
China Summer School on Lattices and Cryptography

Craig Gentry and Shai Halevi

June 3, 2014

Fully Homomorphic Encryption
and Bootstrapping

Fully Homomorphic Encryption (FHE)

 A FHE scheme can evaluate unbounded depth circuits

 Not limited by bound specified at Setup

 Parameters (like size of ciphertext) do not depend on

evaluated depth

 So far, GSW scheme can evaluate only depth logN+1q

 How do we make it fully homomorphic?

 Bootstrapping: A way to get FHE…

Self-Referential Encrypted
Computation

A Digression into Philosophy…

 Can the human mind understand itself?

 Or, as a mind becomes more complex, does the task of

understanding also become more complex, so that self-

understanding it always just out of reach?

 Self-reference often causes problems, even in

mathematics and CS

 Godel’s incompleteness theorem

 Turing’s Halting Problem

Philosophy Meets Cryptography

 Can a homomorphic encryption scheme decrypt itself?

 We can try to plug the decryption function Dec(·,·) into Eval.

 If we run Evalpk(Dec(·,·), c1, …, ct), does it work?

 Suppose our HE scheme can Eval depth-d circuits:

 Is it always true that HE’s Dec function has depth > d?

 Is Dec(·,·) always just beyond the Eval capacity of the HE scheme?

 Bootstrapping = the process of running Eval on Dec(·,·).

Bootstrapping: Assuming we can do it,
why is it useful?

Bootstrapping: Refreshing a Ciphertext

f(μ1, μ2 ,…, μt)

μ1

…

μ2

μt

f

We have a noisy evaluated ciphertext y

We want to get another y with less noise

Bootstrapping refreshes ciphertexts, using the

encrypted secret key.

 So far, we can evaluate bounded-depth circuits f:

 For ciphertext c, consider the function Dc(·) = Dec(·,c)

 Suppose we can Eval depth d, but Dc(·) has depth d-1.

 Include in the public key also Encpk(sk)

Bootstrapping: Refreshing a Ciphertext

Dc

y

sk1

sk2

skn

…

c

Dc(sk)

= Dec(sk,c) = y

sk1

sk2

skn

… c' =

Bootstrapping Theorem (Informal)

 Suppose Ɛ is a HE scheme

 that can evaluate arithmetic circuits of depth d

 whose decryption algorithm is a circuit of depth d-1

 Call Ɛ a “bootstrappable” HE scheme

 Thm: From a bootstrappable somewhat homomorphic

scheme, we can construct a fully homomorphic scheme.

 Technique: Refresh noisy ciphertexts by evaluating the

decryption circuit homomorphically

Bootstrapping: Can we do it?

Let’s Look at the Decryption Circuit…

 Typically in LWE-based encryption schemes, if c

encrypts μ under secret key vector s, then:

where [·]q denotes reduction modulo q into the

range (-q/2,q/2].

Decryption in GSW

 GSW fits the template: ()

How Complex Is Decryption?

 If q is polynomial (in the security parameter λ) then
decryption is in NC1 (log-depth circuits).

 But wait – isn’t q really large?

 q depends on the Eval capacity of the scheme

 Ideally, we would like the complexity of Dec to be
independent of the Eval capacity.

Modulus Reduction Magic Trick

 Suppose c encrypts μ – that is, μ = [[<c,t>]q]2.

 Let’s pick p<q and set c* = (p/q)¢c, rounded.

 Crazy idea: Maybe it is true that:

c* encrypts μ : μ = [[<c*,t>]p]2 (new inner modulus).

 Surprisingly, this works!

 After modulus reduction (and dimension reduction),
the size of the ciphertext is independent of the
complexity of the function that was evaluated!!

Modulus Reduction Magic Trick, Details

Scaling lemma: Let p<q be odd moduli. Suppose μ = [[<c,t>]q]2

and |[<c,t>]q| < q/2 - (q/p)·l1(t). Set c’ = (p/q)c and

set c” to be the integer vector closest to c’ such that c” = c mod 2.

Then μ = [[<c”,t>]p]2.

Annotated Proof:
1. For some k, [<c,t>]q = <c,t> - kq.

2. (p/q)|[<c,t>]q| = <c’,t> - kp.

3. |<c”-c’,t>| < l1(t).

4. Thus, |<c”,t>-kp|< (p/q) |[<c,t>]q| + l1(t) < p/2.

5. So, [<c”,t>]p = <c”,t> – kp.

6. Since c” = c mod 2 and p = q mod 2, we get [<c’’,t>]p]2 = [<c,t>]q]2.

1. Imagine <c,t> is close to kq.

2. Then <c’,t> is close to kp.

3. <c”,t> also close to kp if s small.

Modulus Reduction Magic Trick, Notes

 [ACPS 2009] proved LWE hard even if t is small:

 t chosen from the same distribution as the noise e

 With coefficients of size poly in the security parameter.

 For t of polynomial size, we can modulus reduce to a

modulus p of polynomial size, before bootstrapping.

 Bottom Line: After some processing, decryption for

LWE-based encryption schemes (like GSW) is in NC1.

 Complexity of Dec is independent of Eval capacity.

Evaluating NC1 Circuits in GSW

 Naïve way: Just to log levels of NAND

 Each level multiplies noise by polynomial factor.

 Log levels multiplies noise by quasi-polynomial factor.

 Bad consequence = weak security: Based on LWE for

quasi-polynomial approximation factors.

Focusing on Brakerski and Vaikuntanathan’s method

to bootstrap the Gentry-Sahai-Waters scheme

Part II: Bootstrapping and
Barrington’s Theorem

Better Way to Evaluate NC1 Circuits?

 Goal: Base security of FHE on LWE with poly factors.

 Evaluate NC1 circuits in a more “noise-friendly” way so that

there is only polynomial noise blowup.

 Barrington’s Theorem

 If f is computable by a d-depth Boolean circuit, then it is

computable by a width-5 permutation branching program

of length 4d.

 Corollary: every function in NC1 has a polynomial-length BP.

Width-5 Permutation Branching Programs

 BP for function f:

 Consists of labeled permutations in the permutation group S5

(which we represent as 5x5 permutation matrices)

 S5 is a non-abelian group: maybe ab ≠ ba.

 To evaluate BP (hence f) on input X:

 Map X to a subset SX of the matrices (using labels)

 Compute product of the matrices in SX

 Output 1 if the product is the identity matrix, 0 otherwise

Width-5 Permutation Branching Programs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 Each Ai,b is a 5x5 permutation matrix.

 This BP takes 4-bit inputs and has length 9

0

Width-5 Permutation Branching Programs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 0 1

 Each Ai,b is a 5x5 permutation matrix.

 This BP takes 4-bit inputs and has length 9

Width-5 Permutation Branching Programs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 Each Ai,b is a 5x5 permutation matrix.

 This BP takes 4-bit inputs and has length 9

 Multiply the chosen 9 matrices together

 If product is I, output 1. Otherwise, output 0.

0 1 1 0

Brakerski and Vaikuntanathan’s Insight

 Multiplications in GSW increase noise asymmetrically.

 Moreover, this asymmetry is useful.

 Can exploit it to evaluate permutation BPs with

surprisingly little noise growth.

Warm Up: High Fan-in AND Gates

 Binary Tree approach: AND t ciphertexts using a (log t)-
depth binary tree.

 Noise grows by (N+1)log t factor.

 Left-to-right approach: AND t ciphertexts by multiplying
sequentially from left to right

 The i-th multiplication only adds Ci’·ei+1 to the error.

 Ci’ ∈ {0,1}NxN is the aggregate-so-far

 ei+1 is the (small) error of the (i+1)-th ciphertext.

 Noise grows by t(N+1) factor.

 Right-to-left approach: horrible!

Multiplying Permutation Matrices

 Given kxk permutation matrices encrypted entry-wise,

multiplying them left-to-right is best.

 Multiplying in the (i+1)-th permutation matrix adds

about k(N+1) times the error of fresh ciphertexts.

 Essential fact used in analysis: In a permutation matrix,

only one entry per column is nonzero.

Lattice-Based FHE as Secure as PKE [BV14]

 Bottom line:

 GSW decryption can be computed homomorphically

while increasing noise by a poly factor.

 FHE can be based on LWE with poly approx factors.

 The exponent can be made ε-close to that of current LWE-

based PKE schemes.

A somewhat promising framework for FHE

inspired by Barrington’s Theorem

Part IV: FHE from Non-Abelian
Groups?

Goal: Totally Different Approach to FHE

 FHE without noise?

 Might also make (expensive) bootstrapping unnecessary

 How about FHE based on non-abelian groups?

 Might avoid linear algebra attacks for ring-based schemes

 Another chance to apply Barrington. 

 Framework investigated by Nuida

 ePrint 2014/07: “A Simple Framework for Noise-Free
Construction of Fully Homomorphic Encryption from a Special
Class of Non-commutative Groups”

Perfect Group Pairs

Groups (G, H) such that:

 H is a (proper, nontrivial) normal subgroup of G

 H = {ghg-1 : g ∈ G, h ∈ H}

 G and H are perfect groups

 Commutator subgroup [G,G] = <g1g2g1
-1g2

-1: g1,g2 ∈ G>

 G is “perfect” when G = [G,G]

Efficient Group Operations

 Randomization: Given a group (say, G) represented

by some generators, output ≤n “random” G-

elements that generate the group.

Hardness Assumption

 Subgroup Decision Assumption (for perfect group pairs):

Given ≤n elements that generate either G or H, hard to

distinguish which.

FHE Construction

 Public key:

 An encryption of 0: n elements that generate G

 An encryption of 1: n elements that generate H

 Secret key: Trapdoor to distinguish G from H
(represented by generators).

 Encryption: Randomize the encryption of 0 or 1.

 AND gate: Given generators of groups K1, K2, output
generators of the union of K1,K2. (Use union of generators.)

 OR gate: Given generators of groups K1,K2, output generators
of intersection of K1,K2. (Use commutator.)

 G = [G,G], H = [H,H], H = [G,H].

Existence?

 Need perfect group pairs with hard distinguishing

problem (and efficient operations and a trapdoor)

 Example of perfect group pair with easy dist. problem:

 Direct product: G = H × K, where H and K are perfect

Failed Attempt

Form of G elements Form of H elements

 Linear algebra attack: Encryptions of 0 in proper subspace

 Is there a patch? Can we use non-abelian groups without

fatally embedding them in a ring? (representation theory)

Thank You! Questions?

Barrington and Non-Abelian Groups

 NC1 circuits to a product of permutations

 On each circuit wire w:

 “0” is represented by the identity permutation ε

 “1” is represented by some non-identity permutation πw

 AND(w1,w2) = πw1◦πw2◦πw1
-1πw2

-1

 Equals ε (“0”) if either w1 or w2 is ε (“0”)

 Equals a non-identity permutation if the inputs are non-

commuting non-identity permutations πw1 and πw2.

The Noise Problem Revisited

 Ciphertext noise grows exponentially with depth d.

 Hence log q and dimension of ciphertext matrices grow

linearly with d.

 Want overhead to be independent of d.

 To only depend on the security parameter λ.

 Achievable!

 Via a technique called bootstrapping [Gentry ’09].

