FIELD-SWITCHING IN
HOMOMORPHIC ENCRYPTION

Craig Gentry
Shai Halevi
Chris Peikert
Nigel P. Smart

HE Over Cyclotomic Rings

- Denote the field K,,, = Q({,,,) = Q|X]/(®,,,(X))
lts ring of integersis R,, = Z({,,) = Z| X|/(®P,,,(X))
Mod-q denoted R,,, o = Ry, /qRy = Zg| X1/ (P (X))

0 “Native plaintext space” is Ry, »

01 Ciphertexts*, secret-keys are vectors over Rm’q

1 € wrt S encrypts a if (for representatives in R,,,) we

have (s,¢) = a - % + e (mod q) for small e

Decryption via a == MSB((s, C))*
Using “appropriate” Z-bases of Ry, 5, Ry, 4

* Not exactly

HE Over Cyclotomic Rings

“Native plaintexts” encode vectors of values

4
@€ Rpa— (a ...ayp) € GF(Zd) (more on that later)

Homomorphic Operations
Addition: ¢ HH ¢’ encrypts a + a’ € R, 5, encoding
(a; +ay ...a, + ayp)
Multiplication: ¢ ® ¢’ encrypts a X a’ € R, », encoding
(a1 X ag ...ap X ay)
Automorphism: ¢(X*) encrypts a(X*) € R, ,, encoding
some permutation of (aq ... ap)
Relative to key s(X?)

HE Over Cyclotomic Rings

Also a key-switching operation

For any two S, 8’ € (Rm,q)2 we can publish a
key-switching gadget W[s — s']

W used to translate valid € wrt S into ¢’ wrt s’

c, ¢’ encrypt the same plaintext
(s,c) =(s’,c')+ e (modq)

for some small e

How Large are m, g2

Ciphertexts are “noisy” (for security)
noise grows during homomorphic computation

Decryption error if noise grows larger than g
=>» Must set g “much larger” than initial noise

=>» Security relies on LWE-hardness with very
large modulus/noise ratio

=» Dimension (M) must be large to get hardness
Asymptotically |g| = polylog(k), m = Q(k)
For realistic settings, |g| = 1000, m > 10000

Switching to Smaller m@

As we compute, the noise grows
Cipehrtexts have smaller modulus/noise ratio

From a security perspective, it becomes permissible to
switch to smaller values of m

How to do this?

Not even clear what outcome we want here:
Have ¢ wrt s € (Ry,)% encrypting some a € R;,, ,
Want ¢’ wrt 5" € (R,)% form’ <m

Encrypting a’ € R,,r , 22

Ring-Switching: The Goadl

We cannot get @’ = a since a’ € R a € Ry,

m',2¢
We want a’ to be “related” to a
a € Ry, ; encodes (ay ...ap) € GF(Zd)g
a' € R, , encodes (al a{,r) S GF(Zd)

May want a’ to encode a subset of the a;’s?

f’

E.g., the first £’ of them
Not always possible, only if d’ = d

What relations between the a'j, a;’s are possible?

Prior Work

A limited ring-switching technique was described in
[BGV'12]
Only form = 2", m’' = 2"1
Transforms big-ring ¢ into small-ring €1, €,
s.t. a (encrypted in €) can be recovered from
ay, a; (encrypted in €3, €5).
Used only for bootstrapping

Our Transformation: Overview

Work for any m,m’ as long as m'|m
cwrt S € (Rpg)®> D¢ wrts' € (Rmr,q)2
c, ¢’ encrypt a,a’, that encode vectors:
¢ - (@) € GF(29)', ¢’ - (a)) € GF(29")
Necessarily d’|d, so GF(Zd’) a subfield of GF(29)

/
Each a]{ is a GF(Zd)-Iinedr function of some «;'s

el

We can choose the linear functions, but not the subset of ;'s

that correspond to each a]f

If d’ = d, can use projections (so a]{’s a subset of a;’s)

Our Transformation: Overview

Denote K = K,,, R =R,,, K =K,/,R" =R
Key-switching to map € wrt s =2c¢’’ wrt s’

ml

S € RS qndS'ERélchCZI
¢’ = (c{,ci) over the big field, wrt subfield key

Compute a small r € R, that depends only on the

desired linear functions
Apply the trace function, Cl-' = TI‘K/K, (r - Ci”)
Output ¢’ = (cy, ¢1)

Geometry of K

Use canonical-embedding to associate u € K with a
¢ (m)-vector of complex numbers

Thinking of u = u(X) as a polynomial, associate u with
the vector o (u) = (u(pl))

21i/m

I€EZm
p=e , the principal complex m’th root of unity
Eg.,ifu€Q cKtheno(u) = (u,u,..,u)
We can talk about the “size of u”
say the [, or I, norm of o(u)

For decryption, the “noise element” must be < ¢

Geometry of K, K’

K can be expressed as a vector-space over K’
Similarly R over R', R, over R , etc.
Every R’ -basis B induces a transformation

Tg: coefficients in R' — element of R

With canonical embedding on both sides, we have
a C-linear transformation Ty: cPm) _, co(m)

We want a “good basis”, where Ty is “short”
and “nearly orthogonal”

Geometry of K, K’

Lemma 1: There exists R'-basis B of R for which all
the singular values of Ty are nearly the same.

Specifically s;(T) = s5,,(T) - \/7 where

f < :;;((1:,)) = [] primes that divide m but not m’

The proof follows techniques from [LPR1 3],
the basis B is essentially a tensor of DFT matrices

The Trace Function

Foru € K, Tr(u) = ZiEZ,’;l o(u); € Q

By definition: if u is small then so is Tr(u)
Tr: K = Q is Q—linear

L:K — Qis Q-linear if YVu,v € K,q € Q,

Llu)+L(v)=L(u+v)and L(q-u) =q-L(u)
The trace is a “universal” (-linear function:

For every (Q-linear function L there exists Kk € K such
that L(u) = Tr(k - u) Vu € K

The Trace Function

The trace Implies also a Z-linear map Tr: R — Z,
and Z,-linear map Tr: R, = Z,

Every Z-linear map L : R = Z can be written as
L(a) =Tr(k-a)
But Kk need not be in R

More on that later

The Intermediate Trace Function

TTK/KI: K — K’ when K is an extension of K’
Satisfies T1x /9 = TTg/xr © TTg /g
Lemma 2: if u is small then so is TrK/Kr(u)

Less trivial than for Trg /o but still true

TI‘K/K/ is a “universal” K'-linear function:
Try i K = K" is K'=linear
For every K'-linear function L there exists kK € K,,, such
that L(u) = Trg (k- u) Vu € Ky,

Similarly implies R'-linear map TTK/KI: R - R' and

Rg-linear map Try i Rg = Ry

Some Complications

Often we get Trg i/ (R) & R’

Also for many linear functions we get
L(u) = Trg g (x - u) where K is not in R
In our setting this will cause problems when we

apply the trace to ciphertext elements

That’s (one reason) why ciphertexts are not really
vectors over R

Hence the *‘s throughout the slides

The Dual of R

Instead of R, ciphertext are vectors over the dual
RV ={a € K:Vr € R, Tr(ar) € Z}

=R/t,R"Y =R'/t’ forsomet € R,t' € R’
We have TI‘K/K/(RV) =R"

Also every R'-linear L: RY = R’V can be written as
L(a) = Tryg ' (r - a) for some r € R

In the rest of this talk we ignore this point, and pretend
that everything is over R

Prime Splitting

The integer 2 splits over R as 2 = [[; p?
[ranges over G = Z,,/(2)

p; is generated by (2, F;(X) =[]; (X — (71712]))
In this talk we assume e=1 (i.e., m is odd)
£ = |G| prime ideals, each R/p; = GF(29)
Rz = R/(2) =®; R/p; =®; GF(2%)
Using CRT, each a € R, encodes the vector
(amod p;,,...,amod p;,) € GF(Zd){)

Prime Splitting

!

Similarly 2 splits over R' as 2 = Hj p}e
Again we assume e’ =1

Using CRT, each a’ € R, encodes the vector
f’
/ / / / d’
(El mod ij’ ..,a mod pj{},) € GF(Z)

af]
1 ag
When m'|m then also d’|d, ¢'|#, and each p; split

over R as a product of some of the p; ’s

Prime Splitting

Example form =91, m’' =7

Lie over p; Lie over p3
P1 Pis P22 P3 P17 P31 R d=12
u =
pl% Lie over 2 %p3 R’ d =3

\2/ u ¢ =2

Plaintext-Slot Representation

Recall that R/p; = GF(2%) for all the p;’s

But the isomorphisms are not unique
To fix the isomorphisms:
Fix a primitive m-th root of unity w € GF (2%)
Fix representatives u; € Z,, foralli € Z,,/(2)
h;:R/p; » GF(2%) defined via h;({,,) = ok
'
Same for isomorphisms R'/p;- =~ GF(2%)

Define h]'-: R'/p}- — GF(Zd) by fixing p’ and u]'

Plaintext-Slot Representation

Making the h;’s and h]'-‘s “consistent”
Fix w € GF(2%) and set w’ = pm/m’ € GF(Zd’)
Fix u; € j - (2) € Z, 1 Vj, then V p; that lies over p},

. T /
choose u; € 1 (2) st. u; = u; modm

Fact: if p; lies over p;- and ' € R’ C R, then
h;i(r'mod p;) = h]’-(r’mod p}) € GF(29)
In words: for a sub-ring plaintext, the slots mod p} and

all the p;’s lie over it, hold the same value

Plaintext-Slot Representation
]
1 Lemma 3: V collection of GF(2%)-linear functions
r 4
. d\e’ d’
Li: GF(29)¢ > GF(2)}jEZ:n, P
3 a unique R)-linear function L: R, = R s.t.
hj(a'mod p;) = L;j((h;(a mod p;);))
holdsVa € R, anda’ = L(a), and Vj

The i’s range over all the p;’s that lie over p}

A

lllustration of Lemma 3

P1 Pis P22 P3 P17 P31 R(d=12,¢=6)

Ly GF(212)% - 74) L%(ZH)B GF(2%) Ul
A / R'(d' =3,¢ =2)

p Ps3
3L:R, > R, st.Va € R, anda’ = L(a) € R,
hi(a’) = L, (hi(a), hys(a), hyz(a))
hz(a’) = Ly(h3(a), hy7(a), hzy(a))
Can express L(a) = Trg i, (r - a) for some r € R,

* Not exactly

- The Transformation

Step 1, Key Switching

Let § € RCZI,S' € R&z C RCZI (chosen at keygen)
Publish a key-switching matrix W|[s — s']
Given ctxt € wrt S, use W to get ¢’ wrt s’
Just plain key-switching in the big ring
c'’ still over the big ring, but wrt a sub-ring key

c'’' encrypts the same R,-element as ¢

Security of Key-Swicthing

Security of usual big-ring key-switching relies on the
secret §' being drawn from R,

Then W constrains only LWE-instance over R,

What can we say when it is drawn from R/ 2
We devise LWE instances over R; with secret from
R&, with security relying on LWE in R&

Instead of one small error element in R, choose many
small elements in R/, use an R/ -basis of R, to combine
them info a single error element in R,

R,-LWE With Secret in R&

Let B = (B4, ..., Pn) be any R;-basis of R,
Given the LWE secret s' € R; C R,

Choose uniform a « R, and small €1, nn) Cpy R;
Sete =), e;f; € R, and output (a,b = as’ + e)
If the basis B is “good” (short, orthogonal) then e is
not much larger than the e;’s

This is where we use Lemma 1 (3 good basis)

R,-LWE With Secret in R&

Theorem: If decision-LWE is hard in R/, then (a, b)
is indistinguishable from uniform in RCZI

Proof:
We can consider a = }; a;f3; for uniform a; < Ry
Induces the same uniform distribution on a
Then we would get b =)..(a;s"' + e;)f;.
If the (a;s’ + e;) were uniform in Ry, then b would be
uniform in R,. O

Steps 2,3: Ring Switching

¢’ encrypts a € R, wrt §’
4
a encodes a vector & = (a;); € GF(2%)

/ 'gl
We view it as @ = (a4, ..., tpr) € (GF(Zd){)/e)

£/¢' /

' target functions, L;: GF(Zd) A GF(2%)
Want small-ring ciphertext ¢’ encryp’rin{)g a € R, that
encodes a' = (“1» . 0(2,) € GF(Zd’)

For each j, a]{ = Li(a;)

Steps 2,3: Ring Switching

By Lemma 2, 3L: R, — R; that induces the L;’s
Expressed as L(a) = Try (- a) forr € Ré*

We identify r with a short representative in R’

One must exists since 2 is “short”

Thus identify L with L(a) = Try /i (1 - a) over R
Further identify 7 as a representative of 7 € R,
Apply the trace, ¢; = Try g (1 ;")

Recall that ¢’ is valid wrt 8’ € Rél C R,

* Not exactly

Correctness

I S,
1 Recall (s, ¢") =k -q+ a ~g+ e over K
1 For some k,e € R (with e small) and s’ over R’

o Thus we have the equalities (over K):
a(s',¢") = (s, Trgx (r-€")) = Trg g (r-{s',¢'")

_ q _ . 4
=L(q k+ a5+e)_L(k) a+L(a) 5 +L(e)

=k“q+a“g+€

71 a’ encodes the a]f’s that we want

Correctness

We have (s',¢") = k' - q + a' -%+ e’
This looks like a valid encryption of a’

It remains to show that e’ is short
e' =L(e) =Trg(r-e)
e is short (from the input), 1 is short (reduced mod 2)

Sor - e is short

By Lemma 3 also T7y /(7 - €) is short

Conclusions

We have a general ring-switching technique
Converts € over R, to ¢’ over R,/ for m'|m

The plaintext slots in ¢’ can contain any linear functions
of the slots in €

A c’-slot is a function of the c-slots that lie above it
We may choose projection functions to have ¢’ contain
subset of the slots of €
Lets us to speed up computation by switching to a
smaller ring

Epilog: The [AP13] Work

Alperin-Sheriff & Peikert described a clever use of
ring-switching for efficient homomorphic computation
of DFT-like transformations:

Decompose it to an FFT-like network of “local”
linear functions

Use ring-switching for each level

Then switch back up before the next level

Yields fastest bootstrapping procedure to date

