Fully Homomorphic Encryption
and Bootstrapping

Craig Gentry and Shai Halevi

Fully Homomorphic Encryption (FHE)

A FHE scheme can evaluate unbounded depth circuits
Not limited by bound specified at Setup

Parameters (like size of ciphertext) do not depend on
evaluated depth

So far, GSW scheme can evaluate only depth log, 9

How do we make it fully homomorphic?

Bootstrapping: A way to get FHE...

Self-Referential Encrypted
Computation

A Digression into Philosophy...

Can the human mind understand itself?

Or, as a mind becomes more complex, does the task of
understanding also become more complex, so that self-
understanding it always just out of reach?

Self-reference often causes problems, even in
mathematics and CS

Godel’s incompleteness theorem

Turing’s Halting Problem

Philosophy Meets Cryptography

Can a homomorphic encryption scheme decrypt itself?
We can try to plug the decryption function Dec(+,") into Eval.
If we run Eval (Dec(;), ¢;, ..., ¢), does it work?

Suppose our HE scheme can Eval depth-d circuits:
Is it always true that HE’s Dec function has depth > d?
Is Dec(+,) always just beyond the Eval capacity of the HE scheme?

Bootstrapping = the process of running Eval on Dec(:,:).

Bootstrapping: Assuming we can do it,

why is it useful?

Bootstrapping: Refreshing a Ciphertext
—

1 So far, we can evaluate bounded-depth circuits f:

f(y, Uy e)

We have a noisy evaluated ciphertext|y
We want to get another|y |with less noise

Bootstrapping refreshes ciphertexts, using the
encrypted secret key.

Bootstrapping: Refreshing a Ciphertext

N
1 For ciphertext c, consider the function D () = Dec(c)

- Suppose we can Eval depth d, but D (*) has depth d-1.

"1 Include in the public key also Enc (sk)

New encryption of vy, “
with less noise.

~

= Dec(sk,c) = vy

c' = | D(sk)

\ Homomorphic computation applied
only to the “fresh” encryption of sk.

Bootstrapping Theorem (Informal)

Suppose € is a HE scheme
that can evaluate arithmetic circuits of depth d

whose decryption algorithm is a circuit of depth d-1

Call € a “bootstrappable” HE scheme

Thm: From a bootstrappable somewhat homomorphic
scheme, we can construct a fully homomorphic scheme.

Technique: Refresh noisy ciphertexts by evaluating the
decryption circuit homomorphically

- Bootstrapping: Can we do it

Let’s Look at the Decryption Circuit...

Typically in LWE-based encryption schemes, if ¢
encrypts L under secret key vector s, then:

po=[[{c; t)]g)2

where [°]q denotes reduction modulo q into the
range (-a/2,q,/2].

Decryption in GSW

N
o1 GSW fits the template: (1 = [[{c,t)],]2)
» C-v=p-v+2-emodyq
» (c,v) =pu+2-emodq
» (BitDecomp™'(c),t) =y +2 - emod g
> [[(BitDecomp™'(c), t)]g]2 = 1

How Complex Is Decryption?

po= [[{c; t)]g)2

If q is polynomial (in the security parameter A) then
decryption is in NC1 (log-depth circuits).

But wait — isn’t g really large?

q depends on the Eval capacity of the scheme

|ldeally, we would like the complexity of Dec to be
independent of the Eval capacity.

Modulus Reduction Magic Trick

Suppose c encrypts L —that is, i = [[<c,t>]],.
Let's pick p<q and set ¢* = (p/q)¢c, rounded.
Crazy idea: Maybe it is true that:

c* encrypts W : B = [[<c*t>],], (new inner modulus).

Surprisingly, this worksl!

After modulus reduction (and dimension reduction),
the size of the ciphertext is independent of the
complexity of the function that was evaluated!!

Modulus Reduction Magic Trick, Details

Scaling lemma: Let p<q be odd moduli. Suppose p = [[<c,t>]],
and |[<ct>].| <q/2-(q/p)l,(t). Setc =(p/q)cand

set ¢” to be the integer vector closest to ¢’ such that ¢” = ¢ mod 2.
Then i = [[<">],],.

Annotated Proof:
1. For some k, [<C,1.>]q = <ct> - kq. 1. Imagine <c,t> is close to kq.
2. (p/q)l [<C,-|->]q| = <c't> - kp. 2. Then <c’,t> is close to kp.

3. | <c’-c > < [(t). 3. <c",t> also close to kp if s small.
4. Thus, | <c”1>-kp|<(p/q) |[<ct>],| + 1;(t) < p/2.

5. So, [<c"t>], = <" 1> = kp.

6. Since ¢” = cmod 2 and p = g mod 2, we get [<c"1>]]5 = [<et>]]

Modulus Reduction Magic Trick, Notes

[ACPS 2009] proved LWE hard even if t is small:

t chosen from the same distribution as the noise e

With coefficients of size poly in the security parameter.

For t of polynomial size, we can modulus reduce to a
modulus p of polynomial size, before bootstrapping.

Bottom Line: After some processing, decryption for
LWE-based encryption schemes (like GSW) is in NCI1.

Complexity of Dec is independent of Eval capacity.

Evaluating NC1 Circuits in GSW

o
1 Naive way: Just to log levels of NAND

-1 Each level multiplies noise by polynomial factor.

CNAND y = (1= C;-Ca)-v
= (I—pun-p2) - v—_(p2-e1+Cs-e)

1 Log levels multiplies noise by quasi-polynomial factor.

7 Bad consequence = weak security: Based on LWE for
quasi-polynomial approximation factors.

Part ll: Bootstrapping and
Barrington’s Theorem

Focusing on Brakerski and Vaikuntanathan’s method
to bootstrap the Gentry-Sahai-Waters scheme

Better Way to Evaluate NC1 Circuits?

Goal: Base security of FHE on LWE with poly factors.

Evaluate NC1 circuits in a more “noise-friendly” way so that
there is only polynomial noise blowup.

Barrington’s Theorem

If f is computable by a d-depth Boolean circuit, then it is
computable by a width-5 permutation branching program
of length 4¢.

Corollary: every function in NC1 has a polynomial-length BP.

Width-5 Permutation Branching Programs

BP for function f:

Consists of labeled permutations in the permutation group S.
(which we represent as 5x5 permutation matrices)

S; is a non-abelian group: maybe ab # ba.

To evaluate BP (hence f) on input X:
Map X to a subset Sy of the matrices (using labels)
Compute product of the matrices in Sy

Output 1 if the product is the identity matrix, O otherwise

Width-5 Permutation Branching Programs
—

0 Each A, is a 5x5 permutation matrix.

71 This BP takes 4-bit inputs and has length 9

Width-5 Permutation Branching Programs
—

0 Each A, is a 5x5 permutation matrix.

71 This BP takes 4-bit inputs and has length 9

Ass [Aso] Aol Arol [Asol A5
Asa] (Ao [Ar [Asa 1A

Width-5 Permutation Branching Programs

Aro] [A20][|As0]|| Asol|[Asll| Asoll|Azo] [Asll| Ao
A][[A2][Az || Aga]|[Asa] |Asa || Az][[Asa || Ag,
Of1]f1(0

Each A, is a 5x5 permutation matrix.
This BP takes 4-bit inputs and has length 9

Multiply the chosen 9 matrices together
If product is |, output 1. Otherwise, output O.

Brakerski and Vaikuntanathan’s Insight
—

o Multiplications in GSW increase noise asymmetrically.

-1 Moreover, this asymmetry is useful.

Can exploit it to evaluate permutation BPs with
surprisingly little noise growth.

Warm Up: High Fan-in AND Gates

Cl'CQ'V:M1°M2'V+(M2‘91+01'eg)

Binary Tree approach: AND t ciphertexts using a (log t)-
depth binary tree.
Noise grows by (N+1)°st factor.

Left-to-right approach: AND t ciphertexts by multiplying
sequentially from left to right

The i-th multiplication only adds C’-e., ; to the error.
C’ € {0,1}"Nis the aggregate-so-far
e, is the (small) error of the (i+1)-th ciphertext.

Noise grows by t(N+1) factor.

Right-to-left approach: horriblel!

Multiplying Permutation Matrices

Cl'CQ'V:M1°M2'V+(M2‘91+01'eg)

Given kxk permutation matrices encrypted entry-wise,
multiplying them left-to-right is best.

Multiplying in the (i+1)-th permutation matrix adds
about k(N+1) times the error of fresh ciphertexts.

Essential fact used in analysis: In a permutation matrix,
only one entry per column is nonzero.

Lattice-Based FHE as Secure as PKE [BV 14]

Bottom line:

GSW decryption can be computed homomorphically
while increasing noise by a poly factor.
FHE can be based on LWE with poly approx factors.

The exponent can be made g-close to that of current LWE-
based PKE schemes.

Part IV: FHE from Non-Abelian

Groups?

A somewhat promising framework for FHE
inspired by Barrington’s Theorem

Goal: Totally Different Approach to FHE

FHE without noise?

Might also make (expensive) bootstrapping unnecessary

How about FHE based on non-abelian groups?
Might avoid linear algebra attacks for ring-based schemes
Another chance to apply Barrington. ©

Framework investigated by Nuida

ePrint 2014 /07: “A Simple Framework for Noise-Free
Construction of Fully Homomorphic Encryption from a Special
Class of Non-commutative Groups”

Perfect Group Pairs

Groups (G, H) such that:

H is a (proper, nontrivial) normal subgroup of G
H={ghg':g € G,h€H}

G and H are perfect groups

Commutator subgroup [G,G] = <g,9,9,'9,': 9,,9, €E G>
G is “perfect” when G = [G,G]

Efficient Group Operations

Randomization: Given a group (say, G) represented
by some generators, output <n “random” G-
elements that generate the group.

Hardness Assumption

Subgroup Decision Assumption (for perfect group pairs):
Given <n elements that generate either G or H, hard to
distinguish which.

FHE Construction

Public key:
An encryption of 0: n elements that generate G

An encryption of 1: n elements that generate H

Secret key: Trapdoor to distinguish G from H
(represented by generators).

Encryption: Randomize the encryption of O or 1.

AND gate: Given generators of groups K1, K2, output
generators of the union of K1,K2. (Use union of generators.)

OR gate: Given generators of groups K1,K2, output generators
of intersection of K1,K2. (Use commutator.)

G =[G,G], H=[H,H], H=[GH].

Existence?

Need perfect group pairs with hard distinguishing
problem (and efficient operations and a trapdoor)

Example of perfect group pair with easy dist. problem:

Direct product: G = H X K, where H and K are perfect

Failed Attempt

Form of G elements

¥ ¥ X X X X OO
* K K K K K OO
¥ K X X X KX OO
¥ ¥ K X X ¥ O O
¥ ¥ X K K K OO
* K K K K K O O

o OO oo oo x ¥
o OO OO o x X

Form of H elements

o OO oo oo o x

OO OO OO x O

¥ ¥ X X X X OO

* K K K K K OO

¥ K X X X KX OO

¥ ¥ K X X ¥ O O

¥ ¥ X K K K OO

* K K K K K O O

Linear algebra attack: Encryptions of O in proper subspace

Is there a patch? Can we use non-abelian groups without

fatally embedding them in a ring? (representation theory)

Thank You! Questions?

Barrington and Non-Abelian Groups

NC1 circuits to a product of permutations

On each circuit wire w:

“O” is represented by the identity permutation €

“1” is represented by some non-identity permutation 1t
AND(w1,w2) =1 ,°TT,,°TT, ;"' T0, "

Equals € (“0”) if either w1l or w2 is € (“0”)

Equals a non-identity permutation if the inputs are non-
commuting non-identity permutations 1, and Tt ..

The Noise Problem Revisited

Ciphertext noise grows exponentially with depth d.

Hence log g and dimension of ciphertext matrices grow
linearly with d.

Woant overhead to be independent of d.

To only depend on the security parameter A.

Achievablel

Via a technique called bootstrapping [Gentry '09].

