Fully Homomorphic Encryption and Bootstrapping

Craig Gentry and Shai Halevi

June 3, 2014

China Summer School on Lattices and Cryptography

Fully Homomorphic Encryption (FHE)

A FHE scheme can evaluate unbounded depth circuits

- Not limited by bound specified at Setup
- Parameters (like size of ciphertext) do not depend on evaluated depth
- So far, GSW scheme can evaluate only depth log_{N+1}q
 How do we make it *fully* homomorphic?

Bootstrapping: A way to get FHE...

Self-Referential Encrypted Computation

A Digression into Philosophy...

- Can the human mind understand itself?
 - Or, as a mind becomes more complex, does the task of understanding also become more complex, so that selfunderstanding it always just out of reach?
- Self-reference often causes problems, even in mathematics and CS
 - Godel's incompleteness theorem
 - Turing's Halting Problem

Philosophy Meets Cryptography

Can a homomorphic encryption scheme decrypt itself?

- \square We can try to plug the decryption function Dec(\cdot , \cdot) into Eval.
- If we run $Eval_{pk}(Dec(\cdot, \cdot), c_1, \dots, c_t)$, does it work?
- Suppose our HE scheme can Eval depth-d circuits:
 - Is it always true that HE's Dec function has depth > d?
 - Is Dec(·,·) always just beyond the Eval capacity of the HE scheme?

Bootstrapping = the process of running Eval on $Dec(\cdot, \cdot)$.

Bootstrapping: Assuming we can do it, why is it useful?

Bootstrapping: Refreshing a Ciphertext

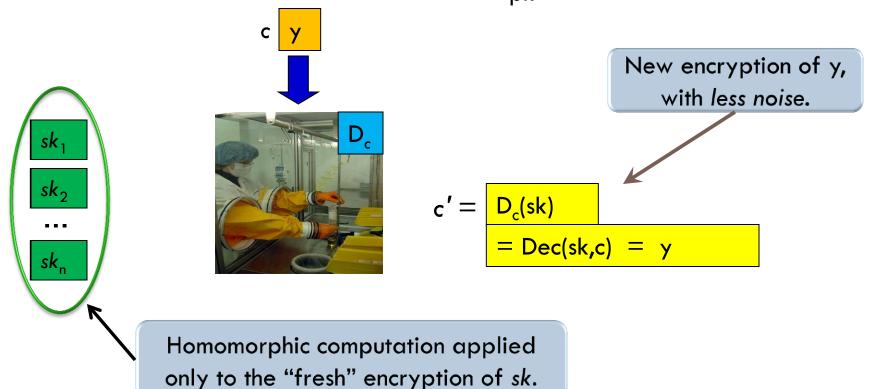
□ So far, we can evaluate bounded-depth circuits f:

 $f(\mu_1, \mu_2, ..., \mu_t)$

We have a noisy evaluated ciphertext y We want to get another y with less noise Bootstrapping refreshes ciphertexts, using the encrypted secret key.

Bootstrapping: Refreshing a Ciphertext

- \Box For ciphertext c, consider the function $D_c(\cdot) = Dec(\cdot,c)$
- Suppose we can Eval depth d, but D_c(·) has depth d-1.
 Include in the public key also Enc_{pk}(sk)



Bootstrapping Theorem (Informal)

- □ Suppose & is a HE scheme
 - that can evaluate arithmetic circuits of depth d
 - whose decryption algorithm is a circuit of depth d-1
- □ Call & a "bootstrappable" HE scheme
- Thm: From a bootstrappable somewhat homomorphic scheme, we can construct a fully homomorphic scheme.
- Technique: Refresh noisy ciphertexts by evaluating the decryption circuit homomorphically

Bootstrapping: Can we do it?

Let's Look at the Decryption Circuit...

Typically in LWE-based encryption schemes, if c encrypts μ under secret key vector s, then:

 $\mu = [[\langle \mathbf{c}, \mathbf{t} \rangle]_q]_2$

where $[\cdot]_q$ denotes reduction modulo q into the range (-q/2,q/2].

Decryption in GSW

 \square GSW fits the template: ($\mu = [[\langle \mathbf{c}, \mathbf{t} \rangle]_q]_2$)

$$\blacktriangleright \mathbf{C} \cdot \mathbf{v} = \mu \cdot \mathbf{v} + 2 \cdot \mathbf{e} \mod q$$

$$\blacktriangleright \langle \mathbf{c}, \mathbf{v} \rangle = \mu + 2 \cdot e \mod q$$

$$\blacktriangleright \langle \mathsf{BitDecomp}^{-1}(\mathbf{c}), \mathbf{t} \rangle = \mu + 2 \cdot e \mod q$$

$$[[\langle \mathsf{Bit}\mathsf{Decomp}^{-1}(\mathbf{c}),\mathbf{t}\rangle]_q]_2 = \mu$$

How Complex Is Decryption?

$$\mu = [[\langle \mathbf{c}, \mathbf{t} \rangle]_q]_2$$

- If q is polynomial (in the security parameter λ) then decryption is in NC1 (log-depth circuits).
 - But wait isn't q really large?
 - q depends on the Eval capacity of the scheme
 - Ideally, we would like the complexity of Dec to be independent of the Eval capacity.

Modulus Reduction Magic Trick

- □ Suppose c encrypts μ − that is, $\mu = [[<c,t>]_q]_2$.
- □ Let's pick p<q and set $c^* = (p/q)$ ¢c, rounded.
- Crazy idea: Maybe it is true that:

c* encrypts µ : µ = [[<c*,t>]_p]₂ (new inner modulus).
 □ Surprisingly, this works!

After modulus reduction (and dimension reduction), the size of the ciphertext is independent of the complexity of the function that was evaluated!!

Modulus Reduction Magic Trick, Details

<u>Scaling lemma</u>: Let p<q be odd moduli. Suppose $\mu = [[<c,t>]_q]_2$ and $|[<c,t>]_q| < q/2 - (q/p) \cdot l_1(t)$. Set c' = (p/q)c and set c" to be the integer vector closest to c' such that c" = c mod 2. Then $\mu = [[<c",t>]_p]_2$.

Modulus Reduction Magic Trick, Notes

- [ACPS 2009] proved LWE hard even if t is small:
 t chosen from the same distribution as the noise e
 With coefficients of size poly in the security parameter.
 For t of polynomial size, we can modulus reduce to a modulus p of polynomial size, before bootstrapping.
- Bottom Line: After some processing, decryption for LWE-based encryption schemes (like GSW) is in NC1.
 Complexity of Dec is independent of Eval capacity.

Evaluating NC1 Circuits in GSW

- Naïve way: Just to log levels of NAND
- Each level multiplies noise by polynomial factor.

$$\mathbf{C}^{\text{NAND}} \cdot \mathbf{v} = (\mathbf{I} - \mathbf{C_1} \cdot \mathbf{C_2}) \cdot \mathbf{v}$$

= $(1 - \mu_1 \cdot \mu_2) \cdot \mathbf{v} - (\mu_2 \cdot \mathbf{e_1} + \mathbf{C_1} \cdot \mathbf{e_2})$

- Log levels multiplies noise by quasi-polynomial factor.
- Bad consequence = weak security: Based on LWE for quasi-polynomial approximation factors.

Part II: Bootstrapping and Barrington's Theorem

Focusing on Brakerski and Vaikuntanathan's method to bootstrap the Gentry-Sahai-Waters scheme

Better Way to Evaluate NC1 Circuits?

- □ Goal: Base security of FHE on LWE with poly factors.
 - Evaluate NC1 circuits in a more "noise-friendly" way so that there is only polynomial noise blowup.

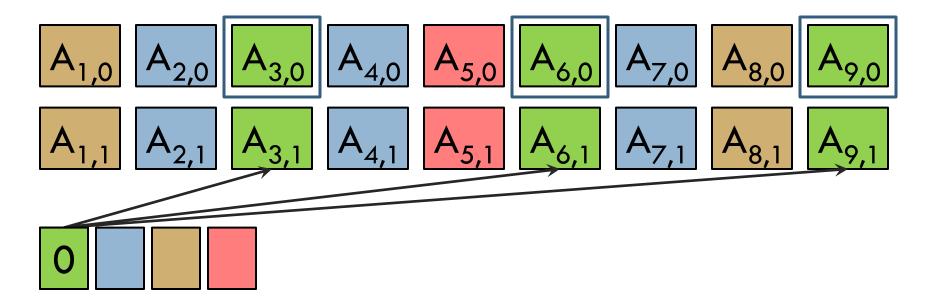
- Barrington's Theorem
 - If f is computable by a d-depth Boolean circuit, then it is computable by a width-5 permutation branching program of length 4^d.
 - Corollary: every function in NC1 has a polynomial-length BP.

□ BP for function f:

- Consists of labeled permutations in the permutation group S₅ (which we represent as 5x5 permutation matrices)
- \square S₅ is a non-abelian group: maybe ab \neq ba.

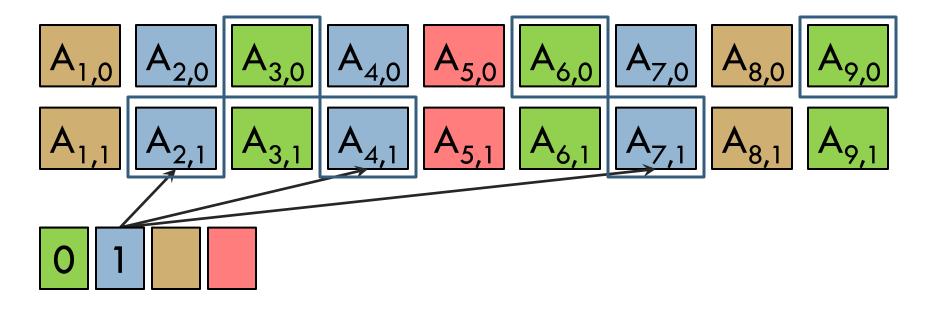
□ To evaluate BP (hence f) on input X:

- \square Map X to a subset S_X of the matrices (using labels)
- \blacksquare Compute product of the matrices in S_{χ}
- Output 1 if the product is the identity matrix, 0 otherwise



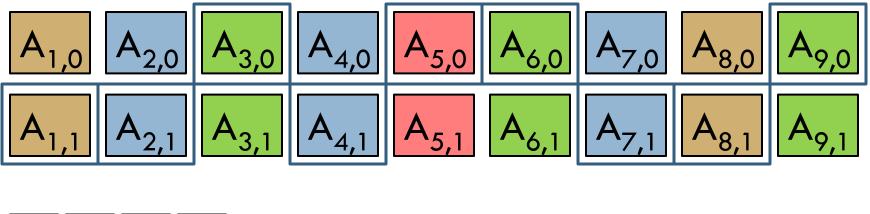
 \square Each A_{i.b} is a 5x5 permutation matrix.

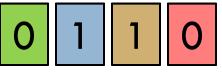
This BP takes 4-bit inputs and has length 9



 \square Each A_{i,b} is a 5x5 permutation matrix.

This BP takes 4-bit inputs and has length 9





- Each A_{i,b} is a 5x5 permutation matrix.
- This BP takes 4-bit inputs and has length 9
- Multiply the chosen 9 matrices together
 - □ If product is I, output 1. Otherwise, output 0.

Brakerski and Vaikuntanathan's Insight

Multiplications in GSW increase noise asymmetrically.

□ Moreover, this asymmetry is useful.

Can exploit it to evaluate permutation BPs with surprisingly little noise growth.

Warm Up: High Fan-in AND Gates

$$\mathbf{C_1} \cdot \mathbf{C_2} \cdot \mathbf{v} = \mu_1 \cdot \mu_2 \cdot \mathbf{v} + (\mu_2 \cdot \mathbf{e_1} + \mathbf{C_1} \cdot \mathbf{e_2})$$

Binary Tree approach: AND t ciphertexts using a (log t)depth binary tree.

Noise grows by (N+1)^{log t} factor.

- Left-to-right approach: AND t ciphertexts by multiplying sequentially from left to right
 - **The i-th multiplication only adds** $C_i' \cdot e_{i+1}$ to the error.
 - \blacksquare C_i' $\in \{0,1\}^{N\times N}$ is the aggregate-so-far
 - e_{i+1} is the (small) error of the (i+1)-th ciphertext.
 - Noise grows by t(N+1) factor.
- Right-to-left approach: horrible!

Multiplying Permutation Matrices

$$\mathbf{C_1} \cdot \mathbf{C_2} \cdot \mathbf{v} = \mu_1 \cdot \mu_2 \cdot \mathbf{v} + (\mu_2 \cdot \mathbf{e_1} + \mathbf{C_1} \cdot \mathbf{e_2})$$

- Given kxk permutation matrices encrypted entry-wise, multiplying them left-to-right is best.
- Multiplying in the (i+1)-th permutation matrix adds about k(N+1) times the error of fresh ciphertexts.
- Essential fact used in analysis: In a permutation matrix, only one entry per column is nonzero.

Lattice-Based FHE as Secure as PKE [BV14]

Bottom line:

- GSW decryption can be computed homomorphically while increasing noise by a poly factor.
- FHE can be based on LWE with poly approx factors.
 - The exponent can be made ɛ-close to that of current LWEbased PKE schemes.

Part IV: FHE from Non-Abelian Groups?

A somewhat promising framework for FHE inspired by Barrington's Theorem

Goal: Totally Different Approach to FHE

□ FHE without noise?

Might also make (expensive) bootstrapping unnecessary

How about FHE based on non-abelian groups?

- Might avoid linear algebra attacks for ring-based schemes
- Another chance to apply Barrington. ③
- Framework investigated by Nuida
 - ePrint 2014/07: "A Simple Framework for Noise-Free Construction of Fully Homomorphic Encryption from a Special Class of Non-commutative Groups"

Perfect Group Pairs

Groups (G, H) such that:

- □ H is a (proper, nontrivial) normal subgroup of G
 □ H = {ghg⁻¹ : g ∈ G, h ∈ H}
- □ G and H are perfect groups
 □ Commutator subgroup [G,G] = <g₁g₂g₁⁻¹g₂⁻¹: g₁,g₂ ∈ G>
 □ G is "perfect" when G = [G,G]

Efficient Group Operations

□ Randomization: Given a group (say, G) represented by some generators, output ≤n "random" Gelements that generate the group.

Hardness Assumption

□ Subgroup Decision Assumption (for perfect group pairs): Given ≤n elements that generate either G or H, hard to distinguish which.

FHE Construction

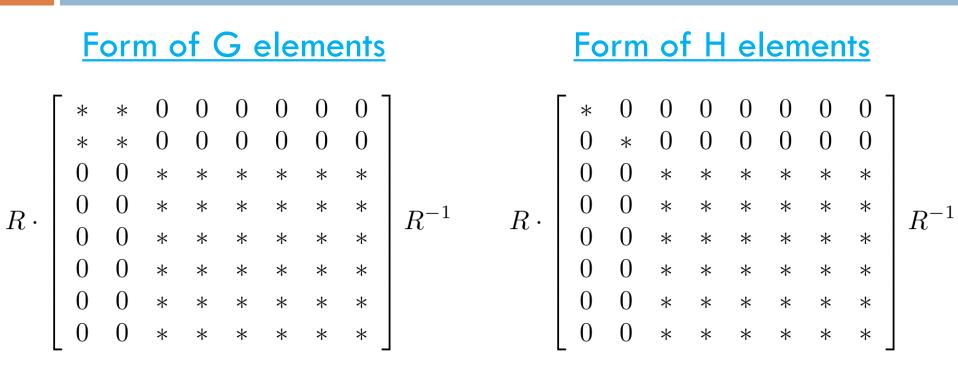
Public key:

- An encryption of 0: n elements that generate G
- An encryption of 1: n elements that generate H
- Secret key: Trapdoor to distinguish G from H (represented by generators).
- Encryption: Randomize the encryption of 0 or 1.
- AND gate: Given generators of groups K1, K2, output generators of the union of K1,K2. (Use union of generators.)
- OR gate: Given generators of groups K1,K2, output generators of intersection of K1,K2. (Use commutator.)
 - □ G = [G,G], H = [H,H], H = [G,H].

Need perfect group pairs with hard distinguishing problem (and efficient operations and a trapdoor)

Example of perfect group pair with easy dist. problem:
 Direct product: G = H × K, where H and K are perfect

Failed Attempt



Linear algebra attack: Encryptions of 0 in proper subspace

 Is there a patch? Can we use non-abelian groups without fatally embedding them in a ring? (representation theory)

Thank You! Questions?

Barrington and Non-Abelian Groups

- NC1 circuits to a product of permutations
- □ On each circuit wire w:
 - \square "0" is represented by the identity permutation ϵ
 - \blacksquare "1" is represented by some non-identity permutation π_w
- $\square \text{ AND(w1,w2)} = \pi_{w1} \circ \pi_{w2} \circ \pi_{w1} \circ$
 - **Equals** ϵ ("0") if either w1 or w2 is ϵ ("0")
 - Equals a non-identity permutation if the inputs are noncommuting non-identity permutations π_{w1} and π_{w2} .

The Noise Problem Revisited

- □ Ciphertext noise grows exponentially with depth d.
 - Hence log q and dimension of ciphertext matrices grow linearly with d.
- Want overhead to be independent of d.
 To only depend on the security parameter λ.
- Achievable!
 - Via a technique called bootstrapping [Gentry '09].