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Fully Homomorphic Encryption 
and Bootstrapping 



Fully Homomorphic Encryption (FHE) 

 A FHE scheme can evaluate unbounded depth circuits 

 Not limited by bound specified at Setup 

 Parameters (like size of ciphertext) do not depend on 

evaluated depth 

 So far, GSW scheme can evaluate only depth logN+1q 

 How do we make it fully homomorphic? 

 
 

 Bootstrapping: A way to get FHE… 

 

 

 



Self-Referential Encrypted 
Computation 



A Digression into Philosophy… 

 Can the human mind understand itself? 

 Or, as a mind becomes more complex, does the task of 

understanding also become more complex, so that self-

understanding it always just out of reach? 
 

 Self-reference often causes problems, even in 

mathematics and CS 

 Godel’s incompleteness theorem 

 Turing’s Halting Problem 



Philosophy Meets Cryptography 

 Can a homomorphic encryption scheme decrypt itself? 

 We can try to plug the decryption function Dec(·,·) into Eval. 

 If we run Evalpk(Dec(·,·), c1, …, ct), does it work? 

 Suppose our HE scheme can Eval depth-d circuits: 

 Is it always true that HE’s Dec function has depth > d? 

 Is Dec(·,·) always just beyond the Eval capacity of the HE scheme? 

 

 Bootstrapping = the process of running Eval on Dec(·,·).  



Bootstrapping: Assuming we can do it,  
why is it useful? 



Bootstrapping: Refreshing a Ciphertext 

f(μ1, μ2 ,…, μt) 

μ1 

… 

μ2 

μt 

f 

We have a noisy evaluated ciphertext y 

We want to get another y with less noise 

Bootstrapping refreshes ciphertexts, using the 

encrypted secret key. 

 

 So far, we can evaluate bounded-depth circuits f: 



 For ciphertext c, consider the function Dc(·) = Dec(·,c) 

 Suppose we can Eval depth d, but Dc(·) has depth d-1. 

 Include in the public key also Encpk(sk) 

 

 

 

 
 

 

Bootstrapping: Refreshing a Ciphertext 

Dc 

y 

sk1 

sk2 

skn 

… 

c  

Dc(sk) 

= Dec(sk,c)  =  y 

sk1 

sk2 

skn 

… c' =   



Bootstrapping Theorem (Informal) 

 Suppose Ɛ is a HE scheme 

 that can evaluate arithmetic circuits of depth d 

 whose decryption algorithm is a circuit of depth d-1 

 Call Ɛ a “bootstrappable” HE scheme 
 

 Thm: From a bootstrappable somewhat homomorphic 

scheme, we can construct a fully homomorphic scheme. 
 

 Technique: Refresh noisy ciphertexts by evaluating the 

decryption circuit homomorphically 

 



Bootstrapping: Can we do it? 



Let’s Look at the Decryption Circuit… 

 Typically in LWE-based encryption schemes, if c 

encrypts μ under secret key vector s, then: 

where [·]q denotes reduction modulo q into the 

range (-q/2,q/2]. 



Decryption in GSW 

 GSW fits the template:  (                   ) 



How Complex Is Decryption? 

 If q is polynomial (in the security parameter λ) then 
decryption is in NC1 (log-depth circuits). 

 But wait – isn’t q really large? 

 q depends on the Eval capacity of the scheme 

 Ideally, we would like the complexity of Dec to be 
independent of the Eval capacity. 



Modulus Reduction Magic Trick 

 Suppose c encrypts μ – that is, μ = [[<c,t>]q]2. 

 Let’s pick p<q and set c* = (p/q)¢c, rounded. 

 Crazy idea: Maybe it is true that: 

c* encrypts μ : μ = [[<c*,t>]p]2 (new inner modulus). 

 Surprisingly, this works! 

 

 After modulus reduction (and dimension reduction),  
the size of the ciphertext is independent of the 
complexity of the function that was evaluated!! 

 



Modulus Reduction Magic Trick, Details 

Scaling lemma: Let p<q be odd moduli. Suppose μ = [[<c,t>]q]2 

and |[<c,t>]q| < q/2 - (q/p)·l1(t).   Set c’ = (p/q)c and                

set c” to be the integer vector closest to c’ such that c” = c mod 2.                     

Then μ = [[<c”,t>]p]2.  

 

Annotated Proof: 
1. For some k, [<c,t>]q = <c,t> - kq. 

2. (p/q)|[<c,t>]q| = <c’,t> - kp. 

3. |<c”-c’,t>|  < l1(t). 

4.  Thus, |<c”,t>-kp|< (p/q) |[<c,t>]q| + l1(t) < p/2. 

5.  So, [<c”,t>]p = <c”,t> – kp.  

6.  Since c” = c mod 2 and p = q mod 2, we get [<c’’,t>]p]2 = [<c,t>]q]2. 

 

1. Imagine <c,t> is close to kq. 

2. Then <c’,t> is close to kp. 

3. <c”,t> also close to kp if s small. 



Modulus Reduction Magic Trick, Notes 

 [ACPS 2009] proved LWE hard even if t is small: 

 t chosen from the same distribution as the noise e 

 With coefficients of size poly in the security parameter. 

 For t of polynomial size, we can modulus reduce to a 

modulus p of polynomial size, before bootstrapping. 

 

 Bottom Line: After some processing, decryption for 

LWE-based encryption schemes (like GSW) is in NC1. 

 Complexity of Dec is independent of Eval capacity. 



Evaluating NC1 Circuits in GSW 

 Naïve way: Just to log levels of NAND 

 Each level multiplies noise by polynomial factor. 

 Log levels multiplies noise by quasi-polynomial factor. 

 Bad consequence = weak security: Based on LWE for 

quasi-polynomial approximation factors. 



Focusing on Brakerski and Vaikuntanathan’s method 

to bootstrap the Gentry-Sahai-Waters scheme 

Part II: Bootstrapping and 
Barrington’s Theorem 



Better Way to Evaluate NC1 Circuits? 

 Goal: Base security of FHE on LWE with poly factors. 

 Evaluate NC1 circuits in a more “noise-friendly” way so that 

there is only polynomial noise blowup. 

 

 Barrington’s Theorem 

 If f is computable by a d-depth Boolean circuit, then it is 

computable by a width-5 permutation branching program 

of length 4d.  

 Corollary: every function in NC1 has a polynomial-length BP. 

 

 



Width-5 Permutation Branching Programs 

 BP for function f: 

 Consists of labeled permutations in the permutation group S5 

(which we represent as 5x5 permutation matrices) 

 S5 is a non-abelian group: maybe ab ≠ ba. 

 To evaluate BP (hence f) on input X: 

 Map X to a subset SX of the matrices (using labels) 

 Compute product of the matrices in SX 

 Output 1 if the product is the identity matrix, 0 otherwise    



Width-5 Permutation Branching Programs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        

 Each Ai,b is a 5x5 permutation matrix. 

 This BP takes 4-bit inputs and has length 9 

 

0 



Width-5 Permutation Branching Programs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 1 

 Each Ai,b is a 5x5 permutation matrix. 

 This BP takes 4-bit inputs and has length 9 

 



Width-5 Permutation Branching Programs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        

 Each Ai,b is a 5x5 permutation matrix. 

 This BP takes 4-bit inputs and has length 9 

 Multiply the chosen 9 matrices together 

 If product is I, output 1.  Otherwise, output 0. 

0 1 1 0 



Brakerski and Vaikuntanathan’s Insight 

 Multiplications in GSW increase noise asymmetrically. 

 

 Moreover, this asymmetry is useful. 

 Can exploit it to evaluate permutation BPs with 

surprisingly little noise growth. 



Warm Up: High Fan-in AND Gates 

 Binary Tree approach: AND t ciphertexts using a (log t)-
depth binary tree. 

 Noise grows by (N+1)log t factor. 
 

 Left-to-right approach: AND t ciphertexts by multiplying 
sequentially from left to right 

 The i-th multiplication only adds Ci’·ei+1 to the error. 

 Ci’ ∈ {0,1}NxN is the aggregate-so-far 

 ei+1 is the (small) error of the (i+1)-th ciphertext. 

 Noise grows by t(N+1) factor. 
 

 Right-to-left approach: horrible! 



Multiplying Permutation Matrices 

 Given kxk permutation matrices encrypted entry-wise, 

multiplying them left-to-right is best. 

 Multiplying in the (i+1)-th permutation matrix adds 

about k(N+1) times the error of fresh ciphertexts. 

 Essential fact used in analysis: In a permutation matrix, 

only one entry per column is nonzero. 



Lattice-Based FHE as Secure as PKE [BV14] 

 Bottom line: 

 GSW decryption can be computed homomorphically 

while increasing noise by a poly factor. 

 FHE can be based on LWE with poly approx factors. 

 The exponent can be made ε-close to that of current LWE-

based PKE schemes. 



A somewhat promising framework for FHE 

inspired by Barrington’s Theorem 

Part IV: FHE from Non-Abelian 
Groups? 



Goal: Totally Different Approach to FHE 

 FHE without noise? 

 Might also make (expensive) bootstrapping unnecessary 

 

 How about FHE based on non-abelian groups? 

 Might avoid linear algebra attacks for ring-based schemes 

 Another chance to apply Barrington.  

 Framework investigated by Nuida 

 ePrint 2014/07: “A Simple Framework for Noise-Free 
Construction of Fully Homomorphic Encryption from a Special 
Class of Non-commutative Groups” 



Perfect Group Pairs 

Groups (G, H) such that: 
 

 H is a (proper, nontrivial) normal subgroup of G 

 H = {ghg-1 : g ∈ G, h ∈ H} 
 

 G and H are perfect groups 

 Commutator subgroup [G,G] = <g1g2g1
-1g2

-1: g1,g2 ∈ G> 

 G is “perfect” when G = [G,G] 



Efficient Group Operations 

 
 

 Randomization: Given a group (say, G) represented 

by some generators, output ≤n “random” G-

elements that generate the group. 



Hardness Assumption 

 

 

 Subgroup Decision Assumption (for perfect group pairs): 

Given ≤n elements that generate either G or H, hard to 

distinguish which. 



FHE Construction 

 

 Public key: 

 An encryption of 0: n elements that generate G 

 An encryption of 1: n elements that generate H 

 Secret key: Trapdoor to distinguish G from H                      
(represented by generators). 

 Encryption: Randomize the encryption of 0 or 1. 
 

 AND gate: Given generators of groups K1, K2, output 
generators of the union of K1,K2. (Use union of generators.) 

 

 OR gate: Given generators of groups K1,K2, output generators 
of intersection of K1,K2. (Use commutator.) 

 G = [G,G], H = [H,H], H = [G,H]. 



Existence? 

 

 Need perfect group pairs with hard distinguishing 

problem (and efficient operations and a trapdoor) 

 

 Example of perfect group pair with easy dist. problem: 

 Direct product: G = H × K, where H and K are perfect 



Failed Attempt 

Form of G elements Form of H elements 

 Linear algebra attack: Encryptions of 0 in proper subspace 

 Is there a patch? Can we use non-abelian groups without 

fatally embedding them in a ring? (representation theory) 



Thank You!  Questions? 



Barrington and Non-Abelian Groups 

 NC1 circuits to a product of permutations 

 On each circuit wire w: 

 “0” is represented by the identity permutation ε 

 “1” is represented by some non-identity permutation πw 

 AND(w1,w2) = πw1◦πw2◦πw1
-1πw2

-1  

 Equals ε (“0”) if either w1 or w2 is ε (“0”) 

 Equals a non-identity permutation if the inputs are non-

commuting non-identity permutations πw1 and πw2. 



The Noise Problem Revisited 

 Ciphertext noise grows exponentially with depth d.  

 Hence log q and dimension of ciphertext matrices grow 

linearly with d. 
 

 Want overhead to be independent of d. 

 To only depend on the security parameter λ. 

 

 Achievable!  

 Via a technique called bootstrapping [Gentry ’09]. 

 


