Indistinguishability Obfuscation for all Circuits

Sanjam Garg, Craig Gentry*, <u>Shai Halevi*</u>, Mariana Raykova, Amit Sahai, Brent Waters

Faces in Modern Cryptography, Oct-2013 A Celebration in Honor of Goldwasser and Micali's Turing Award

* Supported by IARPA contract number D11PC20202

Code Obfuscation

- Make programs "unintelligible" while maintaining their functionality
 - Example from Wikipedia:

```
@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU /
lreP rehtona tsuJ";sub p{
  @p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+
  =$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/
  ^$P/ix?$P:close$_}keys%p}p;p;p;p;map{$p{$_}=~/^[P
  .]/&& close$_}%p;wait
  until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep
  rand(2)if/\S/;print
```

- Why do it?
- How to define "unintelligible"?
- Can we achieve it?

Why Obfuscation?

Hiding secrets in software

• AES encryption

Patched

program

Why Obfuscation?

Hiding secrets in software

Geo 07 Dec 05

http://www.arco-iris.com/George/images/game of go.jpg

Uploading my expertise to the web

Why Obfuscation?

Hiding secrets in software

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU
/ IreP rehtona tsuJ";sub p{
@p{"r\$p","u\$p"}=(P,P);pipe"r\$p","u\$p";++\$p;(\$q*=2)+
=\$f=!fork;map{\$P=\$P[\$f^ord (\$p{\$_})&6];\$p{\$_}=/
^\$P/ix?\$P:close\$_}keys%p}p;p;p;p;p;map{\$p{\$_}=~/^
[P.]/&& close\$_}keys%p}p;p;p;p;p;map{\$p{\$_}=~/^
[P.]/&& close\$_}%p;wait
until\$?;map{/^r/&&<\$_>}%p;\$_=\$d[\$q];sleep
rand(2)if/\S/;print

 Uploading my expertise to the web without revealing my strategies Next

move

Contemporary Obfuscation

- Used fairly widely in practice
- Mostly as an art form
 - Some rules-of-thumb, sporadic tool support
 - Relies on human ingenuity, security-via-obscurity
 - "At best, obfuscation merely makes it timeconsuming, but not impossible, to reverse engineer a program" (from Wikipedia)
- Can it be done the Goldwasser-Micali way?
 - Definitions, constructions, concrete assumptions
 - Question addressed 1st by Barak et al. in 2001 [B+01]

Defining Obfuscation

- An efficient public procedure O(*)
 - Everything is known about it
 - Except the random coins that it uses
- Takes as input a program C
 - E.g., encoded as a circuit
- Produce as output another program C'
 - C' computes the same function as C
 - \circ C' at most polynomially larger than C
 - C' is "unintelligible"
 - Okay, defining this is tricky

What's "Unintelligible"?

- What we want: cannot do much more with C' than running it on various inputs
 - At least: If C depends on some secrets that are not readily apparent in its I/O, then C' does not reveal these secrets
- [B+01] show that even this is impossible:
 - <u>**Thm:</u>** If PRFs exist, then there exists PRF families $F = \{f_s\}$, for which it is possible to recover *s* from <u>any circuit</u> that computes f_s .</u>
 - These PRFs are unobfuscatable

- Okay, some function are bad, but can we get O() that does "as well as possible" on every function?
- [B+01] suggested the weaker notion of "indistinguishability obfuscation" (*iO*)
 - Gives the "best-possible" guarantee [GR07]
 - It turns out to suffice for many applications (examples in [GGH+13, SW13,...])

Indistinguishability Obfuscation

- <u>**Def:</u>** If C_1, C_2 compute the same function (and $|C_1| = |C_2|$) then $O(C_1) \approx O(C_2)$ • Indistinguishable even if you know C_1, C_2 </u>
- Note: Inefficient *iO* is always possible
 O(*C*) = lexicographically 1st circuit computing the same function as *C*

10/4/2013 Indistinguishability Obfuscation

(canonical form)

Many Applications of iO

- AES → public key encryption [GGH+13, SW13]
- Witness encryption: Encrypt x so only someone with proof of Riemann Hypothesis can decrypt [GGSW13]
- Functional encryption: Noninteractive access control [GGH+13], Dec(Key_y, Enc(x))→F(x, y)
- Many more (all of them this year)...
- One notable thing iO doesn't give us (yet): Homomorphic Encryption (HE)

Beyond iO

- For very few functions, we know how to achieve stronger notions than iO
 "Virtual Black Box" (VBB)
- Point-functions / cryptographic locks

$$f_{a,b}(x) = \{ \begin{array}{ll} b & if \ x = a \\ \perp \ otherwise \end{array} \}$$

- ° [C97, CMR98, LPS04, W05]
- Many extensions, generalizations [DS05, AW07, CD08, BC10, HMLS10, HRSV11, BR13]

° OUR CONSTRUCTION

Obfuscating Arbitrary Circuits

- A two-step construction
- 1. Obfuscating "shallow circuits" (NC¹)
 - This is where the meat is
 - Using multilinear maps
 - Security under a new (ad-hoc) assumption
- 2. Bootstrapping to get all circuits
 - Using homomorphic encryption with NC¹ decryption
 - Very simple, provable, transformation

NC¹ Obfuscation \rightarrow P Obfuscation

NC¹ Obfuscation \rightarrow P Obfuscation

Conditional Decryption with iO

- We have iO, not "perfect" obfuscation
- But we can adapt the CondDec approach
 We use *two* HE secret keys

iO for CondDec \rightarrow iO for All Circuits

π, x, and two ciphertexts $c_0 = Enc_{PK0}(F(x))$ and $c_1 = Enc_{PK1}(F(x))$ π , x_i's, and two ciphertexts $c_0 = Enc_{PK0}(F(x))$ and $c_1 = Enc_{PK1}(F(x))$

Indist. Obfuscation

CondDec_{F.**SK0**}(*, ..., *)

Indist. Obfuscation

F(x) if π verifies

F(x) if π verifies

Analysis of Two-Key Technique

- 1st program has secret SK₀ inside (but not SK₁).
- 2nd program has secret SK₁ inside (but not SK₀).
- But programs are indistinguishable
- So, neither program "leaks" either secret.
- Two-key trick is very handy in iO context.
- Similar to Naor-Yung '90 technique to get encryption with chosen ciphertext security

[°] NC¹ OBFUSCATION

Outline of Our Construction

- Describe Circuits as Branching Programs (BPs) using Barrington's theorem [B86]
- Randomized BPs (RBPs) a-la-Kilian [K88]
- Encode RBPs "in the exponent" using multilinear maps [GGH13,CLT13]
- Modifications to defeat attacks
 - Multiplicative bundling against "partial evaluation" and "mixed input" attacks
 - Defenses against "DDH attacks", "rank attacks"

(Oblivious) Branching Programs

- A specific way of describing a function
- Length-*m* BP with *n*-bit input is a sequence (*j*₁, *A*_{1,0}, *A*_{1,1}), (*j*₂, *A*_{2,0}, *A*_{2,1}), ..., (*j*_m, *A*_{m,0}, *A*_{m,1}) *j*_i ∈ {1, ..., n} are indexes, *A*_{i,b}'s are matrices
- Input $x = (x_1, ..., x_n)$ chooses matrices $A_{i,x_{j_i}}$

• Compute the product $P_x = \prod_{i=1}^m A_{i,x_{j_i}}$

• F(x) = 1 if $P_x = I$, else F(x) = 0

(Oblivious) Branching Programs

This length-9 BP has 4-bit inputs

(Oblivious) Branching Programs

This length-9 BP has 4-bit inputs

(Oblivious) Branching Programs This length-9 BP has 4-bit inputs $A_{1,0}$ $A_{2,0}$ $A_{3,0}$ $A_{4,0}$ $A_{5,0}$ $A_{6,0}$ $A_{7,0}$ $A_{8,0}$ $A_{9,0}$ A_{3,1} A_{4,1} A_{5,1} A_{6,1} A_{7,1}

Multiply the chosen 9 matrices together
If product is *I* output 1. Otherwise output 0.

Barrington's Theorem [B86]

- F computable by depth-d circuit →
 F computable by a BP of length 4^d
 - With constant-dimension matrices
- Corollary: every function in NC¹ has a polynomial-length BP
 - Recall: NC¹ = O(log n)-depth circuits

Oblivious BP Evaluation [K88]

- Alice has x. Bob has y. They want Bob to get F(x, y)
 - They start with a BP= $\{(j_i, A_{i,0}, A_{i,1})\}_{i=1}^m$ for F
- Randomized BP Generation
 - Alice chooses random matrices $R_1, ..., R_m$, set $R_0 = R_m$ • RBP={ $\{(j_i, B_{i,0} = R_{i-1}A_{i,0}R_i^{-1}, B_{i,1} = R_{i-1}A_{i,1}R_i^{-1})\}_{i=1}^m$
- Matrix Collection
 - Alice sends matrices for her input $\{B_{i,x_{i_i}}: i \leq |x|\}$
 - Bob gets matrices for his input via OT
- Evaluation of Randomized BP
 - R_i 's and their inverses cancel, R_0 , R_m^{-1} cancel if P = I
- Randomized BP gives Alice perfect privacy

Kilian's Protocol → BP-Obfuscation?

- RBP for $F_x(y) = F(x, y)$ with the x part fixed
 - Bob gets $B_{i,x_{j_i}}$ as in Kilian, but both $B_{i,b}$'s for y
 - Evaluates randomized BP in usual way, choosing appropriate $B_{i,0}$ or $B_{i,1}$ for the y-parts.
- Biggest problems:
 - Perfect privacy is lost once we give both $B_{i,b}$'s
 - Partial evaluation attacks: Adversary computes partial product of matrices from positions i₁ to i₂, makes comparisons.
 - Mixed Input attacks: Adversary computes matrix product that does not respect the BP structure.

Multilinear Maps to Hide Matrices

- Recall cryptographic *d*-multilinear map:
 - Groups G_1, \dots, G_d of order p, generators g_1, \dots, g_d
 - Computable maps $e_{ij}: G_i \times G_j \to G_{i+j}$ for $i + j \le d$
 - Multi-linearity: $e_{ij}(g_i^a, g_j^b) = g_{i+j}^{ab}$ for all a, b
- Cryptographic hardness:
 - DL analog: hard to recover a from g_i^a
 - Multilinear-DDH: Given $g_1^{a_i} \in G_1$ for d + 1 random a_i 's, hard to distinguish $g_d^{a_1 \cdot \ldots \cdot a_{d+1}}$ from random in G_d
 - Etc.
- [GGH13, CLT13] don't exactly give this
 - But it's close enough for our purposes

- Encode the $B_{i,b}$'s in the exponent, $g_1^{B_{i,b}}$
 - Matrix is encoded element-wise
- Can use the maps e_{ij} 's to multiply them • Given g_i^M , g_j^N , compute $\tilde{e}_{ij}(g_i^M, g_j^N) = g_{i+j}^{MN}$ • From $\{g_1^{B_{i,b_i}}\}_{i=1..m}$, can compute $g_m^P = g_m^{\prod_i B_{i,b_i}}$
- Then we can check if P = I
- Are the $B_{i,b}$'s really hidden?

"Partial Evaluation" Attacks

- Evaluate the program on two inputs y, y', but only use matrices between steps i₁, i₂, P = ∏^{i₂}_{i=i₁} B_{i,y_i}, P' = ∏^{i₂}_{i=i₁} B_{i,y'_j}
 Check if P = P'
- Roughly, you learn if in the computations of the circuits for F(y), F(y'), you have the same value on some internal wire

"Mixed Input" Attack

- Inconsistent matrix selection:
 - Product includes $B_{i_1,0}$ and $B_{i_2,1}$, but these two steps depend on the same input bit (i.e., $j_{i_1} = j_{i_2}$)
- Roughly, you learn what happens when fixing some internal wire in the circuit of F(y)
 - Fixing the wire value to 0, or to 1, or copying value from another wire, ...

"Multiplicative Bundling"

- Obfuscator uses two randomized BPs
 - "Main BP" computing $F_x(y) = F(x, y)$
 - "Dummy BP' " computing c(y) = 1
 - Same length and j_i -assignments as the BP for F_x
 - All the $A'_{i,b}$'s are the identity
 - Independent randomizer matrices R'_i
- For every step *i* choose random scalars $\alpha_{i,0}, \alpha_{i,1}, \alpha'_{i,0}, \alpha'_{i,1} \leftarrow Z_p$ under the constraint:

• For every input bit position *j* and value $b \in \{0,1\} \prod_{\{i:j_i=j\}} \alpha_{i,b} = \prod_{\{i:j_i=j\}} \alpha'_{i,b}$

"Multiplicative Bundling"

Obfuscator outputs

$$\{B_{i,b} = \alpha_{i,b} \cdot R_{i-1} A_{i,b} R_i^{-1}\}_{i,b}$$

$$\{B_{i,b}' = \alpha_{i,b}' \cdot R_{i-1}' I R_i'^{-1}\}_{i,b}$$

- To evaluate F(y), compute the products (in the exponent) $P = \prod_{i=1}^{m} B_{i,y_{j_i}}$ and $P' = \prod_{i=1}^{m} B'_{i,y_{j_i}}$
- If F(y) = 1 then $P = P' = \alpha \cdot I$
 - For some constant α (the same for P, P')
- "Partial evaluation" & "mixed input" attacks yield matrices that differ by a multiplicative constant
 Dether then identical matrices
 - Rather than identical matrices

DDH Attacks

- Identifying matrices (in the exponent) that differ by a multiplicative constant is DDH
- But we can solve DDH using MMAPs: • Given $\begin{pmatrix} g_i^a & g_i^b \\ g_i^c & g_i^d \end{pmatrix}$, $\begin{pmatrix} g_i^{a'} & g_i^{b'} \\ g_i^{c'} & g_i^{d'} \end{pmatrix}$ (with $2i \le d$), check $e_{i,i} \left(g_i^a, g_i^{b'} \right) = e_{i,i} \left(g_i^{a'}, g_i^b \right)$ etc.
- Not out of the woods yet...

40

More Attacks: Determinant & Rank

- Use MMAPs to compute determinant
 - E.g., given $g^{A} = \begin{pmatrix} g_{1}^{a} & g_{1}^{b} \\ g_{1}^{c} & g_{1}^{d} \end{pmatrix}$ compute $e_{1,1}(g_{1}^{a}, g_{1}^{d})/e_{1,1}(g_{1}^{b}, g_{1}^{c}) = g_{2}^{\det(A)}$
- For matrices of dimension ≤ d, can check if they are singular
 - Use projections to compute rank
- Not sure how to use for actual attack, but it is something to look for

Fixing DDH, Rank Attacks

- One option (also used in [BR13b]) is to switch to "asymmetric maps"
 - Just like XSDH for bilinear maps, DDH can potentially be hard in the different groups, even though you have pairing
 - A little awkward to define in the multilinear setting, so will not do it here

42

Fixing DDH, Rank Attacks

- Or embed in higher-dimension matrices
 - Set $D_{i,b} = \begin{pmatrix} \$ & & \\ & \ddots \$ & \\ & & \alpha_{i,b}A_{i,b} \end{pmatrix}$
 - Then $B_{i,b} = R_{i-1}D_{i,b}R_i^{-1}$
- Matrix rank > d, too high to compute
- \$'s are independent between all the matrices $D_{i,0}, D_{i,1}, D'_{i,0}, D'_{i,1}$
 - Matrices in attacks no longer differ just by a multiplicative constant factor

How To Evaluate?

- We have $P = \prod_{i=1}^{m} B_{i,y_{j_i}} = R_0 D R_m^{-1}$, and similarly $P' = R'_0 D' R'_m^{-1}$
 - D' diagonal, and if $F_{\chi}(y) = 1$ then so is D
 - But top entries on the diagonal are random, different between *D*, *D*'
- Add pairs of "bookend" vectors
 - $\boldsymbol{u} = \boldsymbol{s} R_0^{-1}, \boldsymbol{v} = R_m \boldsymbol{t}, \ \boldsymbol{u}' = \boldsymbol{s}' R_0'^{-1}, \ \boldsymbol{v}' = R_m' \boldsymbol{t}'$
 - s, t, s', t' have 0's to eliminate the \$'s in D, D'
 - Compute r = uPv = sDt, r' = u'P'v' = s'D't', check that r = r'

Summary of BP-Obfuscation

- "Main BP" for $F_x(y)$, "dummy" for c(y) = 1
- Multiplicative bundling with $\alpha_{i,b}$, $\alpha'_{i,b}$
- Embed $\alpha_{i,b}A_{i,b}$'s in higher-degree $D_{i,b}$'s
- Multiply by randomizers $B_{i,b} = R_{i-1}D_{i,b}R_i^{-1}$
- Add "bookend" vectors $oldsymbol{u} = oldsymbol{s} R_0^{-1}$, $oldsymbol{v} = R_m oldsymbol{t}$
- Encode everything with (m + 2)-MMAPs
- To evaluate: compare products of "main", "dummy", output 1 if they match.

Is This Indistinguishable?

- It's plausible...
- Don't know to distinguish $O(F_{x1})$, $O(F_{x2})$, except by finding y s.t. $F_{x1}(y) \neq F_{x2}(y)$
- We can prove that some "generic attacks" do not work
- But no simple hardness assumption that we can reduce to
 - This is important future work

Open Problems

- Better underlying hardness assumptions
- Faster constructions
 - Complexity of our construction is horrendous
- Better notions
 - *iO* is okay for some things, not others
 - Certainly does not capture our intuition of what an obfuscator is
 - Doesn't even capture the intuition of what the current construction achieves
- Applications
 - The sky is the limit...

Thank You

Questions?