
China Summer School on Lattices and Cryptography

Craig Gentry and Shai Halevi

June 3, 2014

Fully Homomorphic Encryption
and Bootstrapping

Fully Homomorphic Encryption (FHE)

 A FHE scheme can evaluate unbounded depth circuits

 Not limited by bound specified at Setup

 Parameters (like size of ciphertext) do not depend on

evaluated depth

 So far, GSW scheme can evaluate only depth logN+1q

 How do we make it fully homomorphic?

 Bootstrapping: A way to get FHE…

Self-Referential Encrypted
Computation

A Digression into Philosophy…

 Can the human mind understand itself?

 Or, as a mind becomes more complex, does the task of

understanding also become more complex, so that self-

understanding it always just out of reach?

 Self-reference often causes problems, even in

mathematics and CS

 Godel’s incompleteness theorem

 Turing’s Halting Problem

Philosophy Meets Cryptography

 Can a homomorphic encryption scheme decrypt itself?

 We can try to plug the decryption function Dec(·,·) into Eval.

 If we run Evalpk(Dec(·,·), c1, …, ct), does it work?

 Suppose our HE scheme can Eval depth-d circuits:

 Is it always true that HE’s Dec function has depth > d?

 Is Dec(·,·) always just beyond the Eval capacity of the HE scheme?

 Bootstrapping = the process of running Eval on Dec(·,·).

Bootstrapping: Assuming we can do it,
why is it useful?

Bootstrapping: Refreshing a Ciphertext

f(μ1, μ2 ,…, μt)

μ1

…

μ2

μt

f

We have a noisy evaluated ciphertext y

We want to get another y with less noise

Bootstrapping refreshes ciphertexts, using the

encrypted secret key.

 So far, we can evaluate bounded-depth circuits f:

 For ciphertext c, consider the function Dc(·) = Dec(·,c)

 Suppose we can Eval depth d, but Dc(·) has depth d-1.

 Include in the public key also Encpk(sk)

Bootstrapping: Refreshing a Ciphertext

Dc

y

sk1

sk2

skn

…

c

Dc(sk)

= Dec(sk,c) = y

sk1

sk2

skn

… c' =

Bootstrapping Theorem (Informal)

 Suppose Ɛ is a HE scheme

 that can evaluate arithmetic circuits of depth d

 whose decryption algorithm is a circuit of depth d-1

 Call Ɛ a “bootstrappable” HE scheme

 Thm: From a bootstrappable somewhat homomorphic

scheme, we can construct a fully homomorphic scheme.

 Technique: Refresh noisy ciphertexts by evaluating the

decryption circuit homomorphically

Bootstrapping: Can we do it?

Let’s Look at the Decryption Circuit…

 Typically in LWE-based encryption schemes, if c

encrypts μ under secret key vector s, then:

where [·]q denotes reduction modulo q into the

range (-q/2,q/2].

Decryption in GSW

 GSW fits the template: ()

How Complex Is Decryption?

 If q is polynomial (in the security parameter λ) then
decryption is in NC1 (log-depth circuits).

 But wait – isn’t q really large?

 q depends on the Eval capacity of the scheme

 Ideally, we would like the complexity of Dec to be
independent of the Eval capacity.

Modulus Reduction Magic Trick

 Suppose c encrypts μ – that is, μ = [[<c,t>]q]2.

 Let’s pick p<q and set c* = (p/q)¢c, rounded.

 Crazy idea: Maybe it is true that:

c* encrypts μ : μ = [[<c*,t>]p]2 (new inner modulus).

 Surprisingly, this works!

 After modulus reduction (and dimension reduction),
the size of the ciphertext is independent of the
complexity of the function that was evaluated!!

Modulus Reduction Magic Trick, Details

Scaling lemma: Let p<q be odd moduli. Suppose μ = [[<c,t>]q]2

and |[<c,t>]q| < q/2 - (q/p)·l1(t). Set c’ = (p/q)c and

set c” to be the integer vector closest to c’ such that c” = c mod 2.

Then μ = [[<c”,t>]p]2.

Annotated Proof:
1. For some k, [<c,t>]q = <c,t> - kq.

2. (p/q)|[<c,t>]q| = <c’,t> - kp.

3. |<c”-c’,t>| < l1(t).

4. Thus, |<c”,t>-kp|< (p/q) |[<c,t>]q| + l1(t) < p/2.

5. So, [<c”,t>]p = <c”,t> – kp.

6. Since c” = c mod 2 and p = q mod 2, we get [<c’’,t>]p]2 = [<c,t>]q]2.

1. Imagine <c,t> is close to kq.

2. Then <c’,t> is close to kp.

3. <c”,t> also close to kp if s small.

Modulus Reduction Magic Trick, Notes

 [ACPS 2009] proved LWE hard even if t is small:

 t chosen from the same distribution as the noise e

 With coefficients of size poly in the security parameter.

 For t of polynomial size, we can modulus reduce to a

modulus p of polynomial size, before bootstrapping.

 Bottom Line: After some processing, decryption for

LWE-based encryption schemes (like GSW) is in NC1.

 Complexity of Dec is independent of Eval capacity.

Evaluating NC1 Circuits in GSW

 Naïve way: Just to log levels of NAND

 Each level multiplies noise by polynomial factor.

 Log levels multiplies noise by quasi-polynomial factor.

 Bad consequence = weak security: Based on LWE for

quasi-polynomial approximation factors.

Focusing on Brakerski and Vaikuntanathan’s method

to bootstrap the Gentry-Sahai-Waters scheme

Part II: Bootstrapping and
Barrington’s Theorem

Better Way to Evaluate NC1 Circuits?

 Goal: Base security of FHE on LWE with poly factors.

 Evaluate NC1 circuits in a more “noise-friendly” way so that

there is only polynomial noise blowup.

 Barrington’s Theorem

 If f is computable by a d-depth Boolean circuit, then it is

computable by a width-5 permutation branching program

of length 4d.

 Corollary: every function in NC1 has a polynomial-length BP.

Width-5 Permutation Branching Programs

 BP for function f:

 Consists of labeled permutations in the permutation group S5

(which we represent as 5x5 permutation matrices)

 S5 is a non-abelian group: maybe ab ≠ ba.

 To evaluate BP (hence f) on input X:

 Map X to a subset SX of the matrices (using labels)

 Compute product of the matrices in SX

 Output 1 if the product is the identity matrix, 0 otherwise

Width-5 Permutation Branching Programs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 Each Ai,b is a 5x5 permutation matrix.

 This BP takes 4-bit inputs and has length 9

0

Width-5 Permutation Branching Programs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 0 1

 Each Ai,b is a 5x5 permutation matrix.

 This BP takes 4-bit inputs and has length 9

Width-5 Permutation Branching Programs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 Each Ai,b is a 5x5 permutation matrix.

 This BP takes 4-bit inputs and has length 9

 Multiply the chosen 9 matrices together

 If product is I, output 1. Otherwise, output 0.

0 1 1 0

Brakerski and Vaikuntanathan’s Insight

 Multiplications in GSW increase noise asymmetrically.

 Moreover, this asymmetry is useful.

 Can exploit it to evaluate permutation BPs with

surprisingly little noise growth.

Warm Up: High Fan-in AND Gates

 Binary Tree approach: AND t ciphertexts using a (log t)-
depth binary tree.

 Noise grows by (N+1)log t factor.

 Left-to-right approach: AND t ciphertexts by multiplying
sequentially from left to right

 The i-th multiplication only adds Ci’·ei+1 to the error.

 Ci’ ∈ {0,1}NxN is the aggregate-so-far

 ei+1 is the (small) error of the (i+1)-th ciphertext.

 Noise grows by t(N+1) factor.

 Right-to-left approach: horrible!

Multiplying Permutation Matrices

 Given kxk permutation matrices encrypted entry-wise,

multiplying them left-to-right is best.

 Multiplying in the (i+1)-th permutation matrix adds

about k(N+1) times the error of fresh ciphertexts.

 Essential fact used in analysis: In a permutation matrix,

only one entry per column is nonzero.

Lattice-Based FHE as Secure as PKE [BV14]

 Bottom line:

 GSW decryption can be computed homomorphically

while increasing noise by a poly factor.

 FHE can be based on LWE with poly approx factors.

 The exponent can be made ε-close to that of current LWE-

based PKE schemes.

A somewhat promising framework for FHE

inspired by Barrington’s Theorem

Part IV: FHE from Non-Abelian
Groups?

Goal: Totally Different Approach to FHE

 FHE without noise?

 Might also make (expensive) bootstrapping unnecessary

 How about FHE based on non-abelian groups?

 Might avoid linear algebra attacks for ring-based schemes

 Another chance to apply Barrington.

 Framework investigated by Nuida

 ePrint 2014/07: “A Simple Framework for Noise-Free
Construction of Fully Homomorphic Encryption from a Special
Class of Non-commutative Groups”

Perfect Group Pairs

Groups (G, H) such that:

 H is a (proper, nontrivial) normal subgroup of G

 H = {ghg-1 : g ∈ G, h ∈ H}

 G and H are perfect groups

 Commutator subgroup [G,G] = <g1g2g1
-1g2

-1: g1,g2 ∈ G>

 G is “perfect” when G = [G,G]

Efficient Group Operations

 Randomization: Given a group (say, G) represented

by some generators, output ≤n “random” G-

elements that generate the group.

Hardness Assumption

 Subgroup Decision Assumption (for perfect group pairs):

Given ≤n elements that generate either G or H, hard to

distinguish which.

FHE Construction

 Public key:

 An encryption of 0: n elements that generate G

 An encryption of 1: n elements that generate H

 Secret key: Trapdoor to distinguish G from H
(represented by generators).

 Encryption: Randomize the encryption of 0 or 1.

 AND gate: Given generators of groups K1, K2, output
generators of the union of K1,K2. (Use union of generators.)

 OR gate: Given generators of groups K1,K2, output generators
of intersection of K1,K2. (Use commutator.)

 G = [G,G], H = [H,H], H = [G,H].

Existence?

 Need perfect group pairs with hard distinguishing

problem (and efficient operations and a trapdoor)

 Example of perfect group pair with easy dist. problem:

 Direct product: G = H × K, where H and K are perfect

Failed Attempt

Form of G elements Form of H elements

 Linear algebra attack: Encryptions of 0 in proper subspace

 Is there a patch? Can we use non-abelian groups without

fatally embedding them in a ring? (representation theory)

Thank You! Questions?

Barrington and Non-Abelian Groups

 NC1 circuits to a product of permutations

 On each circuit wire w:

 “0” is represented by the identity permutation ε

 “1” is represented by some non-identity permutation πw

 AND(w1,w2) = πw1◦πw2◦πw1
-1πw2

-1

 Equals ε (“0”) if either w1 or w2 is ε (“0”)

 Equals a non-identity permutation if the inputs are non-

commuting non-identity permutations πw1 and πw2.

The Noise Problem Revisited

 Ciphertext noise grows exponentially with depth d.

 Hence log q and dimension of ciphertext matrices grow

linearly with d.

 Want overhead to be independent of d.

 To only depend on the security parameter λ.

 Achievable!

 Via a technique called bootstrapping [Gentry ’09].

