
Transactional Mutex Locks ∗

Michael F. Spear, Arrvindh Shriraman, Luke Dalessandro, and Michael L. Scott
Department of Computer Science

University of Rochester
{spear, ashriram, luked, scott}@cs.rochester.edu

Abstract
Mutual exclusion locks limit concurrency but offer low la-
tency. Software transactional memory (STM) typically has
higher latency, but scales well. In this paper we propose
transactional mutex locks (TML), which attempt to achieve
the best of both worlds for read-dominated workloads. TML
has much lower latency than STM, enabling it to perform
competitively with mutexes. It also scales as well as STM
when critical sections rarely perform writes.

In this paper, we describe the design of TML and evaluate
its performance using microbenchmarks on the x86, SPARC,
and POWER architectures. Our experiments show that while
TML is not general enough to completely subsume both
STM and locks, it offers compelling performance for the
targeted workloads, without performing substantially worse
than locks when writes are frequent.

1. Introduction
In shared memory applications, locks are the most com-
mon mechanism for synchronizing access to shared mem-
ory. While transactional memory (TM) research has iden-
tified novel techniques to replace some lock-based critical
sections, these techniques suffer from many problems [12].
Most significantly, TM requires either hardware that is not
yet available, or else significant per-access instrumentation
in software. As a result, TM does not yet appear viable for
small but highly contended critical sections, such as those
common in operating systems and language runtimes, where
low latency is critical.

Of course, it is possible to improve the scalability of a
lock-based critical section without abandoning locks alto-
gether. In particular, reader/writer (R/W) locks, read-copy-
update (RCU) [11],1 and sequence locks [7]2 all permit mul-
tiple read-only critical sections to execute in parallel. Each
of these mechanisms comes with significant strengths and

∗ This work was supported in part by NSF grants CNS-0411127, CNS-
0615139, CCF-0702505, and CSR-0720796; by equipment support from
IBM; and by financial support from Intel and Microsoft.
1 RCU writers create a new version of a data structure that will be seen by
future readers. Cleanup of the old version is delayed until one can be sure
(often for application-specific reasons) that no past readers are still active.
2 Sequence lock readers can “upgrade” to write status so long as no other
writer is active, and can determine, when desired, whether a writer has
conflicted with their activity so far. Readers must be prepared, however,
to back out manually and retry on conflict.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Setjmp
Throw

Figure 1. When exceptions are used for rollback in a TL2-
like STM, contention for a R/W lock halves scalability rela-
tive to the same implementation using setjmp/longjmp for
rollback (Sun Niagara-1 CMP).

limitations: R/W locks allow the broadest set of operations
within the critical section, but typically require static knowl-
edge of whether a critical section might perform writes;
RCU ensures no blocking in a read-only operation, but con-
strains the behavior allowed within a critical section (such
as permitting only forward traversal of a doubly-linked list);
and sequence locks forbid both function calls and any traver-
sal of linked data structures. Furthermore, the performance
characteristics of these mechanisms (such as the two atomic
operations required for a R/W lock), or their programmer
overhead (e.g., the manual instrumentation overhead for roll-
back of sequence locks) often discourage their use even in
situations where these techniques appear appropriate.

The wrong choice of locking mechanism can have disas-
trous performance consequences. Figure 1 contains an ex-
ample. A lightweight C++ implementation of the TL2 algo-
rithm [2] is used to perform updates to a red-black tree. The
underlying rollback/restart mechanism may use either C++
exceptions or setjmp/longjmp. In C++, exceptions are the
correct mechanism semantically; logically, they also ought
to be faster than setjmp/longjmp, as they avoid checkpoint-
ing the registers of transactions that ultimately commit. In
the GNU C++ runtime, however, global exception metadata
is protected by a R/W lock. The metadata is written infre-

1 2009/2/3

mls
TRANSACT '09

quently, suggesting that a sequence lock would be appro-
priate, except that the metadata includes a linked list. RCU
would also be appropriate, except that there is no easily iden-
tifiable point at which to end an RCU epoch (when all old
readers are known to have completed). Read-only critical
sections are small, and when the exception mechanism is
stressed, multiple atomic operations cause the lock to bounce
between processors’ caches. Even on the Sun T1000 (Ni-
agara) processor, with its shared L2 cache and low cache
latencies, the result is a significant loss in scalability.

Unfortunately, current STM implementations cannot fix
this problem. Superficially, there is a chicken-and-egg de-
pendence inherent in using general-purpose transactions to
implement a language that provides general-purpose trans-
actions. From an engineering perspective, modern STM run-
times typically require significant amounts of global and per-
thread metadata. This space overhead may be prohibitive if
TM is not used widely within the language runtime. Seman-
tically, the use of transactions in the language implemen-
tation must compose correctly with the use of transactions
in user code. In our above example, should the transaction
traversing the metadata of the aborting transaction be sub-
sumed in the aborting transaction? Should it be an asyn-
chronous transaction? What about the case in which an ex-
ception is thrown explicitly from a transaction that is valid?

The nature of many critical sections in systems software
suggests an approach that spans the boundary between locks
and transactions: specifically, we may be able to leverage
TM research to create a more desirable locking mechanism.
In this paper we propose one such mechanism, the Trans-
actional Mutex Lock (TML). TML offers the generality of
mutex locks and the read-read scalability of sequence locks,
while avoiding the atomic operation overheads of R/W locks
or the usage constraints of RCU and sequence locks. From
a TM perspective, TML can be thought of as an STM that
uses a single ownership record; TML’s simplicity can be ex-
ploited with either simple hardware or aggressive compiler
optimizations, to reduce instrumentation overhead to as little
as a small additive constant per transaction.

In Section 2 we describe the implementation of a STM
runtime for TML. We describe compiler optimizations for
TML in Section 3 and then in Section 4 we show how
hardware support for STM can be leveraged to accelerate
TML. Section 5 analyzes the performance of TML on the
x86, SPARC, and POWER architectures. We consider future
research directions in Section 6.

2. A Read-Parallel STM
TML is built atop an STM with minimal storage and instru-
mentation overheads. In contrast to previous “lightweight”
STMs, we explicitly limit both programming features and
potential scalability. In turn, TML can operate with as lit-
tle as one word of global metadata, two words of per-thread
metadata, and low per-access instrumentation.

Listing 1 Instrumentation for a single-orec STM.
TMBegin:

1 if (lNest++)

2 return

3 while (true)

4 lOrec = gOrec

5 if (isEven(lOrec))

6 break

TMEnd:

1 if (--lNest)

2 return

3 if (isOdd(lOrec))

4 gOrec++

TMRead(addr)

1 tmp = *addr

2 if (gOrec != lOrec)

3 throw aborted()

4 return tmp

TMWrite(addr, val)

1 if (isEven(lOrec))

2 if (!cas(&gOrec, lOrec, lOrec + 1))

3 throw aborted()

4 lOrec++

5 *addr = val

2.1 Restricted Programming API
The most straightforward STM API consists of four func-
tions: TMBegin and TMEnd mark the boundaries of a lexi-
cally scoped transaction, and TMRead and TMWrite are used
to read and write shared locations, respectively. Addition-
ally, STM may provide explicit self-abort for condition syn-
chronization [5], an unabortable or inevitable mode [21,27],
and various forms of open or closed nesting [15].

As a specialized STM runtime, TML institutes several
simplifications. First, any writing transaction is inevitable
(will never be rolled back). Inevitability precludes the use
of condition synchronization after a transaction’s first write
(for simplicity, we omit self-abort altogether). At the same
time, it means that writes can be performed in place without
introducing the possibility of out-of-thin-air reads in concur-
rent readers. Such reads are undesirable, and may in fact be
prohibited by the language memory model [8]. Second, we
support only flattened (subsumption) nesting. The merits of
open nesting are dubious since any writer is inevitable, and
with only coarse-grain metadata, a closed nested child trans-
action cannot abort and restart unless the parent restarts.

2.2 Minimal Global Metadata
Ownership records (orecs) are used in many STMs to me-
diate access to shared data [2, 4, 17]. An orec is essentially
the union of a version number with a lock bit. It can also be
thought of as a sequence lock. In orec-based STM, a hash

2 2009/2/3

function maps each address to a specific entry in an array of
orecs. To read location L, a transaction T first “prevalidates”
by identifying the orec O covering L and ensuring O is not
locked by another transaction. T then reads L and “postval-
idates” the read by checking that O did not change; this test
may be part of a more heavyweight operation that checks
every orec accessed by T. T must record (in its “read log”)
both the identity of orec O and the value of O that it ob-
served, to support subsequent validation operations. Before
writing location L, T must first lock O.

Having more orecs permits greater disjoint-write paral-
lelism by limiting the incidence of false conflicts generated
by the mapping of locations to orecs. With only one orec,
the runtime does not support parallelism in the face of any
writes, but the per-write instrumentation can be simplified:
no mapping function is called on each access, and the read
log has a single entry. If every transaction is expected to read
at least one location (a reasonable assumption under most,
but not all transactional semantics [13]), then it is correct to
hoist and combine all “prevalidate” operations to a single op-
eration at the beginning of the transaction. Furthermore, the
number of locking operations issued by a writing transaction
is fixed at one, not linear in the number of locations written.

2.3 The TML STM Algorithm
The above properties interact to create the simple STM al-
gorithm of Listing 1. A single word of global metadata
(gOrec) provides all concurrency control. When odd, it in-
dicates that a writer is active; when even, zero or more read-
ers may be active. Ignoring roll-over, bgOrec/2c indicates
the number of writers that have completed a critical section.
Two words of metadata are stored per transaction: a local
copy of the global orec (lOrec) and a count of the nesting
depth (lNest). Instrumentation is also low. The single global
orec (gOrec) is sampled at transaction begin, and stored in
transaction-local lOrec. To write, a transaction attempts to
atomically increment gOrec to lOrec + 1. Reads postvali-
date to ensure that gOrec and lOrec match (which is triv-
ially true for transactions that have performed any writes),
and the commit sequence entails only incrementing gOrec
in writing transactions. For simplicity, any memory manage-
ment operation (malloc or free) is treated as a write, and
is prefixed with the instrumentation of TMWrite lines 1–4.

The algorithm is livelock-free: in-flight transaction A
can abort only if another in-flight transaction W increments
gOrec. However, once W increments gOrec, it is guaran-
teed to commit (it cannot abort due to conflicts, nor can
it self-abort). Thus A’s abort indicates that W is making
progress. If starvation is an issue, the high order bits of the
lNest field can be used as a consecutive abort counter. As in
RingSTM [23], an additional branch in TMBegin can com-
pare this counter to some threshold, and if the count is too
high, force the transaction to acquire the orec at begin time,
thereby ensuring that it will not abort again.

2.4 Memory Safety
There are six common techniques to manage memory in
STM. Each can be applied to TML. (1) A garbage collect-
ing allocator may be used. (2) Some workloads may use an
allocator that never returns memory to the OS (so reading a
deallocated datum can never cause a fault). (3) Applications
can use a transaction-aware allocator [6]. (4) On some archi-
tectures, line 1 of TMRead may use a nonfaulting load [2]
(though such an option limits debugging). (5) Read-only
transactions can abort on segfault if gOrec does not match
lOrec [4]. (6) With hardware support for immediate aborts
(as in Section 4), no instrumentation is required.

2.5 Semantics
TML provides very strong semantics, at least as strong as
asymmetric lock atomicity (ALA) [13] (or, alternatively, se-
lective flow serializability (SFS) [20]). The argument for
ALA semantics is straightforward: The STM is privatization
safe, as it uses polling to avoid the doomed transaction prob-
lem and its single-writer property avoids the delayed cleanup
problem entirely [9]. ALA-style publication safety requires
transactions to presciently acquire the locks covering their
read set at begin time, and to acquire the locks covering a
write before performing the write. With only one lock, these
properties are provided by TMBegin lines 3–6 and write-
write memory ordering between TMWrite lines 2 and 5.

3. Compiler Support
The instrumentation in Listing 1 ensures that individual
reads and writes are performed correctly. When coupled
with an exception mechanism for rollback (or, alternatively,
setjmp and longjmp), it also ensures correct behavior on
conflicts. However, in transactions containing multiple reads
and writes, there is still significant redundancy, which can
be eliminated with simple static analysis.

3.1 Post-Write Instrumentation (PWI)
When a transaction W issues its first write to shared mem-
ory, via TMWrite, it increments the gOrec field and makes it
odd. It also increments its local lOrec field, ensuring that it
matches gOrec. At this point, W cannot abort, and no other
transaction can modify gOrec until W increments it again,
making it even. These other transactions are also guaranteed
to abort, and to block until W completes.

Thus once W performs its first write, instrumentation is
not required on any subsequent read or write. Unfortunately,
standard static analysis does not suffice to eliminate this in-
strumentation, since gOrec is a volatile variable. The com-
piler cannot tell that gOrec is odd and immutable until W
commits. Even if we add additional per-thread metadata to
express this case, conservatism within the compiler does not
remove instrumentation on all subsequent reads and writes.

A simple analysis achieves the same effect with very low
cost: for any call to TMRead that occurs on a path that has

3 2009/2/3

already called TMWrite, lines 2–3 can be skipped. Similarly,
for any call to TMWrite that occurs on a path that has already
called TMWrite, lines 1–4 can be skipped. Thus after the
first write the remainder of a writing transaction will execute
as fast as one protected by a single mutex. Propagation of
this analysis must terminate at a call to TMEnd. It must also
terminate at a join point between multiple control flows if
a call to TMWrite does not occur on every flow (meet over
all paths). To maximize the impact of this optimization, the
compiler may clone basic blocks that are called from writing
and nonwriting transactional contexts.

3.2 Relaxing Consistency Checks (RCC)
Spear et al. [22] reduce memory fences within transactional
instrumentation by deferring postvalidation (such as lines 2–
3 of TMRead) when the result of a read is not used until after
additional reads are performed. The simplest case addresses
reads within a basic block: if k reads occur within the block,
and the addresses dereferenced by those k reads are all
known before the start of the block, then all postvalidation
for those k reads can be delayed until after the kth read.
In TML, since each of these k postvalidations is identical,
k − 1 tests of gOrec can be skipped. The elimination of
k−1 loads, comparisons, and branches decreases instruction
cache pressure and lowers the dynamic instruction count,
resulting in savings even on architectures with strict memory
models. Analysis that extends over control flows is also
possible, using a mechanism similar to taint analysis.

3.3 Eliminating Thread-Local Storage (TLS)
STM implementations typically store per-thread metadata
on the heap. Every transactional access requires the address
of the calling thread’s metadata, and rather than add an
extra parameter to every function call to provide a reference
to this metadata, many STMs rely on thread-local storage
(TLS). With OS support, TLS is almost free; otherwise, an
expensive pthread API call provides TLS.

Since TML requires only two words of metadata, relying
on TLS is unnecessary even when it is not expensive: in-
stead, the compiler can allocate per-transaction metadata on
the stack, and then instrument functions accordingly. Avoid-
ing TLS overhead is a well-understood optimization [26];
TML merely makes it simpler.

3.4 Lowering Boundary Instrumentation (JMP)
For transactions that are not nested, and that do not make
function calls, the TMBegin and TMEnd instrumentation
can be relaxed: operations on the nesting variable can be
skipped, and read-only transactions can skip the test on
lines 3–4 of TMEnd. Abort-induced back edges can also
be optimized since TML guarantees that any transaction that
may abort cannot have any externally visible side effects.
Thus in a compiler with aggressive optimization of excep-
tional control flows, the entire instrumentation on abort-
induced back edges can be analyzed and inlined. With such

analysis, rollback can be implemented with an unconditional
branch, rather than a catch block or longjmp. Extending this
optimization to transactions that make function calls is pos-
sible, but requires an extra test on every function return.

4. Hardware Acceleration
Rather than implement TM entirely in hardware, several
groups have proposed to use hardware to accelerate STM
[3, 14, 18, 19, 24]. In a similar vein, hardware support sub-
stantially less ambitious than HTM could accelerate TML.

A common characteristic of most HTM and hardware-
accelerated TM systems is the ability for a remote memory
operation to synchronously alter the local instruction stream.
The Alert On Update (AOU) mechanism [19, 24] is one ex-
ample: when a specially marked cache line is evicted (indi-
cating a remote write, so long as capacity and conflict evic-
tions are avoided), the local processor immediately jumps to
a handler that can either (a) validate the transaction, re-mark
the line, and continue, or (b) roll back and restart.

AOU eliminates the need for read instrumentation within
TML transactions. The changes to Listing 1 are trivial: in
TMBegin, the transaction must use an AOU load to sample
gOrec, and must install a handler (which may be as simple
as throw aborted()). In TMEnd (or upon first TMWrite),
the transaction must unmark the line holding gOrec. De-
pending on the implementation of AOU, writes may (in the
best case) acquire gOrec with a simple store, or (in the worst
case) they may require an atomic read-modify-write. Trans-
action behavior is unchanged from the baseline, except that a
read-only transaction does not poll for changes to gOrec. If
its processor loses the line holding gOrec, it will be notified
immediately.

Virtualization support is straightforward: on a context
switch, the AOU mark is discarded from all lines. When a
preempted thread resumes, the OS provides a signal, so that
the thread can test gOrec and abort if necessary. Addition-
ally, writers must not be preempted between lines 2 and 4 of
TMWrite. Alternatively, they may briefly store a per-thread
identifier in gOrec during TMWrite.

In addition to eliminating all read instrumentation, AOU
avoids the need for a custom allocator, as discussed in Sec-
tion 2.4. If read-only transaction T is traversing a linked data
structure, and writer transaction W will modify that data
structure, then so long as W acquires gOrec before perform-
ing any free() calls, T will be guaranteed to take an imme-
diate alert (caused by the acquisition of gOrec) before the
free() can return memory to the operating system. By pro-
viding immediate aborts, AOU makes TML compatible with
any allocator, without requiring nonfaulting loads.

5. Evaluation
Several architectural features have the potential to affect
the throughput of TML critical sections. In this section we
present results on three very different machines.

4 2009/2/3

The “Regatta” experiments use an IBM pSeries 690 with
16 dual-core 1.3 GHz Power4 processors running AIX 5.3.
On the Regatta, a read-read fence is required between lines
1 and 2 of TMRead, and a write-write fence is required
between lines 4 and 5 of TMWrite. These fences can be
skipped for any read or write optimized by the PWI opti-
mization; the read fences are also targeted by the relaxed
consistency check (RCC) optimization. Fences are also re-
quired after line 6 of TMBegin, and before line 4 of TMEnd,
to ensure read-read and write-write ordering, respectively.
These latter fences are comparable to those needed at the
boundaries of lock-based critical sections.

The “Niagara” experiments use an an 8-core (32-thread),
1.0 GHz Sun T1000 chip multiprocessor running Solaris 10.
With a shared L2 and simple cores, there is no memory
fence overhead, and the cost of polling gOrec is minimal.
However, the in-order single-issue cores cannot mask any of
the instrumentation overhead.

The “x86” experiments use an SMP with two quad-core
3.0 GHz Intel Xeon E5450 chip multiprocessors running
Red Hat Linux 2.6.18-8.el5. There is no fence overhead,
and the complex cores are capable of masking most of the
instrumentation overhead. However, on each chip the L2 is
shared between only two cores, resulting in cache latencies
somewhere between those of the Regatta and Niagara.

All code was written in C++. The Regatta, Niagara, and
x86 experiments used g++ versions 4.2.4, 4.1.1, and 4.1.2,
respectively, with –O3 optimizations. Each data point repre-
sents the average of five 5-second trials.

On each architecture, we evaluate eight run-time systems.
We also present simulation results for a Niagara-like archi-
tecture, in order to evaluate a ninth runtime that uses AOU.
The runtimes are configured as follows. The optimizations
in variants of TML were all performed by hand.

• Mutex – All transactions are protected by a single coarse
grained mutex lock, implemented as a test-and-test and
set with exponential backoff. Reads and writes have no
instrumentation, and there is no checkpointing on trans-
action begin. This runtime has no thread-local storage
overhead. Note that mutex provides stronger semantics
(Single Global Lock Atomicity) than any other runtime.

• R/W Lock – Transactions are protected by a writer-
prioritizing reader/writer lock, implemented as a 1-bit
writer count and a 31-bit reader count. Regions statically
identified as read-only acquire the lock for reading. Re-
gions that may perform writes conservatively acquire the
lock for writing, to avoid deadlock. There is no thread-
local storage overhead, and individual reads and writes
require no instrumentation.

• STM – Transactions use a TL2-like runtime [2] with 1M
ownership records, an optimized hash table for write set
lookups, and setjmp/longjmp for rollback. Like TL2, this
runtime uses lazy acquire and buffered update. However,

it uses extendable timestamps [16] and a hashtable-based
write set. We artificially eliminated the thread-local ac-
cess overhead, even though transaction metadata is too
large to keep on the stack. Note that the STM runtime is
not privatization-safe.

• TML – The default TML implementation, with trans-
action metadata accessed via thread-local storage, and
setjmp/longjmp for rollback. All TML variants provide
ALA semantics.

• TML-tls – Removes thread-local storage overhead from
TML.

• TML-jmp – Extends TML-tls by replacing setjmp/long-
jmp with lightweight checkpointing and an unconditional
jump.

• TML-pwi – Builds upon TML-jmp by adding the PWI
optimization. For maximum effect, we cloned one basic
block within the RBTree remove() method.

• TML-rcc – Augments TML-pwi by applying relaxed
consistency checks to data structure traversal. This op-
timization removed only 1 static instance of instrumenta-
tion in each of 6 loops. However, those instances account
for half of dynamic reads in the list benchmark, and more
than 40% of dynamic reads in the RBTree benchmark.

• TML-aou – Adds AOU support, as well as PWI optimiza-
tions, to TML-tls. Since AOU is implemented as a sub-
routine call, it precludes the jmp optimization. Further-
more, since AOU eliminates all read instrumentation, the
RCC optimizations offer no benefit, and PWI affects in-
strumentation of writes only for rebalancing in the RB-
Tree insert and remove methods.

We evaluate these runtimes using a set of parameter-
ized microbenchmarks in which each thread repeatedly ac-
cesses a single shared data structure. The data structure is
pre-populated to a 50% full state. These benchmarks, taken
from the RSTM package [25], use manual checkpointing of
transactionally-scoped stores to thread-local variables. The
same effect can be achieved with simple compiler instru-
mentation. In either case, the checkpointing ensures that
transactions need not upgrade to writer status when modi-
fying stack variables. Furthermore, two of these benchmarks
(List and Counter) operate in two distinct phases, with all
writes occurring after all reads. In these workloads, STM de-
sign decisions, such as eager and lazy acquire or direct and
buffered update, have minimal impact.

5.1 List Traversal
In Figure 2, we consider a workload where threads perform
90% lookups, 5% inserts, and 5% removes from a linked
list storing 8-bit values. On all architectures, the list exhibits
strong scalability with TML, since writes are rare. The list
also exhibits strong scalability with the STM runtime, but
with much higher latency. In STM, each individual read and

5 2009/2/3

 0

 500

 1000

 1500

 2000

 2500

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(a) Regatta

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(b) Niagara

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(c) x86

Figure 2. List benchmark. All threads perform 90%
lookups, 5% inserts, and 5% deletes from a singly linked
list storing 8-bit keys.

write must be logged, and the per-read instrumentation is
more complex. In this workload, writer transactions only
perform one write, and thus there is not a higher atomic
instruction overhead for STM than for other systems. With
a single R/W lock, scalability depends on the architecture,
since the throughput of the workload is determined in part
by the cost of cache misses to acquire/release the R/W lock.

On the Regatta, the cost of memory fences in the in-
strumentation is the dominant overhead. This, unfortunately,
causes a 10× slowdown at one thread; the single-thread mu-
tex performance is higher than almost all other configura-
tions, despite the strong scalability of TML and STM. When
we artificially remove the fence overhead on reads, single-
thread throughput for TML jumps to 1.56M. We also note
that the setjmp overhead is significant, with our lightweight
rollback optimization significantly increasing performance.

On the Niagara, simple cores cannot mask even the
lightweight instrumentation of TML. Thus even though
TML is twice as fast as STM at one thread, it is slower than
mutex until two threads. Furthermore, we observe that the
RCC optimizations designed to remove memory fences [22]
also benefit the Niagara, since they remove instrumentation.
Since the workload has distinct read and write phases, PWI
does not reduce any instrumentation.

With wide issue and a memory model that does not re-
quire heavyweight fences, the x86 suffers from neither of the
problems that slows the Niagara and Regatta. Consequently,
the most optimized variants of TML outperform even the
mutex at one thread, while showing scalability out to 8 cores
(the number of hardware contexts). Furthermore, with only
8 cores we can observe the effect of preemption: both TML
and STM prove resilient, since a preempted read-only criti-
cal section does not impede the progress of concurrent read-
ers or writers.

5.2 Red-Black Tree Updates
Our red-black tree experiments (Figure 3) help explore the
crossover between TML and STM. Again, x86 TML outper-
forms mutex at one thread, with Niagara and Regatta TML
outperforming mutex’s peak at 2 and 4 threads, respectively.
Furthermore, with a 90% read-only ratio, TML scales to the
number of hardware threads. Naturally, STM also scales well
for this workload. On the x86, STM outperforms TML at 4
and 8 threads, despite a 60% lower single-thread through-
put. On the Regatta, the crossover occurs at 32 threads, at
which point the workload affords no more read-only scala-
bility. On the Niagara, instrumentation overhead continues
to favor TML. This is especially true since the PWI opti-
mization is profitable for RBTree.

When PWI accelerates TML, it also indicates a workload
in which STM will perform worse. Consider tree rebalanc-
ing: all rebalancing begins with a write, and thus all rebal-
ancing occurs without instrumentation for TML, since the
TML critical section is now inevitable. In contrast, in STM
the existence of a write increases the likelihood that any sub-
sequent read will be read-after-write, requiring costly write-
set lookup. In this setting, eager acquire and direct update
have the potential to decrease STM latency.

5.3 Counter
STM experiments typically use large transactions to amor-
tize the instrumentation overhead on transaction boundaries.

6 2009/2/3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(a) Regatta

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(b) Niagara

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(c) x86

Figure 3. RBTree benchmark. All threads perform a 90/5/5
lookup/insert/remove ratio on a red-black tree 16-bit keys.

Thus workloads with very small transactions present a stress
test. When such workloads are write-heavy, the impact on
STM is especially noticeable, since our STM uses a shared
memory counter as a timestamp. On the x86 and Regatta,
high off-chip cache latencies penalize such workloads, since
each writer must increment this timestamp.

To assess this worst-case for STM, we consider a counter
benchmark. All threads repeatedly attempt to increment a

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(a) Regatta

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(b) Niagara

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 4 8 12 16 20 24 28 32

T
hr

ou
gh

pu
t (

K
T

x/
S

ec
)

Threads

Mutex
R/W Lock

STM
TML

TML-tls
TML-jmp
TML-pwi
TML-rcc

(c) x86

Figure 4. Counter benchmark. Threads repeatedly attempt
to increment a single shared counter.

single shared variable. There are no read-only critical sec-
tions, and thus there is little hope for scaling (note, though,
that a slight apparent bump from 1–2 threads is possible due
to nontransactional accounting in our benchmark harness).
Furthermore, the write is the last operation in each transac-
tion, preventing PWI from improving performance (though
RCC can reduce the overhead of the lone call to TMRead).

7 2009/2/3

In this situation (Figure 4), we see noticeable slowdown
for TML relative to mutex, though it is still substantially
better than STM for all architectures. Our optimizations for
removing thread-local storage and rollback overhead prove
valuable, and the 20% single-thread slowdown at one thread
is far better than the 4× single-thread slowdown that STM
experiences. While mutex remains the better choice in these
workloads, the use of TML does not create pathological
slowdown. However, the better performance of mutex at
high thread counts suggests that some amount of backoff at
TMBegin line 6 may be desirable for some workloads.

5.4 Using AOU
Lastly, we consider the effect of using AOU to eliminate
read instrumentation. We simulate a 16-way chip multipro-
cessor (CMP) using the GEMS/Simics infrastructure [10], a
full system functional simulator that faithfully models the
SPARC architecture. The alert-on-update hardware is ac-
cessed through the Simics “magic instruction” interface; the
AOU bit is implemented using the SLICC [10] framework.
Simulation parameters are listed in Table 1.

16-way CMP, Private L1, Shared L2
Processor Cores 1.2GHz in-order, single issue, ideal IPC=1

L1 Cache 32KB 4-way split, 64-byte blocks, 1 cycle
latency

L2 Cache 8MB, 8-way unified, 64-byte blocks, 4
banks, 20 cycle latency

Memory 2GB, 250 cycle latency
Interconnect 4-ary tree, 2 cycle link latency

Table 1. Simulation Parameters

We use the GEMS network model for bus and switch con-
tention. Simics allows us to run an unmodified Solaris 9
kernel on our target system; its “user-mode-change” and
“exception-handler” interface provides a mechanism to de-
tect user-kernel mode crossings. For TLB misses, register-
window overflow, and other kernel activities required by an
active user context, we defer alerts until control transfers
back from the kernel. On the simulator, we configured the
RBTree to use 16 bit keys, and the list to use 8 bit keys. Also,
we evaluate throughput by running for a fixed 106 transac-
tion count, instead of for a fixed duration.

Results appear in Figure 5. The ability to remove all read
instrumentation has a substantial impact on the list and tree
benchmarks. The list is particularly interesting, since PWI
offers little benefit, and even RCC leaves half of all read
instrumentation. Additionally, the impact is noticeable even
on the counter, for which our compiler optimizations had
little effect on the Niagara. However, AOU introduces an
unfortunate tradeoff: since AOU is modeled as a sponta-
neous subroutine call, we require setjmp for rollback. This
leads to noticeable overhead on the SPARC, in part due to
register windows and in part due to the single-issue cores.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

168421

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t)

Threads

TML
TML-tls

TML-pwi
TML-aou

(a) List

 0

 1

 2

 3

 4

 5

 6

 7

168421

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t)

Threads

TML
TML-tls

TML-pwi
TML-aou

(b) RBTree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

168421

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t)

Threads

TML
TML-tls

TML-pwi
TML-aou

(c) Counter

Figure 5. Simulated results with alert-on-update. The sim-
ulated architecture most closely resembles the Niagara.

Best-effort hardware TM systems have also proposed micro-
architecture support for register checkpointing; this support
would have a clear beneficial impact on TML-aou perfor-
mance.

6. Future Work
We believe that TML can substantially improve systems
software by replacing many mutexes and R/W locks. Below

8 2009/2/3

we outline a number of other opportunities that we intend to
explore:

Fine-Grained TML – While this paper assumes that all
transactions are protected by a single lock, we could instead
have one such lock per data structure, so that disjoint critical
sections could run in parallel. One simple approach treats
any call to a critical section as an irrevocable operation
within the current critical section: thus if A calls B, then even
if A performs no writes, it becomes a writer before calling B.
In this manner, accesses in B need not ensure the validity of
A. If there is additional work in A after the call to B returns,
then B must be treated as a writer as well. Of course, this
approach limits scalability when both A and B are read only,
and allows deadlock.

Mutex to TM Transition – Since TML writers cannot
abort, a writing TML transaction may perform I/O and
syscalls. TML is thus an appropriate alternative to mutexes
in many situations where TM otherwise requires inevitabil-
ity/irrevocability [1,21,27], and providing TML to program-
mers may aid in the identification of codes that are most
likely to benefit from TM.

Dynamic STM Algorithm Selection – In managed envi-
ronments with just-in-time compilation, TML is an attractive
alternative to more fine-grained STMs if runtime profiling
can determine that the majority of transactions are read-only.

Obstruction-Free Idempotent Mutexes – In earlier work,
we showed how our AOU mechanism can be used to make
an idempotent operation (such as the writeback phase of
STM) stealable, and hence nonblocking [24]. In the single-
orec design of TML, this same property can be coupled with
buffered update to provide obstruction freedom for some
classes of transactions. While buffered update increases la-
tency, we believe that this option may be desirable both as a
replacement for some critical sections, and as another option
for the above mentioned dynamic STM algorithm selection.

Aggregate Latency Reduction – The Linux scheduler epit-
omizes an interesting class of critical sections: even though
every critical section performs a write, some do so only after
a lengthy read phase. When multiple concurrent critical sec-
tions of this class execute under TML, the total latency may
be lower: suppose threads A, B, and C attempt to execute
the same critical section, with their respective read phases
taking Ra < Rb < Rc cycles, and each write phase taking
w cycles. For the schedule with C acquiring the lock first,
and B acquiring the lock second, a mutex will ensure a total
latency of Ra + Rb + Rc + 3w for thread A, Rb + Rc + 2w
for thread B, and Rc +w for thread C. With TML, spinning
is replaced with speculative read-only execution, and even
when C begins first, A can finish its read phase first, result-
ing in times Ra +w, Ra+Rb +2w, and Ra +Rb +Rc +3w,
for a savings of 2(Rc − Ra). We are exploring situations in
systems software where this savings is compelling.

Managed Code Integration – TML may be preferable
to mutexes in some user code. An annotation (such as
[TML]synchronized) could inform the runtime of pro-
grammer preference.

7. Conclusions
In this paper, we presented Transactional Mutex Locks
(TML), a transaction-like locking mechanism that attempts
to provide the strength and generality of mutex locks with-
out sacrificing scalability when critical sections are read-
only and can be executed in parallel. TML avoids much of
the instrumentation overhead of traditional STM. In com-
parison to reader/writer locks, it avoids the need for static
knowledge of which operations are read-only. In compar-
ison to RCU and sequence locks, it avoids restrictions on
programming idiom. Our initial results are very promising,
showing that (modulo some architecture-specific character-
istics) TML can perform competitively with mutexes even
for very small, write-heavy workloads, and that TML per-
forms substantially better for critical sections that perform
data structure traversals that may be read-only.

We suggest that TML can leverage many lessons from
TM (algorithms, semantics, compiler support) to improve
software today, while offering a clear upgrade path to trans-
actions as algorithms and software support for TM continue
to improve. We also hope that TML will provide an appro-
priate baseline for evaluating new TM algorithms, since it
offers substantial read-only scalability and low latency with-
out the overhead of a full and complex TM runtime.

Acknowledgments
We would like to thank Paul McKenney for many insightful
discussions about RCU, the Linux kernel, and the nature of
critical sections in production software. Tongxin Bai offered
many hints for coaxing the most efficient code out of GCC.
We are also grateful to the UR Center for Research Com-
puting for maintaining and providing access to a cluster of
8-core x86 machines.

References
[1] C. Blundell, J. Devietti, E. C. Lewis, and M. Martin. Making

the Fast Case Common and the Uncommon Case Simple in
Unbounded Transactional Memory. In Proc. of the 34th Intl.
Symp. on Computer Architecture, San Diego, CA, June 2007.

[2] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II.
In Proc. of the 20th Intl. Symp. on Distributed Computing,
Stockholm, Sweden, Sept. 2006.

[3] S. Diestelhorst and M. Hohmuth. Hardware Acceleration
for Lock-Free Data Structures and Software-Transactional
Memory. In Proc. of the workshop on 2009 Exploiting
Parallelism with Transactional Memory and other Hardware
Assisted Methods (EPHAM), Seattle, Washington, Apr. 2008.

[4] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance
Tuning of Word-Based Software Transactional Memory. In

9 2009/2/3

Proc. of the 13th ACM SIGPLAN 2008 Symp. on Principles
and Practice of Parallel Programming, Salt Lake City, UT,
Feb. 2008.

[5] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy.
Composable Memory Transactions. In Proc. of the 10th
ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, Chicago, IL, June 2005.

[6] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg.
A Scalable Transactional Memory Allocator. In Proc. of the
2006 Intl. Symp. on Memory Management, Ottawa, ON,
Canada, June 2006.

[7] C. Lameter. Effective Synchronization on Linux/NUMA
Systems. In Proc. of the May 2005 Gelato Federation
Meeting, San Jose, CA, May 2005.

[8] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. In Proc. of the 32nd ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, Long Beach,
California, USA, Jan. 2005.

[9] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable Tech-
niques for Transparent Privatization in Software Transac-
tional Memory. In Proc. of the 37th Intl. Conf. on Parallel
Processing, Portland, OR, Sept. 2008.

[10] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) Toolset. SIGARCH
Computer Architecture News (CAN), 22(4), Sept. 2005.

[11] P. E. McKenney. Exploiting Deferred Destruction: An
Analysis of Read-Copy-Update Techniques in Operating
System Kernels. PhD thesis, OGI School of Science and
Engineering at Oregon Health and Sciences University, 2004.

[12] P. E. McKenney, M. M. Michael, and J. Walpole. Why
The Grass May Not Be Greener On The Other Side: A
Comparison of Locking vs. Transactional Memory. In
Proc. of the 4th ACM SIGOPS Workshop on Programming
Languages and Operating Systems, Stevenson, WA, Oct.
2007.

[13] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai,
R. Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity
Semantics for Java STM. In Proc. of the 20th ACM Symp.
on Parallelism in Algorithms and Architectures, Munich,
Germany, June 2008.

[14] C. C. Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
Effective Hybrid Transactional Memory System with Strong
Isolation Guarantees. In Proc. of the 34th Intl. Symp. on
Computer Architecture, San Diego, CA, June 2007.

[15] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. Hosking, R. Hud-
son, E. Moss, B. Saha, and T. Shpeisman. Open Nesting in
Software Transactional Memory. In Proc. of the 12th ACM
SIGPLAN 2007 Symp. on Principles and Practice of Parallel
Programming, San Jose, CA, Mar. 2007.

[16] T. Riegel, C. Fetzer, and P. Felber. Time-Based Transactional
Memory with Scalable Time Bases. In Proc. of the 19th ACM
Symp. on Parallelism in Algorithms and Architectures, San

Diego, California, June 2007.

[17] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and
B. Hertzberg. McRT-STM: A High Performance Software
Transactional Memory System For A Multi-Core Runtime.
In Proc. of the 11th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming, New York, NY, Mar.
2006.

[18] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural
Support for Software Transactional Memory. In Proc. of the
39th IEEE/ACM Intl. Symp. on Microarchitecture, Orlando,
FL, Dec. 2006.

[19] A. Shriraman, M. F. Spear, H. Hossain, S. Dwarkadas, and
M. L. Scott. An Integrated Hardware-Software Approach to
Flexible Transactional Memory. In Proc. of the 34th Intl.
Symp. on Computer Architecture, San Diego, CA, June 2007.

[20] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L.
Scott. Ordering-Based Semantics for Software Transactional
Memory. In Proc. of the 12th Intl. Conf. On Principles Of
DIstributed Systems, Luxor, Egypt, Dec. 2008.

[21] M. F. Spear, M. M. Michael, and M. L. Scott. Inevitability
Mechanisms for Software Transactional Memory. In Proc.
of the 3rd ACM SIGPLAN Workshop on Transactional
Computing, Salt Lake City, UT, Feb. 2008.

[22] M. F. Spear, M. M. Michael, M. L. Scott, and P. Wu. Reducing
Memory Ordering Overheads in Software Transactional
Memory. In Proc. of the 2009 Intl. Symp. on Code Generation
and Optimization, Seattle, Washington, Mar. 2009.

[23] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM:
Scalable Transactions with a Single Atomic Instruction. In
Proc. of the 20th ACM Symp. on Parallelism in Algorithms
and Architectures, Munich, Germany, June 2008.

[24] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas,
and M. L. Scott. Nonblocking Transactions Without
Indirection Using Alert-on-Update. In Proc. of the 19th
ACM Symp. on Parallelism in Algorithms and Architectures,
San Diego, CA, June 2007.

[25] University of Rochester. Rochester Software Transac-
tional Memory. http://www.cs.rochester.edu/research/
synchronization/rstm/.

[26] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R. Adl-
Tabatabai. Code Generation and Optimization for Trans-
actional Memory Constructs in an Unmanaged Language.
In Proc. of the 2007 Intl. Symp. on Code Generation and
Optimization, San Jose, CA, Mar. 2007.

[27] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable
Transactions and their Applications. In Proc. of the 20th
ACM Symp. on Parallelism in Algorithms and Architectures,
Munich, Germany, June 2008.

10 2009/2/3

