod89] Toda S., \On the Computational Power of PP and �P", Proc. 30th IEEE Symp.on Foundations of Computer Science (1989), pp. 514-519.[Val79a] Valiant L.G., \The Complexity of Computing the Permanent", Theoretical Com-puter Science, Vol. 8 (1979), North-Holland Publishing Company, pp. 189-201.14

[Val79b] Valiant L.G., \The Complexity of Enumeration and Reliability Problems", SIAMJ. Comput., Vol 8, No. 3 (1979), pp. 410-421.[VV85] Valiant L.G., Vazirani V.V., \NP is as easy as detecting unique solutions", Proc.17th ACM Symp. ot Theory of Computing (1985), pp. 458-463.[Zan91] Zanko V., \#P-Completeness via Many-One Reductions", International J. ofFound. of Comp. Sci., Vol 2, No. 1 (1991), pp. 77-82.A Constructing the Clause ComponentThe clause component is a 7-node weighted directed graph with weights from the set f�1; 0; 1; 2; 3g.The input edges I1; I2; I3 enter nodes 1, 2 and 3 respectively. The output edges O1; O2; O3exit from nodes 5, 4, and 3 respectively.Denoting the corresponding 7� 7 matrix by A, the properties of this component can beexpressed as a set of constraints on the permanent of A itself and some of its sub-matrices.Denote by AIO the matrix A without the columns I and the rows O, we can write theconstraints on the clause component as follows :� Whenever all the input and output edges of the component are used, the sum over allcompletions in it must equal 12. This can be represented by the equationPerm(A1;2;35;4;3) = 12� Whenever two couples of matching input and output edges of the component are used,the sum over all completions in it must equal 12. This can be represented by theequations Perm(A2;34;3) = 12; P erm(A1;35;3) = 12;P erm(A1;25;4) = 12� Whenever a single couple of matching input and output edges of the component isused, the sum over all completions in it must equal 12. This can be represented by theequations Perm(A15) = 12; P erm(A24) = 12;P erm(A33) = 12� Whenever two input edges and two non-matching output edges of the component areused, the sum over all completions in it must equal 0. This can be represented by theequations Perm(A2;35;3) = 0; P erm(A2;35;4) = 0;P erm(A1;34;3) = 0; P erm(A1;35;4) = 0;P erm(A1;24;3) = 0; P erm(A1;25;3) = 0� Whenever an input edge and a non-matching output edge of the component are used,the sum over all completions i it must equal 0. This can be represented by the equationsPerm(A14) = 0; P erm(A13) = 0;P erm(A25) = 0; P erm(A23) = 0;P erm(A35) = 0; P erm(A34) = 015

� Whenever no input edge and no output edge of the component are used, the sum overall completions in it must equal 0. This can be represented by the equationPerm(A) = 0It can be veri�ed that the following 7�7 matrix satis�es all these conditions. As the matrixA satis�es the above constraints, the clause component indeed has the properties we use inthe proof of lemma 2. A = 0BBBBBBBBBBB@ 1 0 0 0 2 0 00 1 0 3 0 0 00 0 0 �1 �1 1 10 0 �1 2 �1 1 10 0 �1 �1 1 1 10 0 1 1 1 2 �10 0 1 1 1 0 1 1CCCCCCCCCCCA

16

