Indistinguishability
Obfuscation for all Circuits

Sanjam Garg, Craig Gentry*, Shai Halevi*, Mariana Raykova, Amit Sahai, Brent Waters

Faces in Modern Cryptography, Oct-2013
A Celebration in Honor of Goldwasser and Micali’s Turing Award

* Supported by IARPA contract number D11PC20202
Code Obfuscation

• Make programs “unintelligible” while maintaining their functionality
 ◦ Example from Wikipedia:

```perl
@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU /
1reP rehtona tsuJ";sub p{
    @p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+
    =$f=!fork;map{+$P=+$P[$f^ord ($p{$_})&6];$p{$_}=/
        ^$P/ix?$P:close$_}keys%p;p;p;p;p;map{$p{$_}=~/^[P.
    .]/&& close$_}p;wait
    until?$;map{/^r/&&<$_>}%p;$=_=$d[$q];sleep
    rand(2)if\S/;print
```

• Why do it?
• How to define “unintelligible”?
• Can we achieve it?
Why Obfuscation?

- Hiding secrets in software
 - AES encryption

Plaintext\rightarrow\text{Ciphertext}\rightarrow\text{strutpatent.com}

10/4/2013 Indistinguishability Obfuscation
Why Obfuscation?

- Hiding secrets in software

- AES encryption ➔ Public-key encryption
Why Obfuscation?

- Hiding secrets in software

1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

- Distributing software patches
Why Obfuscation?

- Hiding secrets in software

- Distributing software patches while hiding vulnerability
Why Obfuscation?

- Hiding secrets in software
 - Uploading my expertise to the web
Why Obfuscation?

- Hiding secrets in software
 - Uploading my expertise to the web without revealing my strategies

Game of Go

```perl
@P=spli\t/,,\\.URRUU\c8R''@d=split/,,\\nrekcah xinU / IreP rehtona tsuJ''\sub P{
  @p"r$p","u$p"=(P,P);pipe"r$p","u$p";++p;($q*=2)+=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/
  ^$P/ix?$P:close$_}keys$p;p;p;p;map{$p{$_}=~/^\P./&\& close$_}%p;wait until$?;map{/^r/&#<$_>}%p;$_=$d[$q];sleep rand(2)if\S;/print
```
Contemporary Obfuscation

- Used fairly widely in practice
- Mostly as an art form
 - Some rules-of-thumb, sporadic tool support
 - Relies on human ingenuity, security-via-obscurity
 - “At best, obfuscation merely makes it time-consuming, but not impossible, to reverse engineer a program” (from Wikipedia)
- Can it be done the Goldwasser-Micali way?
 - Definitions, constructions, concrete assumptions
 - Question addressed 1st by Barak et al. in 2001 [B+01]
Defining Obfuscation

- An efficient public procedure $O(\ast)$
 - Everything is known about it
 - Except the random coins that it uses
- Takes as input a program C
 - E.g., encoded as a circuit
- Produce as output another program C'
 - C' computes the same function as C
 - C' at most polynomially larger than C
 - C' is “unintelligible”
 - Okay, defining this is tricky
What’s “Unintelligible”?

- What we want: cannot do much more with C' than running it on various inputs
 - At least: If C depends on some secrets that are not readily apparent in its I/O, then C' does not reveal these secrets

- [B+01] show that even this is impossible:
 - **Thm:** If PRFs exist, then there exists PRF families $F = \{f_s\}$, for which it is possible to recover s from any circuit that computes f_s.
 - These PRFs are *unobfuscatable*
What’s “Unintelligible”?

- Okay, some functions are bad, but can we get $O()$ that does “as well as possible” on every function?
- [B+01] suggested the weaker notion of “indistinguishability obfuscation” (iO)
 - Gives the “best-possible” guarantee [GR07]
 - It turns out to suffice for many applications (examples in [GGH+13, SW13,…])
Indistinguishability Obfuscation

Def: If C_1, C_2 compute the same function (and $|C_1| = |C_2|$) then $O(C_1) \approx O(C_2)$

- Indistinguishable even if you know C_1, C_2

Note: Inefficient iO is always possible

- $O(C) = \text{lexicographically } 1^{st} \text{ circuit computing the same function as } C$

- Canonicalization is inefficient (unless P=NP)
Best-Possible Obfuscation

Some circuit C

Indist. Obfuscation

Best Obfuscation

$C(x)$

\approx

Computationally Indistinguishable

Indist. Obfuscation

Padding

Some circuit C

$C(x)$
Many Applications of iO

- AES ➔ public key encryption [GGH+13, SW13]

- Witness encryption: Encrypt x so only someone with proof of Riemann Hypothesis can decrypt [GGSW13]

- Functional encryption: Noninteractive access control [GGH+13], $\text{Dec}(\text{Key}_y, \text{Enc}(x)) \Rightarrow F(x, y)$

- Many more (all of them this year)…

- One notable thing iO doesn’t give us (yet): Homomorphic Encryption (HE)
Beyond iO

- For very few functions, we know how to achieve stronger notions than iO
 - “Virtual Black Box” (VBB)
- Point-functions / cryptographic locks
 - $f_{a,b}(x) = \begin{cases} b & \text{if } x = a \\ \perp & \text{otherwise} \end{cases}$
 - [C97, CMR98, LPS04, W05]
 - Many extensions, generalizations [DS05, AW07, CD08, BC10, HMLS10, HRSV11, BR13]
Aside: Obfuscation vs. HE

Obfuscation:
- $F \rightarrow$ Obfuscation
- $F \rightarrow F(x)$
- $x \rightarrow F(x)$
- Result in the clear

Encryption:
- $F \rightarrow$ Encryption
- $F \rightarrow F(x)$
- $x \rightarrow F(x)$
- $x \rightarrow F(x)$
- Result encrypted
OUR CONSTRUCTION
Obfuscating Arbitrary Circuits

- A two-step construction
 1. Obfuscating “shallow circuits” (NC1)
 - This is where the meat is
 - Using multilinear maps
 - Security under a new (ad-hoc) assumption
 2. Bootstrapping to get all circuits
 - Using homomorphic encryption with NC1 decryption
 - Very simple, provable, transformation
NC¹ Obfuscation \Rightarrow P Obfuscation

If π describes homomorphic evaluation that takes x, F to c, then use sk to decrypt c

Encrypted-result c

+ eval transcript π

$F(x)$

CondDec
NC¹ Obfuscation \rightarrow P Obfuscation

Homomorphic Encryption

- **F**
- **X**
- **F(X)**

Encrypted result C

- +
- **eval transcript π**

NC¹ Circuit Obfuscation

- Only this part

Output of P obfuscator

CondDec
Conditional Decryption with iO

- We have iO, not “perfect” obfuscation
- But we can adapt the CondDec approach
 - We use *two* HE secret keys
iO for CondDec \rightarrow iO for All Circuits

π, x, and two ciphertexts
$c_0 = \text{Enc}_{\text{PK0}}(F(x))$ and
$c_1 = \text{Enc}_{\text{PK1}}(F(x))$

π, x_i’s, and two ciphertexts
$c_0 = \text{Enc}_{\text{PK0}}(F(x))$ and
$c_1 = \text{Enc}_{\text{PK1}}(F(x))$

π, x’s, and two ciphertexts
$c_0 = \text{Enc}_{\text{PK0}}(F(x))$ and
$c_1 = \text{Enc}_{\text{PK1}}(F(x))$

$\text{CondDec}_{F,\text{SK0}}(\cdot, \ldots, \cdot)$

$\text{CondDec}_{F,\text{SK1}}(\cdot, \ldots, \cdot)$

$F(x)$ if π verifies

$F(x)$ if π verifies
Analysis of Two-Key Technique

- 1st program has secret SK_0 inside (but *not* SK_1).
- 2nd program has secret SK_1 inside (but *not* SK_0).
- But programs are indistinguishable.
- So, neither program “leaks” either secret.

- Two-key trick is very handy in iO context.
- Similar to Naor-Yung ’90 technique to get encryption with chosen ciphertext security
NC1 OBFUSCATION
Outline of Our Construction

- Describe Circuits as Branching Programs (BPs) using Barrington’s theorem [B86]
- Randomized BPs (RBPs) a-la-Kilian [K88]
- Encode RBPs “in the exponent” using multilinear maps [GGH13,CLT13]
- Modifications to defeat attacks
 - Multiplicative bundling against ”partial evaluation” and “mixed input” attacks
 - Defenses against “DDH attacks”, “rank attacks”
Oblivious Branching Programs

- A specific way of describing a function
- Length-\(m\) BP with \(n\)-bit input is a sequence
 \((j_1, A_{1,0}, A_{1,1}), (j_2, A_{2,0}, A_{2,1}), \ldots, (j_m, A_{m,0}, A_{m,1})\)
 \(j_i \in \{1, \ldots, n\}\) are indexes, \(A_{i,b}\)'s are matrices
- Input \(x = (x_1, \ldots, x_n)\) chooses matrices \(A_{i,x_{j_i}}\)
 - Compute the product \(P_x = \prod_{i=1}^{m} A_{i,x_{j_i}}\)
 - \(F(x) = 1\) if \(P_x = I\), else \(F(x) = 0\)
This length-9 BP has 4-bit inputs
(Oblivious) Branching Programs

- This length-9 BP has 4-bit inputs
(Oblivious) Branching Programs

- This length-9 BP has 4-bit inputs

Multiply the chosen 9 matrices together
- If product is I output 1. Otherwise output 0.
Barrington’s Theorem [B86]

- F computable by depth-d circuit $\Rightarrow F$ computable by a BP of length 4^d
 - With constant-dimension matrices
- Corollary: every function in NC1 has a polynomial-length BP
 - Recall: NC1 = O(log n)-depth circuits
Oblivious BP Evaluation [K88]

- Alice has x. Bob has y. They want Bob to get $F(x, y)$
 - They start with a $BP = \{(j_i, A_{i,0}, A_{i,1})\}_{i=1}^m$ for F

- Randomized BP Generation
 - Alice chooses random matrices R_1, \ldots, R_m, set $R_0 = R_m$
 - $RBP = \{(j_i, B_{i,0} = R_{i-1}A_{i,0}R^{-1}_i, B_{i,1} = R_{i-1}A_{i,1}R^{-1}_i)\}_{i=1}^m$

- Matrix Collection
 - Alice sends matrices for her input $\{B_{i,x_{j_i}} : i \leq |x|\}$
 - Bob gets matrices for his input via OT

- Evaluation of Randomized BP
 - R_i’s and their inverses cancel, R_0, R_m^{-1} cancel if $P = I$

- Randomized BP gives Alice perfect privacy
Kilian’s Protocol ➔ BP-Obfuscation?

- RBP for $F_x(y) = F(x, y)$ with the x part fixed
 - Bob gets $B_{i,x_{j_i}}$ as in Kilian, but both $B_{i,b}$’s for y
 - Evaluates randomized BP in usual way, choosing appropriate $B_{i,0}$ or $B_{i,1}$ for the y-parts.

- Biggest problems:
 - Perfect privacy is lost once we give both $B_{i,b}$’s
 - Partial evaluation attacks: Adversary computes partial product of matrices from positions i_1 to i_2, makes comparisons.
 - Mixed Input attacks: Adversary computes matrix product that does not respect the BP structure.
Multilinear Maps to Hide Matrices

- Recall cryptographic d-multilinear map:
 - Groups $G_1, ..., G_d$ of order p, generators $g_1, ..., g_d$
 - Computable maps $e_{ij}: G_i \times G_j \rightarrow G_{i+j}$ for $i + j \leq d$
 - Multi-linearity: $e_{ij}(g_i^a, g_j^b) = g_{i+j}^{ab}$ for all a, b

- Cryptographic hardness:
 - DL analog: hard to recover a from g_i^a
 - Multilinear-DDH: Given $g_1^{a_i} \in G_1$ for $d + 1$ random a_i’s, hard to distinguish $g_1^{a_1} \cdot \ldots \cdot g_d^{a_{d+1}}$ from random in G_d
 - Etc.

- [GGH13, CLT13] don’t exactly give this
 - But it’s close enough for our purposes
Multilinear Maps to Hide Matrices

- Encode the $B_{i,b}$’s in the exponent, $g_1^{B_{i,b}}$
 - Matrix is encoded element-wise
- Can use the maps e_{ij}’s to multiply them
 - Given g_i^M, g_j^N, compute $\tilde{e}_{ij}(g_i^M, g_j^N) = g_{i+j}^{MN}$
 - From $\{g_1^{B_{i,b_i}}\}_{i=1..m}$, can compute $g_m^P = \prod_i B_{i,b_i}$
- Then we can check if $P = I$
- Are the $B_{i,b}$’s really hidden?
“Partial Evaluation” Attacks

- Evaluate the program on two inputs y, y', but only use matrices between steps i_1, i_2, $P = \prod_{i=i_1}^{i_2} B_{i,y_{j_i}}$, $P' = \prod_{i=i_1}^{i_2} B_{i,y'_{j_i}}$
 - Check if $P = P'$

- Roughly, you learn if in the computations of the circuits for $F(y), F(y')$, you have the same value on some internal wire
“Mixed Input” Attack

- Inconsistent matrix selection:
 - Product includes $B_{i_1,0}$ and $B_{i_2,1}$, but these two steps depend on the same input bit (i.e., $j_{i_1} = j_{i_2}$)

- Roughly, you learn what happens when fixing some internal wire in the circuit of $F(y)$
 - Fixing the wire value to 0, or to 1, or copying value from another wire, …
“Multiplicative Bundling”

- Obfuscator uses two randomized BPs
 - “Main BP” computing $F_x(y) = F(x, y)$
 - “Dummy BP’” computing $c(y) = 1$
 - Same length and j_i-assignments as the BP for F_x
 - All the $A'_{i,b}$’s are the identity
 - Independent randomizer matrices R_i'

- For every step i choose random scalars $\alpha_{i,0}, \alpha_{i,1}, \alpha'_{i,0}, \alpha'_{i,1} \leftarrow Z_p$ under the constraint:
 - For every input bit position j and value $b \in \{0,1\}$
 $\prod_{i: j_i = j} \alpha_{i,b} = \prod_{i: j_i = j} \alpha'_{i,b}$
“Multiplicative Bundling”

- Obfuscator outputs
 \[
 \begin{align*}
 B_{i,b} &= \alpha_{i,b} \cdot R_{i-1} A_{i,b} R_i^{-1} \\
 B'_{i,b} &= \alpha'_{i,b} \cdot R'_{i-1} I R_i'^{-1}
 \end{align*}
 \]

- To evaluate \(F(y) \), compute the products (in the exponent)
 \[
 P = \prod_{i=1}^{m} B_{i,y_j_i} \quad \text{and} \quad P' = \prod_{i=1}^{m} B'_{i,y_j_i}
 \]

- If \(F(y) = 1 \) then \(P = P' = \alpha \cdot I \)
 - For some constant \(\alpha \) (the same for \(P, P' \))

- “Partial evaluation” & “mixed input” attacks yield matrices that differ by a multiplicative constant
 - Rather than identical matrices
DDH Attacks

- Identifying matrices (in the exponent) that differ by a multiplicative constant is DDH

- But we can solve DDH using MMAPs:
 - Given \(\begin{pmatrix} g_i^a & g_i^b \\ g_i^c & g_i^d \end{pmatrix}, \begin{pmatrix} g_i^{a'} & g_i^{b'} \\ g_i^{c'} & g_i^{d'} \end{pmatrix} \) (with \(2i \leq d \)),
 - check \(e_{i,i} (g_i^a, g_i^{b'}) = e_{i,i} (g_i^{a'}, g_i^b) \) etc.

- Not out of the woods yet…
More Attacks: Determinant & Rank

- Use MMAPs to compute determinant
 - E.g., given \(g^A = \begin{pmatrix} g^a_1 & g^b_1 \\ g^c_1 & g^d_1 \end{pmatrix} \) compute
 \[e_{1,1} (g^a_1, g^d_1)/e_{1,1} (g^b_1, g^c_1) = g^{\text{det}(A)}_2 \]

- For matrices of dimension \(\leq d \), can check if they are singular
 - Use projections to compute rank

- Not sure how to use for actual attack, but it is something to look for
Fixing DDH, Rank Attacks

- One option (also used in [BR13b]) is to switch to “asymmetric maps”
 - Just like XSDH for bilinear maps, DDH can potentially be hard in the different groups, even though you have pairing
 - A little awkward to define in the multilinear setting, so will not do it here
Fixing DDH, Rank Attacks

- Or embed in higher-dimension matrices
 - Set $D_{i,b} = \begin{pmatrix} \$ & \cdots & \$ \\ & \ddots & \$ \\ & & \alpha_{i,b} A_{i,b} \end{pmatrix}$
 - Then $B_{i,b} = R_{i-1} D_{i,b} R_i^{-1}$

- Matrix rank $> d$, too high to compute
- $'$s are independent between all the matrices $D_{i,0}, D_{i,1}, D'_{i,0}, D'_{i,1}$
 - Matrices in attacks no longer differ just by a multiplicative constant factor
How To Evaluate?

- We have \(P = \prod_{i=1}^{m} B_{i,y_{i}} = R_0 DR_m^{-1} \), and similarly \(P' = R_0' D'R_m'^{-1} \)
 - \(D' \) diagonal, and if \(F_x(y) = 1 \) then so is \(D \)
 - But top entries on the diagonal are random, different between \(D, D' \)
- Add pairs of “bookend” vectors
 - \(u = sR_0^{-1}, v = R_m t, u' = s'R_0'^{-1}, v' = R_m' t' \)
 - \(s, t, s', t' \) have 0’s to eliminate the $’\)s in \(D, D' \)
 - Compute \(r = uPv = sDt, r' = u'P'v' = s'D't' \), check that \(r = r' \)
Summary of BP-Obfuscation

- “Main BP” for $F_x(y)$, “dummy” for $c(y) = 1$
- Multiplicative bundling with $\alpha_{i,b}, \alpha'_{i,b}$
- Embed $\alpha_{i,b}A_{i,b}$’s in higher-degree $D_{i,b}$’s
- Multiply by randomizers $B_{i,b} = R_{i-1}D_{i,b}R_i^{-1}$
- Add “bookend” vectors $u = sR_0^{-1}, v = R_m t$
- Encode everything with $(m + 2)$-MMAPs

- To evaluate: compare products of “main”, “dummy”, output 1 if they match.
Is This Indistinguishable?

- It’s plausible...
- Don’t know to distinguish $O(F_{x1})$, $O(F_{x2})$, except by finding y s.t. $F_{x1}(y) \neq F_{x2}(y)$
- We can prove that some “generic attacks” do not work
- But no simple hardness assumption that we can reduce to
 - This is important future work
Open Problems

• Better underlying hardness assumptions
• Faster constructions
 ◦ Complexity of our construction is horrendous
• Better notions
 ◦ iO is okay for some things, not others
 ◦ Certainly does not capture our intuition of what an obfuscator is
 • Doesn’t even capture the intuition of what the current construction achieves
• Applications
 ◦ The sky is the limit…
Thank You

Questions?