
Indistinguishability 

Obfuscation for all Circuits 

Sanjam Garg, Craig Gentry*, Shai Halevi*, 

Mariana Raykova, Amit Sahai, Brent Waters 

 
Faces in Modern Cryptography,  Oct-2013 

A Celebration in Honor of  Goldwasser and Micali’s Turing Award 

* Supported by IARPA contract number D11PC20202 



Code Obfuscation 

 Make programs “unintelligible” while 
maintaining their functionality 
◦ Example from Wikipedia: 

 
 

 

 

 Why do it? 

 How to define “unintelligible”? 

 Can we achieve it? 

10/4/2013 Indistinguishability Obfuscation 2 

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / 

lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



Why Obfuscation? 

 Hiding secrets in software 

 

 

 

 

 

 

 

◦ AES encryption 

10/4/2013 Indistinguishability Obfuscation 3 

strutpatent.com 

Plaintext 

Ciphertext 



Why Obfuscation? 

 Hiding secrets in software 

 

 

 

 

 

 

 

◦ AES encryption  Public-key encryption 

10/4/2013 Indistinguishability Obfuscation 4 

Plaintext 

Ciphertext 

@P=split//,".URRUU\c8R";@d=split//,"\nrekca

h xinU / lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;(

$q*=2)+=$f=!fork;map{$P=$P[$f^ord 

($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{

$_}=~/^[P.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Distributing software patches 

10/4/2013 Indistinguishability Obfuscation 5 

Vulnerable 

program 

Patched 

program 

1,2d0  

< The Way that can be told of is not the eternal Way;  

< The name that can be named is not the eternal name 

4c2,3  

< The Named is the mother of all things.  

---  

> The named is the mother of all things.  

11a11,13  

> They both may be called deep and profound.  

> Deeper and more profound,  

> The door of all subtleties! 



Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Distributing software patches 

while hiding vulnerability 
10/4/2013 Indistinguishability Obfuscation 6 

Vulnerable 

program 

Patched 

program 

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / 

lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=

$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Uploading my expertise to the web 

10/4/2013 Indistinguishability Obfuscation 7 

Next 

move 

http://www.arco-iris.com/George/images/game_of_go.jpg 

Game of Go 

http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg


Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Uploading my expertise to the web 

without revealing my strategies 
10/4/2013 Indistinguishability Obfuscation 8 

Next 

move 

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU 

/ lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^

[P.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 

Game of Go 



Contemporary Obfuscation 

 Used fairly widely in practice 

 Mostly as an art form 
◦ Some rules-of-thumb, sporadic tool support 

◦ Relies on human ingenuity, security-via-obscurity 

◦ “At best, obfuscation merely makes it time-
consuming, but not impossible, to reverse engineer 
a program” (from Wikipedia) 

 Can it be done the Goldwasser-Micali way? 
◦ Definitions, constructions, concrete assumptions 

◦ Question addressed 1st by Barak et al. in 2001 
[B+01] 

10/4/2013 Indistinguishability Obfuscation 9 



Defining Obfuscation 

 An efficient public procedure O(*) 

◦ Everything is known about it 

◦ Except the random coins that it uses 

 Takes as input a program 𝐶 

◦ E.g., encoded as a circuit 

 Produce as output another program 𝐶′ 

◦ 𝐶′ computes the same function as 𝐶  

◦ 𝐶′ at most polynomially larger than 𝐶 

◦ 𝐶′ is “unintelligible” 

 Okay, defining this is tricky 
10/4/2013 Indistinguishability Obfuscation 10 



What’s “Unintelligible”? 

 What we want: cannot do much more 

with 𝐶’ than running it on various inputs 

◦ At least: If 𝐶 depends on some secrets that 

are not readily apparent in its I/O, then 𝐶’ 
does not reveal these secrets 

 [B+01] show that even this is impossible: 

◦ Thm: If PRFs exist, then there exists PRF 

families 𝐹 = 𝑓𝑠 , for which it is possible to 

recover 𝑠 from any circuit that computes 𝑓𝑠. 

 These PRFs are unobfuscatable 

10/4/2013 Indistinguishability Obfuscation 11 



What’s “Unintelligible”? 

 Okay, some function are bad, but can we 

get O() that does “as well as possible” on 

every function? 

 [B+01] suggested the weaker notion of 

“indistinguishability obfuscation” (iO) 

◦ Gives the “best-possible” guarantee [GR07] 

◦ It turns out to suffice for many applications 

(examples in [GGH+13, SW13,…]) 

10/4/2013 Indistinguishability Obfuscation 12 



Indistinguishability Obfuscation 

 Def: If 𝐶1, 𝐶2 compute the same function 
(and |𝐶1| = |𝐶2|) then 𝑂 𝐶1 ≈ 𝑂 𝐶2  
◦ Indistinguishable even if you know 𝐶1, 𝐶2 

 

 Note: Inefficient iO is always possible 
◦ 𝑂(𝐶) = lexicographically 1st circuit computing 

  the same function as 𝐶 

 

     (canonical form) 

 

◦ Canonicalization is inefficient (unless P=NP) 

 10/4/2013 Indistinguishability Obfuscation 13 



Best-Possible Obfuscation 

Some 

circuit C 

Best Obfuscation 

Indist. Obfuscation 

x 

C(x) 

Some 

circuit C 

Padding 

Indist. Obfuscation 

x 

C(x) 

≈ 
Computationally 

Indistinguishable 



Many Applications of iO 

 AES  public key encryption [GGH+13, SW13] 
 

 Witness encryption: Encrypt 𝑥 so only someone 
with proof of Riemann Hypothesis can decrypt 
[GGSW13] 

 

 Functional encryption: Noninteractive access 
control [GGH+13],  Dec(Key𝑦, Enc(𝑥))F(𝑥, 𝑦) 

 

 Many more (all of them this year)… 
 

 One notable thing iO doesn’t give us (yet): 
Homomorphic Encryption (HE) 



Beyond iO 

 For very few functions, we know how to 

achieve stronger notions than iO 

◦ “Virtual Black Box” (VBB) 

 Point-functions / cryptographic locks 

◦ 𝑓𝑎,𝑏 𝑥 = { 
𝑏    𝑖𝑓 𝑥 = 𝑎 

⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

◦ [C97, CMR98, LPS04, W05]  

◦ Many extensions, generalizations [DS05, 

AW07, CD08, BC10, HMLS10, HRSV11, 

BR13] 

10/4/2013 Indistinguishability Obfuscation 16 



Aside: Obfuscation vs. HE 

10/4/2013 Indistinguishability Obfuscation 17 

F Obfuscation F 

F Encryption F 

x 

+  F(x) 

Result in the clear 

x 

+  F(x) 

x or Result encrypted 



OUR CONSTRUCTION 

10/4/2013 Indistinguishability Obfuscation 18 



Obfuscating Arbitrary Circuits 

 A two-step construction 

1. Obfuscating “shallow circuits” (NC1) 

 This is where the meat is 

 Using multilinear maps 

 Security under a new (ad-hoc) assumption 

2. Bootstrapping to get all circuits 

 Using homomorphic encryption with NC1 

decryption 

 Very simple, provable, transformation 

10/4/2013 Indistinguishability Obfuscation 19 



NC1 ObfuscationP Obfuscation 

10/4/2013 Indistinguishability Obfuscation 20 

F 
Homomorphic 

Encryption 
F 

x 

+ F(x) 

Encrypted-result 𝑐 

+ eval transcript 𝜋 

NC1 Circuit 
If 𝜋 describes 

homomorphic evaluation 

that takes x,F to 𝑐, then 

use  sk  to decrypt 𝑐 

F(x) 

CondDec 



NC1 ObfuscationP Obfuscation 

10/4/2013 Indistinguishability Obfuscation 21 

x 

+ F(x) 

Encrypted-result 𝐶 

+ eval transcript 𝜋 

@P=split//,".URRUU\c8

R";@d=split//,"\nrekcah 

xinU / lreP rehtona 

tsuJ";sub p{ @p{"r$p“… 

F(x) 

Obfuscate 

only this part 

NC1 Circuit 

Output of P obfuscator 

F 
Homomorphic 

Encryption 
F 

CondDec 



Conditional Decryption with iO 

 We have iO, not “perfect” obfuscation 
 

 But we can adapt the CondDec approach 

◦ We use two HE secret keys 



iO for CondDec → iO for All 

Circuits 

CondDecF,SK0(·, …, ·) 

Indist. Obfuscation 

π, x, and two ciphertexts 

c0 = EncPK0(F(x)) and               

c1 = EncPK1(F(x)) 

F(x) if π verifies 

≈ CondDecF,SK1(·, …, ·) 

Indist. Obfuscation 

π, xi’s, and two ciphertexts 

c0 = EncPK0(F(x)) and               

c1 = EncPK1(F(x)) 

F(x) if π verifies 



Analysis of Two-Key Technique 

 1st program has secret SK0 inside (but not SK1). 

 2nd program has secret SK1 inside (but not SK0). 

 But programs are indistinguishable 

 So, neither program “leaks” either secret. 

 

 Two-key trick is very handy in iO context. 

 Similar to Naor-Yung ’90 technique to get 

encryption with chosen ciphertext security 



NC1 OBFUSCATION 

10/4/2013 Indistinguishability Obfuscation 25 



Outline of Our Construction 

 Describe Circuits as Branching Programs 
(BPs) using Barrington’s theorem [B86] 

 

 Randomized BPs (RBPs) a-la-Kilian [K88] 
 

 Encode RBPs “in the exponent” using 
multilinear maps [GGH13,CLT13] 

 

 Modifications to defeat attacks 
◦ Multiplicative bundling against ”partial evaluation” 

and “mixed input” attacks 

◦ Defenses against “DDH attacks”, “rank attacks” 

10/4/2013 Indistinguishability Obfuscation 26 



(Oblivious) Branching Programs 

 A specific way of describing a function 

 Length-𝑚 BP with 𝑛-bit input is a sequence 

𝑗1, 𝐴1,0, 𝐴1,1 , 𝑗2, 𝐴2,0, 𝐴2,1 , … , (𝑗𝑚, 𝐴𝑚,0, 𝐴𝑚,1) 

◦ 𝑗𝑖 ∈ {1, … , 𝑛} are indexes, 𝐴𝑖,𝑏’s are matrices 

 Input 𝑥 = (𝑥1, … , 𝑥𝑛) chooses matrices 𝐴𝑖,𝑥𝑗𝑖
 

◦ Compute the product 𝑃𝑥 =  𝐴𝑖,𝑥𝑗𝑖
𝑚
𝑖=1  

◦ 𝐹 𝑥 = 1 if 𝑃𝑥 = 𝐼, else 𝐹 𝑥 = 0 

10/4/2013 Indistinguishability Obfuscation 27 



(Oblivious) Branching Programs 

 This length-9 BP has 4-bit inputs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 



(Oblivious) Branching Programs 

 This length-9 BP has 4-bit inputs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 1 



(Oblivious) Branching Programs 

 This length-9 BP has 4-bit inputs 

 

 

 

 

 

 

 Multiply the chosen 9 matrices together 

◦ If product is 𝐼 output 1.  Otherwise output 0. 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 1 1 0 



Barrington’s Theorem [B86] 

 𝐹 computable by depth-𝑑 circuit  

𝐹 computable by a BP of length 4𝑑  

◦ With constant-dimension matrices 

 Corollary: every function in NC1 has a 

polynomial-length BP 

◦ Recall: NC1 = O(log n)-depth circuits 



Oblivious BP Evaluation [K88] 

 Alice has 𝑥. Bob has 𝑦. They want Bob to get 𝐹 𝑥, 𝑦  

◦ They start with a BP= 𝑗𝑖 , 𝐴𝑖,0, 𝐴𝑖,1 𝑖=1

𝑚
 for 𝐹 

 Randomized BP Generation 
◦ Alice chooses random matrices 𝑅1, … , 𝑅𝑚, set 𝑅0 = 𝑅𝑚 

◦ RBP= 𝑗𝑖 ,  𝐵𝑖,0= 𝑅𝑖−1𝐴𝑖,0𝑅𝑖
−1,   𝐵𝑖,1 = 𝑅𝑖−1𝐴𝑖,1𝑅𝑖

−1
𝑖=1

𝑚
 

 Matrix Collection 
◦ Alice sends matrices for her input {𝐵𝑖,𝑥𝑗𝑖

∶ 𝑖 ≤ |𝑥|} 

◦ Bob gets matrices for his input via OT 

 Evaluation of Randomized BP 
◦ 𝑅𝑖 ’s and their inverses cancel, 𝑅0, 𝑅𝑚

−1 cancel if 𝑃 = 𝐼 

 Randomized BP gives Alice perfect privacy 



Kilian’s ProtocolBP-Obfuscation? 

 RBP for 𝐹𝑥 𝑦 = 𝐹(𝑥, 𝑦) with the 𝑥 part fixed 
◦ Bob gets 𝐵𝑖,𝑥𝑗𝑖

 as in Kilian, but both 𝐵𝑖,𝑏’s for 𝑦 

◦ Evaluates randomized BP in usual way, choosing 
appropriate 𝐵𝑖,0 or 𝐵𝑖,1 for the 𝑦-parts. 

 

 Biggest problems:  
◦ Perfect privacy is lost once we give both 𝐵𝑖,𝑏’s 

◦ Partial evaluation attacks: Adversary computes 
partial product of matrices from positions 𝑖1 to 𝑖2, 
makes comparisons. 

◦ Mixed Input attacks: Adversary computes matrix 
product that does not respect the BP structure. 



Multilinear Maps to Hide Matrices 

 Recall cryptographic 𝑑-multilinear map: 
◦ Groups 𝐺1, … , 𝐺𝑑 of order 𝑝, generators 𝑔1, … , 𝑔𝑑 

◦ Computable maps 𝑒𝑖𝑗: 𝐺𝑖 × 𝐺𝑗 → 𝐺𝑖+𝑗 for 𝑖 + 𝑗 ≤ 𝑑 

◦ Multi-linearity:        𝑒𝑖𝑗 𝑔𝑖
𝑎 , 𝑔𝑗

𝑏 = 𝑔𝑖+𝑗
𝑎𝑏  for all 𝑎, 𝑏 

 Cryptographic hardness: 

◦ DL analog: hard to recover 𝑎 from 𝑔𝑖
𝑎 

◦ Multilinear-DDH: Given 𝑔1
𝑎𝑖 ∈ 𝐺1 for 𝑑 + 1 random 𝑎𝑖 ’s, 

hard to distinguish 𝑔𝑑
𝑎1⋅…⋅𝑎𝑑+1 from random in 𝐺𝑑 

◦ Etc. 

 [GGH13, CLT13] don’t exactly give this 

◦ But it’s close enough for our purposes 



Multilinear Maps to Hide Matrices 

 Encode the 𝐵𝑖,𝑏’s in the exponent, 𝑔1
𝐵𝑖,𝑏 

◦ Matrix is encoded element-wise 

 Can use the maps 𝑒𝑖𝑗 ’s to multiply them 

◦ Given 𝑔𝑖
𝑀, 𝑔𝑗

𝑁, compute 𝑒 𝑖𝑗 𝑔𝑖
𝑀, 𝑔𝑗

𝑁 = 𝑔𝑖+𝑗
𝑀𝑁 

◦ From 𝑔1
𝐵𝑖,𝑏𝑖

𝑖=1..𝑚
, can compute 𝑔𝑚

𝑃 = 𝑔𝑚
 𝐵𝑖,𝑏𝑖𝑖

 

 Then we can check if 𝑃 = 𝐼 

 

 Are the 𝐵𝑖,𝑏’s really hidden? 

10/4/2013 Indistinguishability Obfuscation 35 



“Partial Evaluation” Attacks 

 Evaluate the program on two inputs 𝑦, 𝑦′, 
but only use matrices between steps 

𝑖1, 𝑖2, 𝑃 =  𝐵𝑖,𝑦𝑗𝑖
𝑖2
𝑖=𝑖1

, 𝑃′ =  𝐵𝑖,𝑦′
𝑗𝑖

𝑖2
𝑖=𝑖1

 

◦ Check if 𝑃 = 𝑃′ 

 Roughly, you learn if in the computations 

of the circuits for 𝐹 𝑦 , 𝐹 𝑦′ , you have 

the same value on some internal wire 

10/4/2013 Indistinguishability Obfuscation 36 



“Mixed Input” Attack 

 Inconsistent matrix selection: 

◦ Product includes 𝐵𝑖1,0 and 𝐵𝑖2,1, but these 

two steps depend on the same input bit (i.e., 

𝑗𝑖1 = 𝑗𝑖2) 

 Roughly, you learn what happens when 

fixing some internal wire in the circuit of 

𝐹 𝑦  

◦ Fixing the wire value to 0, or to 1, or copying 

value from another wire, …  

10/4/2013 Indistinguishability Obfuscation 37 



“Multiplicative Bundling” 

 Obfuscator uses two randomized BPs 
◦ “Main BP ” computing 𝐹𝑥 𝑦 = 𝐹(𝑥, 𝑦) 

◦ “Dummy BP′ ” computing c 𝑦 = 1 
 Same length and 𝑗𝑖-assignments as the BP for 𝐹𝑥 

 All the 𝐴𝑖,𝑏
′ ’s are the identity 

 Independent randomizer matrices 𝑅𝑖
′ 

 For every step 𝑖 choose random scalars 
𝛼𝑖,0, 𝛼𝑖,1, 𝛼𝑖,0

′ , 𝛼𝑖,1
′ ← 𝑍𝑝 under the 

constraint: 
◦ For every input bit position 𝑗 and value 
𝑏 ∈ {0,1}   𝛼𝑖,𝑏 =  𝛼𝑖,𝑏

′
{𝑖:𝑗𝑖=𝑗}{𝑖:𝑗𝑖=𝑗}

 

10/4/2013 Indistinguishability Obfuscation 38 



“Multiplicative Bundling” 

 Obfuscator outputs 
𝐵𝑖,𝑏 = 𝛼𝑖,𝑏 ⋅ 𝑅𝑖−1𝐴𝑖,𝑏𝑅𝑖

−1
𝑖,𝑏

 

𝐵𝑖,𝑏
′ = 𝛼𝑖,𝑏

′ ⋅ 𝑅𝑖−1
′  𝐼 𝑅𝑖

′−1

𝑖,𝑏
 

 To evaluate 𝐹 𝑦 , compute the products (in the 

exponent) 𝑃 =  𝐵𝑖,𝑦𝑗𝑖
𝑚
𝑖=1  and 𝑃′ =  𝐵′𝑖,𝑦𝑗𝑖

𝑚
𝑖=1   

 If 𝐹 𝑦 = 1 then 𝑃 = 𝑃′ = 𝛼 ⋅ 𝐼  
◦ For some constant 𝛼 (the same for 𝑃, 𝑃′) 

 

 “Partial evaluation” & “mixed input” attacks yield 
matrices that differ by a multiplicative constant 

◦ Rather than identical matrices 

10/4/2013 Indistinguishability Obfuscation 39 



DDH Attacks 

 Identifying matrices (in the exponent) that 

differ by a multiplicative constant is DDH 
 

 But we can solve DDH using MMAPs: 

◦ Given 
𝑔𝑖
𝑎 𝑔𝑖

𝑏

𝑔𝑖
𝑐 𝑔𝑖

𝑑
, 

𝑔𝑖
𝑎′ 𝑔𝑖

𝑏′

𝑔𝑖
𝑐′ 𝑔𝑖

𝑑′
 (with 2𝑖 ≤ 𝑑), 

check 𝑒𝑖,𝑖 𝑔𝑖
𝑎, 𝑔𝑖

𝑏′ = 𝑒𝑖,𝑖 𝑔𝑖
𝑎′ , 𝑔𝑖

𝑏  etc. 

 

 Not out of the woods yet… 

10/4/2013 Indistinguishability Obfuscation 40 



More Attacks: Determinant & Rank 

 Use MMAPs to compute determinant 

◦ E.g., given 𝑔𝐴 =
𝑔1
𝑎 𝑔1

𝑏

𝑔1
𝑐 𝑔1

𝑑
 compute 

𝑒1,1 𝑔1
𝑎, 𝑔1

𝑑 𝑒1,1 𝑔1
𝑏 , 𝑔1

𝑐 = 𝑔2
det (𝐴)

 

 For matrices of dimension ≤ 𝑑, can check 

if they are singular 

◦ Use projections to compute rank 

 Not sure how to use for actual attack, 

but it is something to look for 

10/4/2013 Indistinguishability Obfuscation 41 



Fixing DDH, Rank Attacks 

 One option (also used in [BR13b]) is to 

switch to “asymmetric maps” 

◦ Just like XSDH for bilinear maps, DDH can 

potentially be hard in the different groups, 

even though you have pairing 

◦ A little awkward to define in the multilinear 

setting, so will not do it here 

10/4/2013 Indistinguishability Obfuscation 42 



Fixing DDH, Rank Attacks 

 Or embed in higher-dimension matrices 

◦ Set 𝐷𝑖,𝑏 =
$

$
𝛼𝑖,𝑏𝐴𝑖,𝑏

 

◦ Then 𝐵𝑖,𝑏 = 𝑅𝑖−1𝐷𝑖,𝑏𝑅𝑖
−1 

 Matrix rank > 𝑑, too high to compute 

 $’s are independent between all the 

matrices 𝐷𝑖,0, 𝐷𝑖,1, 𝐷𝑖,0
′ , 𝐷𝑖,1

′  

◦ Matrices in attacks no longer differ just by a 

multiplicative constant factor 

10/4/2013 Indistinguishability Obfuscation 43 



How To Evaluate? 

 We have 𝑃 =  𝐵𝑖,𝑦𝑗𝑖
𝑚
𝑖=1 = 𝑅0𝐷𝑅𝑚

−1, 

and similarly 𝑃′ = 𝑅0
′𝐷′𝑅𝑚

′−1 

◦ 𝐷′ diagonal, and if 𝐹𝑥 𝑦 = 1 then so is 𝐷 

◦ But top entries on the diagonal are random, 

different between 𝐷, 𝐷′ 

 Add pairs of “bookend” vectors 

◦ 𝒖 = 𝒔𝑅0
−1, 𝒗 = 𝑅𝑚𝒕,  𝒖

′ = 𝒔′R0
′ −1,  𝒗′ = 𝑅𝑚

′ 𝒕′  

◦ 𝒔, 𝐭, 𝐬′, 𝐭′ have 0’s to eliminate the $’s in 𝐷,𝐷′ 

◦ Compute 𝑟 = 𝒖𝑃𝒗 = 𝒔𝐷𝒕, 𝑟′ = 𝒖′𝑃′𝒗′ = 𝒔′𝐷′𝒕′, 
check that 𝑟 = 𝑟′ 

10/4/2013 Indistinguishability Obfuscation 44 



Summary of BP-Obfuscation 

 “Main BP” for 𝐹𝑥(𝑦), “dummy” for c 𝑦 = 1 

 Multiplicative bundling with 𝛼𝑖,𝑏 , 𝛼𝑖,𝑏
′  

 Embed 𝛼𝑖,𝑏𝐴𝑖,𝑏’s in higher-degree 𝐷𝑖,𝑏’s 

 Multiply by randomizers 𝐵𝑖,𝑏 = 𝑅𝑖−1𝐷𝑖,𝑏𝑅𝑖
−1 

 Add “bookend” vectors 𝒖 = 𝒔𝑅0
−1, 𝒗 = 𝑅𝑚𝒕  

 Encode everything with (𝑚 + 2)-MMAPs 
 

 To evaluate: compare products of “main”, 

“dummy”, output 1 if they match. 

10/4/2013 Indistinguishability Obfuscation 45 



Is This Indistinguishable? 

 It’s plausible… 

 Don’t know to distinguish 𝑂 𝐹𝑥1 , 𝑂(𝐹𝑥2), 
except by finding 𝑦 s.t. 𝐹𝑥1 𝑦 ≠ 𝐹𝑥2(𝑦) 

 We can prove that some “generic attacks” 

do not work 

 But no simple hardness assumption that 

we can reduce to 

◦ This is important future work 

10/4/2013 Indistinguishability Obfuscation 46 



Open Problems 

 Better underlying hardness assumptions 

 Faster constructions 
◦ Complexity of our construction is horrendous 

 Better notions 
◦ iO is okay for some things, not others 

◦ Certainly does not capture our intuition of 
what an obfuscator is 
 Doesn’t even capture the intuition of what the 

current construction achieves 

 Applications 
◦ The sky is the limit… 

10/4/2013 Indistinguishability Obfuscation 47 



Thank You 

Questions? 


