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Fully Homomorphic Encryption 
and Bootstrapping 



Fully Homomorphic Encryption (FHE) 

 A FHE scheme can evaluate unbounded depth circuits 

 Not limited by bound specified at Setup 

 Parameters (like size of ciphertext) do not depend on 

evaluated depth 

 So far, GSW scheme can evaluate only depth logN+1q 

 How do we make it fully homomorphic? 

 
 

 Bootstrapping: A way to get FHE… 

 

 

 



Self-Referential Encrypted 
Computation 



A Digression into Philosophy… 

 Can the human mind understand itself? 

 Or, as a mind becomes more complex, does the task of 

understanding also become more complex, so that self-

understanding it always just out of reach? 
 

 Self-reference often causes problems, even in 

mathematics and CS 

 Godel’s incompleteness theorem 

 Turing’s Halting Problem 



Philosophy Meets Cryptography 

 Can a homomorphic encryption scheme decrypt itself? 

 We can try to plug the decryption function Dec(·,·) into Eval. 

 If we run Evalpk(Dec(·,·), c1, …, ct), does it work? 

 Suppose our HE scheme can Eval depth-d circuits: 

 Is it always true that HE’s Dec function has depth > d? 

 Is Dec(·,·) always just beyond the Eval capacity of the HE scheme? 

 

 Bootstrapping = the process of running Eval on Dec(·,·).  



Bootstrapping: Assuming we can do it,  
why is it useful? 



Bootstrapping: Refreshing a Ciphertext 

f(μ1, μ2 ,…, μt) 

μ1 

… 

μ2 

μt 

f 

We have a noisy evaluated ciphertext y 

We want to get another y with less noise 

Bootstrapping refreshes ciphertexts, using the 

encrypted secret key. 

 

 So far, we can evaluate bounded-depth circuits f: 



 For ciphertext c, consider the function Dc(·) = Dec(·,c) 

 Suppose we can Eval depth d, but Dc(·) has depth d-1. 

 Include in the public key also Encpk(sk) 

 

 

 

 
 

 

Bootstrapping: Refreshing a Ciphertext 
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Bootstrapping Theorem (Informal) 

 Suppose Ɛ is a HE scheme 

 that can evaluate arithmetic circuits of depth d 

 whose decryption algorithm is a circuit of depth d-1 

 Call Ɛ a “bootstrappable” HE scheme 
 

 Thm: From a bootstrappable somewhat homomorphic 

scheme, we can construct a fully homomorphic scheme. 
 

 Technique: Refresh noisy ciphertexts by evaluating the 

decryption circuit homomorphically 

 



Bootstrapping: Can we do it? 



Let’s Look at the Decryption Circuit… 

 Typically in LWE-based encryption schemes, if c 

encrypts μ under secret key vector s, then: 

where [·]q denotes reduction modulo q into the 

range (-q/2,q/2]. 



Decryption in GSW 

 GSW fits the template:  (                   ) 



How Complex Is Decryption? 

 If q is polynomial (in the security parameter λ) then 
decryption is in NC1 (log-depth circuits). 

 But wait – isn’t q really large? 

 q depends on the Eval capacity of the scheme 

 Ideally, we would like the complexity of Dec to be 
independent of the Eval capacity. 



Modulus Reduction Magic Trick 

 Suppose c encrypts μ – that is, μ = [[<c,t>]q]2. 

 Let’s pick p<q and set c* = (p/q)¢c, rounded. 

 Crazy idea: Maybe it is true that: 

c* encrypts μ : μ = [[<c*,t>]p]2 (new inner modulus). 

 Surprisingly, this works! 

 

 After modulus reduction (and dimension reduction),  
the size of the ciphertext is independent of the 
complexity of the function that was evaluated!! 

 



Modulus Reduction Magic Trick, Details 

Scaling lemma: Let p<q be odd moduli. Suppose μ = [[<c,t>]q]2 

and |[<c,t>]q| < q/2 - (q/p)·l1(t).   Set c’ = (p/q)c and                

set c” to be the integer vector closest to c’ such that c” = c mod 2.                     

Then μ = [[<c”,t>]p]2.  

 

Annotated Proof: 
1. For some k, [<c,t>]q = <c,t> - kq. 

2. (p/q)|[<c,t>]q| = <c’,t> - kp. 

3. |<c”-c’,t>|  < l1(t). 

4.  Thus, |<c”,t>-kp|< (p/q) |[<c,t>]q| + l1(t) < p/2. 

5.  So, [<c”,t>]p = <c”,t> – kp.  

6.  Since c” = c mod 2 and p = q mod 2, we get [<c’’,t>]p]2 = [<c,t>]q]2. 

 

1. Imagine <c,t> is close to kq. 

2. Then <c’,t> is close to kp. 

3. <c”,t> also close to kp if s small. 



Modulus Reduction Magic Trick, Notes 

 [ACPS 2009] proved LWE hard even if t is small: 

 t chosen from the same distribution as the noise e 

 With coefficients of size poly in the security parameter. 

 For t of polynomial size, we can modulus reduce to a 

modulus p of polynomial size, before bootstrapping. 

 

 Bottom Line: After some processing, decryption for 

LWE-based encryption schemes (like GSW) is in NC1. 

 Complexity of Dec is independent of Eval capacity. 



Evaluating NC1 Circuits in GSW 

 Naïve way: Just to log levels of NAND 

 Each level multiplies noise by polynomial factor. 

 Log levels multiplies noise by quasi-polynomial factor. 

 Bad consequence = weak security: Based on LWE for 

quasi-polynomial approximation factors. 



Focusing on Brakerski and Vaikuntanathan’s method 

to bootstrap the Gentry-Sahai-Waters scheme 

Part II: Bootstrapping and 
Barrington’s Theorem 



Better Way to Evaluate NC1 Circuits? 

 Goal: Base security of FHE on LWE with poly factors. 

 Evaluate NC1 circuits in a more “noise-friendly” way so that 

there is only polynomial noise blowup. 

 

 Barrington’s Theorem 

 If f is computable by a d-depth Boolean circuit, then it is 

computable by a width-5 permutation branching program 

of length 4d.  

 Corollary: every function in NC1 has a polynomial-length BP. 

 

 



Width-5 Permutation Branching Programs 

 BP for function f: 

 Consists of labeled permutations in the permutation group S5 

(which we represent as 5x5 permutation matrices) 

 S5 is a non-abelian group: maybe ab ≠ ba. 

 To evaluate BP (hence f) on input X: 

 Map X to a subset SX of the matrices (using labels) 

 Compute product of the matrices in SX 

 Output 1 if the product is the identity matrix, 0 otherwise    



Width-5 Permutation Branching Programs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        

 Each Ai,b is a 5x5 permutation matrix. 

 This BP takes 4-bit inputs and has length 9 
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Width-5 Permutation Branching Programs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        

 Each Ai,b is a 5x5 permutation matrix. 

 This BP takes 4-bit inputs and has length 9 

 Multiply the chosen 9 matrices together 

 If product is I, output 1.  Otherwise, output 0. 

0 1 1 0 



Brakerski and Vaikuntanathan’s Insight 

 Multiplications in GSW increase noise asymmetrically. 

 

 Moreover, this asymmetry is useful. 

 Can exploit it to evaluate permutation BPs with 

surprisingly little noise growth. 



Warm Up: High Fan-in AND Gates 

 Binary Tree approach: AND t ciphertexts using a (log t)-
depth binary tree. 

 Noise grows by (N+1)log t factor. 
 

 Left-to-right approach: AND t ciphertexts by multiplying 
sequentially from left to right 

 The i-th multiplication only adds Ci’·ei+1 to the error. 

 Ci’ ∈ {0,1}NxN is the aggregate-so-far 

 ei+1 is the (small) error of the (i+1)-th ciphertext. 

 Noise grows by t(N+1) factor. 
 

 Right-to-left approach: horrible! 



Multiplying Permutation Matrices 

 Given kxk permutation matrices encrypted entry-wise, 

multiplying them left-to-right is best. 

 Multiplying in the (i+1)-th permutation matrix adds 

about k(N+1) times the error of fresh ciphertexts. 

 Essential fact used in analysis: In a permutation matrix, 

only one entry per column is nonzero. 



Lattice-Based FHE as Secure as PKE [BV14] 

 Bottom line: 

 GSW decryption can be computed homomorphically 

while increasing noise by a poly factor. 

 FHE can be based on LWE with poly approx factors. 

 The exponent can be made ε-close to that of current LWE-

based PKE schemes. 



A somewhat promising framework for FHE 

inspired by Barrington’s Theorem 

Part IV: FHE from Non-Abelian 
Groups? 



Goal: Totally Different Approach to FHE 

 FHE without noise? 

 Might also make (expensive) bootstrapping unnecessary 

 

 How about FHE based on non-abelian groups? 

 Might avoid linear algebra attacks for ring-based schemes 

 Another chance to apply Barrington.  

 Framework investigated by Nuida 

 ePrint 2014/07: “A Simple Framework for Noise-Free 
Construction of Fully Homomorphic Encryption from a Special 
Class of Non-commutative Groups” 



Perfect Group Pairs 

Groups (G, H) such that: 
 

 H is a (proper, nontrivial) normal subgroup of G 

 H = {ghg-1 : g ∈ G, h ∈ H} 
 

 G and H are perfect groups 

 Commutator subgroup [G,G] = <g1g2g1
-1g2

-1: g1,g2 ∈ G> 

 G is “perfect” when G = [G,G] 



Efficient Group Operations 

 
 

 Randomization: Given a group (say, G) represented 

by some generators, output ≤n “random” G-

elements that generate the group. 



Hardness Assumption 

 

 

 Subgroup Decision Assumption (for perfect group pairs): 

Given ≤n elements that generate either G or H, hard to 

distinguish which. 



FHE Construction 

 

 Public key: 

 An encryption of 0: n elements that generate G 

 An encryption of 1: n elements that generate H 

 Secret key: Trapdoor to distinguish G from H                      
(represented by generators). 

 Encryption: Randomize the encryption of 0 or 1. 
 

 AND gate: Given generators of groups K1, K2, output 
generators of the union of K1,K2. (Use union of generators.) 

 

 OR gate: Given generators of groups K1,K2, output generators 
of intersection of K1,K2. (Use commutator.) 

 G = [G,G], H = [H,H], H = [G,H]. 



Existence? 

 

 Need perfect group pairs with hard distinguishing 

problem (and efficient operations and a trapdoor) 

 

 Example of perfect group pair with easy dist. problem: 

 Direct product: G = H × K, where H and K are perfect 



Failed Attempt 

Form of G elements Form of H elements 

 Linear algebra attack: Encryptions of 0 in proper subspace 

 Is there a patch? Can we use non-abelian groups without 

fatally embedding them in a ring? (representation theory) 



Thank You!  Questions? 



Barrington and Non-Abelian Groups 

 NC1 circuits to a product of permutations 

 On each circuit wire w: 

 “0” is represented by the identity permutation ε 

 “1” is represented by some non-identity permutation πw 

 AND(w1,w2) = πw1◦πw2◦πw1
-1πw2

-1  

 Equals ε (“0”) if either w1 or w2 is ε (“0”) 

 Equals a non-identity permutation if the inputs are non-

commuting non-identity permutations πw1 and πw2. 



The Noise Problem Revisited 

 Ciphertext noise grows exponentially with depth d.  

 Hence log q and dimension of ciphertext matrices grow 

linearly with d. 
 

 Want overhead to be independent of d. 

 To only depend on the security parameter λ. 

 

 Achievable!  

 Via a technique called bootstrapping [Gentry ’09]. 

 


