
Atomic Snapshots of Shared Memory
YEHUDA AFEK

Tel�Aviv University� Tel�Aviv� Israel and AT�T Bell Laboratories� Murray Hill� New Jersey

HAGIT ATTIYA

Technion� Haifa� Israel

DANNY DOLEV

Hebrew University� Jerusalem� Israel and IBM Almaden Research Center� San Jose� California

ELI GAFNI

Tel�Aviv University� Tel�Aviv� Israel and University of California at Los Angeles� Los Angeles�
California

MICHAEL MERRITT

AT�T Bell Laboratories� Murray Hill� New Jersey

AND NIR SHAVIT

IBM Almaden Research Center� San Jose� California and Stanford University� Stanford� California

Abstract� This paper introduces a general formulation of atomic snapshot memory� a shared memory parti�

tioned into words written �updated� by individual processes� or instantaneously read �scanned� in its entirety�

This paper presents three wait�free implementations of atomic snapshot memory� The �rst implementation

in this paper uses unbounded �integer� �elds in these registers� and is particularly easy to understand� The

second implementation uses bounded registers� Its correctness proof follows the ideas of the unbounded

implementation� Both constructions implement a single�writer snapshot memory� in which each word may

be updated by only one process� from single�writer� n�reader registers� The third algorithm implements a

multi�writer snapshot memory from atomic n�writer� n�reader registers� again echoing key ideas from the

earlier constructions� All operations require ��n�� reads and writes to the component shared registers in

the worst case�

Categories and Subject Discriptors	 B�
�� �Memory Structures	 Design Styles�shared memory� C����
�Processor Architectures	 Multiple Data Stream Architectures �Multiprocessors��multiple�instruction�
stream� multiple�data�stream processors �MIMD�� D���� �Operating Systems	 Process Management�
concurrency� multiprocessing�multiprogramming� synchronization

General Terms	 Shared Memory� Algorithms� Concurrency

Additional Key Words and Phrases	 Fault�tolerance� Atomic� Snapshot� Consistent State

�

� Introduction

Obtaining an instantaneous global picture of a system� from partial observations made over a
period of time as the system state evolves� is a fundamental problem in distributed and concurrent
computing� Indeed� much of the di�culty in proving correctness of concurrent programs is due
to the need to argue based on �inconsistent� views of shared memory� obtained concurrently with
other process�s modi	cations� Veri	cation of concurrent algorithms is thus complicated by the need
for a �non
interference� step ��� ���� By simplifying �or eliminating� the non
interference step�
atomic snapshot memories can greatly simplify the design and veri	cation of many concurrent
algorithms� Examples include exclusion problems ���� ��� ���� construction of atomic multi
writer
multi
reader registers ���� ��� ��� ���� concurrent time
stamp systems ����� approximate agreement
����� randomized consensus ��� �� ��� � and wait
free implementation of data structures ����

This paper introduces a general formulation of atomic snapshot memory� a shared memory
partitioned into words written �updated� by individual processes� or instantaneously read �scanned�
in its entirety� It presents three wait
free implementations of atomic snapshot memories� constructed
from atomic registers� Anderson independently introduces the same notion and presents bounded
implementations ��� �� ��� Section discusses relationships between the various implementations�
The 	rst implementation in this paper uses unbounded �integer� 	elds in these registers� and is
particularly easy to understand� The second implementation uses bounded registers� Its correctness
proof follows the ideas of the unbounded implementation� Both constructions implement a single

writer snapshot memory� in which each word may be updated by only one process� from single

writer� n
reader registers� The third algorithm implements a multi
writer snapshot memory �����
from atomic n
writer� n
reader registers� again echoing key ideas from the earlier constructions�
Each update or scan operation requires ��n�� reads and writes to the relevant embedded atomic
registers� in the worst case�

A related data structure� multiple assignment� allows processes to atomically update nontrivial
and intersecting subsets of the memory words� and to read one location at a time� However� multiple
assignment has no wait
free implementation from read�write registers ����� The fact that wait
free
atomic snapshot memories can be implemented from atomic registers stands in contrast to the

A preliminary version of this paper appeared in the Proceedings of the �th Annual ACM Symposium on Principles of

Distributed Computing� �Quebec City� Quebec� August� ACM� New York� ����� pp� �	�
�

H� Attiya�s and N� Shavit�s research was partially supported by National Science Foundation grant CCR����

�� by
O�ce of Naval Research contract N����
���K����� and by DARPA contracts N����
���K����� and N����
���J�
��� E� Gafni�s research was partially supported by National Science Foundation grant DCR
������ and XEROX
Co� grant W����� Part of this work was done while N� Shavit was at Hebrew University� Jerusalem� visiting AT�T
Bell Laboratories and the Theory of Distributed Systems group at Massachusetts Institute of Technology� and while
H� Attiya was at the Laboratory for Computer Science at Massachusetts Institute of Technology�

Authors� present addresses�Y� Afek� Computer Science Department� Tel�Aviv University� Ramat�Aviv Israel ����� H�
Attiya� Department of Computer Science� Technion� Haifa� Israel ������ D� Dolev� Department of Computer Science�
Hebrew University� Jerusalem Israel ����
� E� Gafni� ���� Boelter Hall� Computer Science Department� U�C�L�A�
Los Angeles� California ����
� M� Merritt� ��� Mountain Ave�� Murray Hill� NJ ����
� N� Shavit� Laboratory for
Computer Science� MIT NE
�� ��� Technology Square Cambridge MA ������

�

impossibility results in ����� The construction of atomic snapshot memories �and data objects that
can be built using them� sheds some light on the borderline between what can and what can not
be implemented from atomic registers�

Section � of this paper de	nes single
writer and multi
writer atomic snapshot memories� Sec

tion � contains an implementation of single
writer snapshot memories from unbounded single
writer
multi
reader registers� Section � presents an implementation of single
writer snapshot memories
from bounded single
writer registers� and Section � presents an implementation of multi
writer
snapshot memories from bounded multi
writer� multi
reader registers� Section concludes with a
discussion of the results� related work and directions for future research�

� Atomic Snapshot Memories

Consider a shared memory divided into words� where each word holds a data value� In the single

writer case� there is one word for each process� which only it writes �in its entirety� and the others
read� In the multi
writer case� any of the words may be read or written by any of the processes�
An n
process atomic snapshot memory supports two types of operations� scani and updatei by each
process Pi� i � f���ng� The scani operation has no arguments and returns a vector of n elements
from an arbitrary set of data values� The updatei operation takes a data value as an argument and
does not return a value� Executions of scans and updates can each be considered to have occurred
as primitive atomic events between the beginning and end of the corresponding operation execution
interval� the call by the process and the return by the memory� so that the �serialization sequence�
of such atomic events satis	es the natural semantics� That is� each scan operation returns a vector
�d of data values such that each dk is the argument of the last update to word k that is serialized
before that scan� �This variant of serializability is called �linearizability� ������ This intuition is
made precise in the following subsection�

Two further restrictions are imposed on implementations of atomic snapshot memories� The
	rst restriction can be described as the architectural restrictions imposed on solutions �cf� ���� �����
and requires that any snapshot implementation be constructed with single
writer� multi
reader
atomic registers as the only shared objects� The single
writer algorithms in Sections � and � satisfy
this restriction directly� and the multi
writer algorithm in Section � satis	es this restriction when
the embedded multi
writer registers are in turn implemented with one of the previously known
constructions from single
writer registers� e�g�� ���� ����

The second restriction imposed on snapshot memory implementations is that they satisfy the
property of wait�freedom ���� ���� That is� every snapshot operation by process Pi will terminate�
regardless of the behavior of other processes� assuming only that local steps of Pi and operations
on embedded shared objects terminate� The reader is referred to ���� ��� �� for discussions and
proposed de	nitions of wait
freedom� The update and scan operations implemented in this paper
require at most ��n�� local operations and reads and writes to the component shared registers�
They are thus wait
free under any of the proposed de	nitions�

The next two subsections give automata
based formal speci	cations of snapshot memories�
These speci	cations do not include the architectural restrictions described above� Including them

�

would be straightforward� though tedious�the interested reader is referred to ����� Alternative
approaches to specifying concurrent objects are via their serial speci	cation ���� or as a set of
axioms �cf� ���� ����� Axiomatic speci	cations for snapshot memories appear in ��� �� ����

��� Speci�cation of Single�Writer Snapshot Memories

Following ���� ���� a single
writer atomic snapshot memory for n processes and a particular data set
Data is an automaton with two types of input Request actions� UpdateRequesti�d� and ScanRequesti �
and two types of output Return actions� UpdateReturni and ScanReturni�d�� ���� dn�� for any i �

f�� � � � � ng� and for all d� d�� ���� dn � Data � �In brief� the actions are labels on state transitions�
and input actions must be enabled from every state�the snapshot memory cannot prevent a
process from issuing a Request� and the process cannot prevent the memory from issuing a Return�
Automata interact by identifying common actions�� The Request and Return actions are called the
interface snapshot actions� Intuitively� the environment requests �calls� operations by issuing input
actions� and the algorithm returns answers using output actions� Formally� the environment may
be modeled as n processes� automata P�� ��� Pn� with the snapshot memory input and output actions
as complementary output and input actions�

The formal speci	cation of single
writer snapshot memory is based on a particular automa

ton� the canonical single�writer snapshot automaton� That is� a correct implementation S of a
single
writer snapshot memory is one which the processes cannot distinguish from the canonical
automaton� If the processes interact with S� the resulting behavior� or sequence of interface actions�
is one which could occur when interacting with the canonical automaton�

In addition to the interface snapshot actions� the canonical automaton has two types of internal
actions� Updatei�d�� and Scani�d�� ���� dn�� for any i � f�� � � � � ng and for all d� d�� ���� dn � Data �
The states of the canonical automaton contain an n
entry array Mem of type Data and n interface
variables Hi� The interface variables may hold as value any of the interface snapshot actions� or a
special value ��

UpdateRequesti�d� ScanRequesti
E�ect� Hi �� UpdateRequesti�d� E�ect� Hi �� ScanRequesti

Updatei�d� Scani�d�� ���� dn�
Precondition� Hi � UpdateRequesti�d� Precondition� Hi � ScanRequesti
E�ect� Mem�i� �� d Mem � �d�� ���� dn�

Hi ��UpdateReturni E�ect� Hi �� ScanReturni�d�� ���� dn�

UpdateReturni ScanReturni�d�� ���� dn�
Precondition� Hi �UpdateReturni Precondition� Hi � ScanReturni�d�� ���� dn�
E�ect� Hi �� � E�ect� Hi �� �

Figure �� The canonical single
writer snapshot automaton�

�

Process Pi interacts with the automaton by issuing a request �an UpdateRequesti�d� or ScanRequesti
action�� The result is to store the input action in the state variable Hi� enabling the appropriate
internal action �Updatei�d� or Scani�d�� ���� dn��� The internal action in turn assigns an appropriate
output action to Hi� and in the case of Updatei�d�� assigns d to Mem i as well� The change to the
interface value Hi enables the appropriate output �UpdateReturni or ScanReturni�d�� ���� dn� action��
Initially� each Hi � � and Memi � dinit � Data �

The steps of the canonical single
writer snapshot automaton appear in Figure �� with the
convention that actions without preconditions are always enabled �e�g�� input actions�� and that
state components not explicitly described in the e�ect of an action are presumed to retain their
old value� Note that� while requests and returns by di�erent processes may be interleaved� these
actions only alter the interface variables for the associated processes� The �real� work is done by
the atomic internal actions� formalizing the intuition that operations of atomic memories can be
assumed to have occurred at some instant between the invocation and response� Accordingly� an
operation of the canonical automaton in � is said to be serialized at the point of its associated
Update or Scan operation�

The well�formed behaviors of the canonical automaton are those in which no pair of Requesti
inputs occurs without an intervening Returni output� Intuitively� this means that each process has
only one pending operation at any time� An automaton S preserves well�formedness� provided it is
never the 	rst to violate well
formedness�if no process has input two concurrent Request�s� then S
will not output redundant Return�s� That is� if �� is a 	nite sequence of interface snapshot actions
that is a behavior of S� with � a single output event and � is well
formed� then �� is well
formed�

De�nition � An automaton S implements a single
writer atomic snapshot memory �for the ap�
propriate number of processes and data set� if and only if S has the interface snapshot actions as
its input and output actions� S preserves well�formedness� and provided every well�formed behavior
of S is also a behavior of the canonical single�writer snapshot automaton�

��� Speci�cation of Multi�Writer Snapshot Memories

Multi
writer snapshot memories are straightforward generalizations of single
writer snapshot mem

ories� and can be speci	ed analogously� Speci	cally� a multi
writer snapshot memory for n pro

cesses� a particular data set Data and m memory elements is an automaton with input actions�
UpdateRequesti�k� d�� ScanRequesti � and output actions� UpdateReturni � ScanReturni�d�� ���� dm�� for
all i � f�� � � � � ng� k � f�� � � � � mg� and d� d�� ���� dm � Data � Call these the multi�writer interface
snapshot actions� �Except for the addition of the address 	eld k to the UpdateRequest actions�
and ScanReturn containing m rather than n values� these are the same as the single
writer inter

face snapshot actions�� The canonical multi�writer snapshot automaton in Figure � is obtained
via straightforward modi	cations of the canonical single
writer snapshot automaton� �The internal
Update action has the additional address 	eld k� and the Scan action speci	es m rather than n

values�� Well
formedness is de	ned just as for single
writer memories�

�

UpdateRequesti�k� d� ScanRequesti
E�ect� Hi �� UpdateRequesti�k� d� E�ect� Hi �� ScanRequesti

Updatei�k� d� Scani�d�� ���� dm�
Precondition� Hi � UpdateRequesti�k� d� Precondition� Hi � ScanRequesti
E�ect� Mem �k� �� d Mem � �d�� ���� dm�

Hi ��UpdateReturni E�ect� Hi �� ScanReturni�d�� ���� dm�

UpdateReturni ScanReturni�d�� ���� dm�
Precondition� Hi �UpdateReturni Precondition� Hi � ScanReturni�d�� ���� dm�
E�ect� Hi �� � E�ect� Hi �� �

Figure �� The canonical multi
writer snapshot automaton�

De�nition � An automaton S implements a multi
writer atomic snapshot memory �for the ap�
propriate number of processes and data set� if and only if S has the multi�writer interface snapshot
actions as its input and output actions� S preserves well�formedness� and provided every well�formed
behavior of S is also a behavior of the canonical multi�writer snapshot automaton�

��� Reasoning about Read�Write Registers

A complete formal speci	cation must describe the details of the lower
level interface� in which
processes are permitted to reference local variables and to interact via reads and writes to atomic
read�write registers� The speci	cations of snapshot memories based on canonical automata are
examples of a general technique for specifying shared atomic objects� Read�write registers are
instances of shared atomic primitives that are almost trivial to specify in this way� in which every
operation on these shared primitives is modeled as a Request action input to the register� an internal
Read or Write� and a Return action output by the register�

An automaton that satis	es such a speci	cation �that is an implementation of the appropriate
canonical automaton� is indistinguishable from the canonical automaton� Thus� it is a valid proof
technique to ignore any speci	c implementation details of the read�write registers� and to assume
that these operations occur as atomic actions sometime within the corresponding operation interval�
just as happens in the canonical automaton ���� ��� ����

The sections that follow present the algorithms in familiar psuedo
code style� Translating
them into preconditions and e�ects on appropriately named internal and external actions is a
straightforward but tedious exercise�

� The Unbounded Single�Writer Algorithm

The algorithm is based on two observations�

Observation �� Suppose every update leaves a unique� indelible mark whenever it writes to the
memory� Then if two sequential reads of the entire memory return identical values� where one read
started after the 	rst completed� then the values returned constitute a snapshot �����

This observation alone supports a simple unbounded algorithm� although one which is not wait

free� The kth update by processor Pi simply writes the update value d and a sequence number k to
a shared register in a single atomic write� Scanners repeatedly collect the values of all n registers�
until two such collect operations return identical values� By Observation �� such a successful double
collect is a snapshot�

Because updates may occur between every two successive collect operations� this algorithm is
not wait
free� However� the scanner may attribute every unsuccessful double collect to a particular
updating process� whose sequence number was observed to change� Thus�

Observation �� If a scan sees another process move �complete an update� twice� that process
executed a complete update operation within the interval of the scan�

Suppose every update performs a scan and writes the snapshot value atomically with the value
and sequence number� Now a scanner who sees two updates by the same process can borrow the
snapshot value written by the second update�

A straightforward implementation uses the following shared data structures� �See Figure ���
Each process Pi has a single
writer� n
reader atomic register� ri� that Pi writes and all processes
read� The register has three 	elds� ri�data �of type Data�� ri�seq �of type integer� and ri�view �an
array of n Data values�� The data 	eld and n entries in the view 	elds are initialized to dinit and
the seq 	elds are initialized to ��

Each scan operation has a local array moved� in which it records� for each other process� whether
that process has been observed to change the memory during the course of the scan� The collect
operation by any process i reads each register rj� j � f�� � � � � ng� in an arbitrary order �or in
parallel�� returning an array of records read� indexed by process id�

��� Correctness Proof

The proof strategy is to construct an explicit serialization�to construct� from every run of the
unbounded algorithm� a run of the canonical snapshot automaton that has the same behavior�
That is� given an in	nite or 	nite well
formed run of the unbounded algorithm� calls and returns
from the updatei procedures are identi	ed with the UpdateRequesti and UpdateReturni actions� and
calls and returns from scani procedures �unless called from within updates�� are identi	ed with the
ScanRequesti and ScanReturni actions� Calls to scani procedures from within updates are identi	ed
with actions ScanRequestinti and ScanReturninti that are internal to the snapshot implementation
automaton� but are otherwise treated identically to their external counterparts�

�

The scan and update operations themselves consist of sequences of more primitive operations
that are either manipulations of local data or reads and writes of atomic registers� The former are
trivially atomic� and can be modeled as single actions� The latter are atomic by assumption�that
is� the atomic registers used by the algorithm are assumed to be implementations of the canonical
read�write register automaton� Hence� it su�ces to consider runs in which these registers are
actually implemented by the speci	c canonical automata �����

Hence� an arbitrary run of the unbounded algorithm can be considered to be a �possibly in	nite�
sequence of interface snapshot actions� local data manipulations� and interface or internal actions
of the shared registers� �These are Request actions input to the registers� internal Read or Write

actions� and Return actions output by the registers�� Given this sequence� we explicitly identify
serialization points for the snapshot operations within each operation interval� That is� we 	rst
insert internal Update and Scan actions within the run of the implementation� This is done so that
the resulting sequence of interface and internal snapshot actions �ignoring the local data and shared
register actions� is a run of the canonical snapshot automaton�

procedure scani
begin

�� for j � � to n do moved �j� �� � od
�� while true do
�� a����n� �� collect �! �data� seq� view� triples� !�
�� b����n� �� collect �! �data� seq� view� triples� !�
�� if ��j � f�� � � � � ng� �a�j��seq � b�j��seq� then
�� return �b����data� ���� b�n��data� �! Nobody moved� !�
� else for j � � to n do
�� if a�j��seq �� b�j��seq then �! Pj moved� !�
�� if moved �j� � � then �! Pj moved once before" !�
�� return �b�j��view�
��� else moved �j� �� moved �j� # �

od
od

end scani

procedure updatei �data�
begin

�� s����n� �� scani �! Embedded scan� !�
�� ri �� �data� ri�seq#�� s����n��

end updatei

Figure �� The unbounded single
writer algorithm�

Consider then any sequence � � �������� where each �j is either an interface snapshot action� a
local computation event� a Request or Return for a shared register� an internal action Readi�rj � v�
by Pi of atomic register rj returning v� or an internal write Writei�ri � v� by Pi of v to ri� Denote
by �k the k
length pre	x of �� For any such 	nite pre	x �k of � it is natural to de	ne the state
of the shared memory after �k� or state��k�� to be the vector �v�� ���� vn�� where vi is the value

�

of the last write by process Pi in �k� or the initial value if Pi has not yet written� �These are
the values of the relevant state components of the embedded registers� as implemented by the
canonical automata�� If state��k� � �v�� ���� vn�� then snapshot��k� denotes �v��data� ���� vn�data��
As indicated� the sequence snapshot����� snapshot����� snapshot������� serves as the basis for the
serialization of ��

The update operations are serialized at the same point in the run as their embedded writes�
�That is� Update actions are inserted into the sequence at this point� No Update action is inserted
for an incomplete update that has not yet written its register�� A scani operation has a successful
double collect when the test in line � is passed� That is� following the two collects a����n� �� collect
in line � and b����n� �� collect in line �� the sequence numbers in a����n� and b����n� are identical�
Those scans with successful double collects are serialized between the end of the 	rst collect in line
� and the beginning of the second collect in line �� �Speci	cally� a Scan action is inserted between
the last Return action from the n shared registers read in the 	rst collect� and the 	rst Request

action to the n shared registers read in the second collect�� Lemma ��� proves that the values
returned by such a scan constitute a snapshot during this interval�

Lemma ��� Let � � ������� be a run of the unbounded algorithm in which a particular scani
operation has a successful double collect� a����n� �� collect in line 	 and b����n� �� collect in line
�
Let �u and �w be the last Read of the �rst collect and the �rst Read of the second collect� respectively�
Then for every pre�x �v of �� u � v � w� snapshot��v� � �b����data� ���� b�n��data��

Proof� Suppose a write by Pj to rj is serialized between two successive reads by Pi of rj in lines
� and �� Since the sequence number in rj is incremented with each write� the sequence number
returned by the second read will be strictly greater than that returned by the 	rst� It follows
that if the sequence numbers are not observed to change� no write by Pj is serialized between the
successive reads� This implies the result�

Alternatively� a scan may return when it observes an updater move twice� it will be serialized
just after the serialization point of the embedded scan� The next lemma guarantees that the
embedded scan is entirely contained in the interval of the enclosing scan�

Lemma ��� Let � � ������� be a run of the unbounded algorithm in which a particular scani
operation observes changes in process Pj�s sequence number �eld during two dierent double collects�
Then the value of rj read during the last collect was written by an updatej operation that began
after the �rst of these four collects started�

Proof� If two successive reads by Pi of rj in lines � and � return di�erent sequence numbers� then
at least one write by Pj to rj is serialized between the two reads� If a second pair of successive
reads by Pi of rj in lines � and � return di�erent sequence numbers� then at least one other write
by Pj to rj is serialized between this pair of reads� Process Pj writes to rj only as the 	nal step
of each updatej operation� Hence� one updatej operation ended sometime after the 	rst read by Pi�
and the write step of another occurs between the last pair of reads by Pi� Since updatej operations
run serially �only one UpdateRequestj is outstanding at a time�� the lemma follows�

�

These two lemmas imply that all scans can be correctly serialized somewhere in their intervals�

Lemma ��� Let � � ������� be a run of the unbounded algorithm in which a particular scani
operation beginning in event �u returns �d�� ���� dn� in event �w� Then snapshot��v� � �d�� ���� dn�
for some v� u � v � w�

Proof� If the scani operation has a successful double collect� the result follows from Lemma ����
Assume instead the scani operation borrows a snapshot value read in rj� By Lemma ���� the
snapshot value read in rj was obtained by a scanj operation� embedded in an updatej operation�
which in turn started after the 	rst read by Pi of rj and wrote before the last read by Pi of rj�
Hence the interval of the embedded scanj is contained between the the 	rst and last reads by Pi

of rj� Either the scanj operation had a successful double collect� and the result again follows from
Lemma ���� or there is another embedded scank� occurring entirely within the interval of the scanj
operation� from which Pj borrowed� This argument can be applied inductively� noting that there
can be at most n concurrent operations in the system� Hence� eventually the embedded scan must
have succeeded via a successful double collect� and the result follows by Lemma ��� and transitivity
of containment of the embedded scan intervals�

By Lemma ���� during the interval of every complete scan operation there is at least one state in
which the data values returned were simultaneously held in all the registers� Each completed scan is
serialized at this point� �That is� an internal Scan action is inserted into the sequence after one such
state�� The update operations were serialized with their embedded writes and all completed scans
have now been serialized� An easy induction su�ces to show that the resulting sequence of interface
snapshot actions and internal Update and Scan actions is a run of the canonical automaton�

This leaves only the wait
free requirement� By the pigeon
hole principle� in n#� double collects
one must be successful or some updater must be observed moving twice� Hence scans are wait
free�
This in turn implies that updates are wait
free�

Lemma ��� Every scan or update operation by process Pi returns after O�n�� atomic steps of Pi�
�i � f�� � � � � ng�

This discussion is summarized in the following theorem�

Theorem � The unbounded algorithm implements a wait�free single�writer snapshot memory�

� The Bounded Single�Writer Algorithm

The sequence numbers in the unbounded algorithm enable scan operations to detect changes to
the memory due to concurrent updates� To achieve the same e�ect with bounded registers� each
scanner�updater pair of processes communicates via two atomic bits� each written by one and read
by the other� Before performing a double collect� a scan operation sets its bit equal to the value

��

procedure scani
begin

�� for j � � to n do moved �j� �� � od
�� while true do

���� for j � � to n do qi�j �� rj�pj�i od �! Handshake� !�
�� a����n� �� collect �! �data� bit vector� toggle� view� tuples� !�
�� b����n� �� collect �! �data� bit vector� toggle� view� tuples� !�
�� if ��j � f�� � � � � ng�� �a�j��pj�i � pj�i�b�j� � qi�j

and a�j��toggle � b�j��toggle� then �! Nobody moved� !�
�� return �b����data� ���� b�n��data�
� else for j � � to n do
�� if a�j��pj�i �� qi�j or b�j��pj�i �� qi�j �! Pj moved� !�

or a�j��toggle �� b�j��toggle then
�� if moved �j� � � then �! Pj moved once before" !�
�� return �b�j��view�
��� else moved �j� �� moved �j� # �

od
od

end scani

procedure updatei �data�
begin

�� for j � � to n do fj �� �qj�i od �! Collect handshake values� !�
�� s����n� �� scani �! Embedded scan� !�
�� ri �� �data� f ����n���ri�toggle� s����n��

end updatei

Figure �� The bounded single
writer algorithm�

read in the other bit� If after the double collect� the bits are observed by the scanner to be not
equal� then the updater changed its bit �moved� after the scanner�s 	rst read of that bit�

Speci	cally� the bounded single
writer algorithm of Figure � replaces the unbounded sequence
numbers with two handshake bits per pair of processes ���� ���� That is� for each process pair
�Pi� Pj� the register ri contains the bit 	eld pi�j� and additional atomic single
writer single
reader
one
bit registers qj�i are written by Pj and read by Pi� The pi�j bits are written when Pi updates
�to the negations of the values read from the qj�i bits�� and the qj�i bits are written when Pj scans
�to the values read from the pi�j bits� � An additional toggle bit� ri�toggle� is changed during every
update� to ensure that each write operation changes the register value�

��� Correctness Proof

For this algorithm� a successful double collect is a pair a����n� �� collect b����n� �� collect with
all handshake bits pj�i � qi�j and corresponding toggle bits in a����n� and b����n� identical� The

��

following lemma proves that the handshake and toggle bits guarantee that a successful double
collect produces a snapshot�

Lemma ��� Let � � ������� be a run of the bounded algorithm in which a particular scani operation
has a successful double collect� a����n� �� collect in line 	 and b����n� �� collect in line
� Let �u
and �w be the last read in line 	 and the �rst read of line
� respectively� Then for every pre�x �v

of �� u � v � w� snapshot��v� � �b����data� ���� b�n��data��

Proof� We argue below that if two successive collects by Pi show no change in the handshake bit
pj�i� then at most one write to rj can be serialized between the two reads of rj by Pi� However�
if such a write occurs� it will be observed to have changed the bit read in rj�toggle� The result
follows�

Suppose then that the two successive reads by Pi of rj both return the value c for rj�pj�i� that
c is the value most recently written to qi�j� and that these same reads return the values t� and
t� in rj�toggle� respectively� Further assume that an update to word j� and hence a write to rj
by Pj � is serialized between the two atomic reads of rj in lines � and �� Consider the last such
write operation� being last� it must write the handshake value c and toggle value t� to rj�pj�i and
rj�toggle read by the second read of rj by Pi� Since during an update Pj assigns to pj�i the negation
of the value read in qi�j � that read�qi�j� must have preceded Pi�s most recent write to qi�j of c�
This implies two things� 	rst that the read�qi�j� operation by Pj is part of the same� 	nal update
operation considered above� and secondly that any earlier update by Pj must have been 	nished
before the writei�qi�j � c�� The partial order of events in this discussion is� �The two initial events
by Pi and Pj may occur in either order� and are shown on the same line��

Pi �scan� Pj �update�
readi�pj�i � c� readj�qi�j � �c� �! Handshake read� !�
writei�qi�j � c� �! Handshake� !�
readi�rj�pj�i � c� rj�toggle � t�� �! First collect� !�

writej�rj�pj�i � c� rj�toggle � t�� �! Write� !�
readi�rj�pj�i � c� rj�toggle � t�� �! Second collect� !�

It follows that no other write operation by Pj can be serialized between Pi�s 	nal two reads of rj�
Then these two reads by Pi of rj return values written by two successive writes by Pj � so the toggle
bit values returned must be di�erent� t� �� t�� �The 	rst of these writes by Pj does not appear in
the sequence above� it is Pj �s most recent previous write� and must precede the 	rst operation by
Pj � the readj�qi�j � �c���

The serialization� remaining lemmas and theorem from the unbounded algorithm translate
directly to the bounded algorithm� �It is important that each update operation changes the data�
handshake and toggle 	elds in a single atomic write operation��

Lemma ��� Let � � ������� be a run of the bounded algorithm in which a particular scani operation
observes changes in process Pj�s handshake or toggle bits during two dierent double collects� Then

��

the value of rj read during the last collect was written by an updatej operation that began after the
�rst of these four collects started�

Lemma ��� Let � � ������� be a run of the bounded algorithm in which a particular scani operation
beginning in event �u returns �d�� ���� dn� in event �w� Then snapshot��v� � �d�� ���� dn� for some v�
u � v � w�

Lemma ��� Every scan or update operation by process Pi returns after O�n�� atomic steps of Pi�
�i � f�� � � � � ng�

Theorem � The bounded algorithm implements a wait�free single�writer snapshot memory�

� The Bounded Multi�writer Algorithm

Because processes may now write to any memory location� the handshake bits and view 	elds are
uncoupled from the data 	elds� The latter are stored in multi
writer� multi
reader registers rk�
where now the index k is a memory address not related to process indices� To ensure that each
successive write to these registers has an observable e�ect� an id 	eld and toggle bit 	eld are also
included� successive update operations by Pi to word k write i in the rk�id 	eld and alternate values
in the toggle 	eld� �The id 	eld also allows a scan operation to attribute an observed change to a
speci	c process��

Because the handshake bits are not written atomically with the rk registers� a scan may observe
changes by the same update operation twice� once changing the handshake bits� and once changing
the value of a memory word� Hence� a scan operation must observe process Pj move three times
before the value in viewj can be borrowed�

Hence� the algorithm of Figure � requires a multi
writer multi
reader register rk for every
memory address k � f�� � � � � mg� holding 	elds rk�data� rk�id and rk�toggle of type Data� f�� � � � � ng�
and boolean� In addition� for every process Pi there are �n single
writer multi
reader boolean
registers pi�j and qi�j� �j � f�� � � � � ng� and a single
writer multi
reader register viewi� holding a
vector of m Data values� The scan and update operations of a process i are described in Figure ��

	�� Correctness Proof

The serialization is de	ned as in the previous algorithms� with updates serialized with the �atomic�
writes to the data registers� For this algorithm� a successful double collect occurs when the test
in line � is passed� This test depends on steps ��� through ���� recording the handshake bits and
the shared registers rk twice� Step ��� implicitly collects the values of each pj�i� by storing pj�i in
qi�j � The next three lines explicitly record the values of the rk registers and the handshake bits in
a����m�� b����m� and h����n�� respectively� The test is passed if the handshake bits and id� toggle

��

procedure scani
begin

�� for j � � to n do moved �j� �� � od
�� while true do
���� for j � � to n do qi�j �� pj�i od �! Handshake� !�
�� a����m� �� collect�rk � k � f�� � � � � mg� �! �data� id� toggle� triples� !�
�� b����m� �� collect�rk � k � f�� � � � � mg� �! �data� id� toggle� triples� !�
���� h����n� �� collect�pj�i � j � f�� � � � � ng� �! Handshake bits� !�
�� if ��j� f�� � � � � ng� �qi�j � h�j��

and ��k � f�� � � � � mg� �a�k��id � b�k��id� �! Nobody moved� !�
and ��k � f�� � � � � mg� �a�k��toggle � b�k��toggle� then

�� return �b����data� ���� b�m��data�
� else for j � � to n do
�� if 	 �qi�j �� h�j�� or 	 ��k� b�k��id� j� �! Pj moved� !�

�a�k��id �� b�k��id or a�k��toggle �� b�k��toggle�

 then
�� if moved �j� � � then �! Pj moved twice before" !�
�� return �viewj�
��� else moved �j� �� moved �j� # �

od
od

end scani

procedure updatei �k�data� �! Process Pi writes data to memory word k� !�
begin

�� for j � � to n do pi�j �� �qj�i od �! Handshake� !�
�� viewi �� scani �! Embedded scan� viewi is a single
writer register� !�
���� tog�k� �� �tog�k� �! Local variable tog����n� saved between calls� !�
�� rk �� �data� i� tog�k�� �! rk is a multi
writer register� !�

end updatei

Figure �� The bounded multi
writer algorithm�

��

	elds of the registers contain identical values in each pair of respective reads� Again� the main issue
that has to be argued is that a successful double collect produces a snapshot�

Lemma ��� Let � � ������� be a run of the bounded multi�writer algorithm in which a particular
scani operation has a successful double collect� including a����m� �� collect in line 	 and b����m� ��
collect in line
� Let �u and �w be the last read of line 	 and the �rst read of line
� respectively�
Then for every pre�x �v of �� u � v � w� snapshot��v� � �b����data� ���� b�m��data��

Proof� As in the proof of Lemma ���� we argue below that if two successive collects by Pi return
a�k��id � b�k��id � j and show no change in the handshake bit pj�i� then at most one write to rk�
by Pj � can be serialized between the two reads of rk by Pi� However� if such a write occurs� it will
be observed to have changed the bit read in rk�toggle� The result follows�

Suppose then that the two successive reads by Pi of rk return the values t� and t� in rk�toggle�
respectively� and the two associated reads of pj�i return the same value� c� Further assume that an
update to word k� and hence a write to rk� is serialized between the two atomic reads of rk in lines
� and �� Consider the last such write operation� being last� it must be a write by Pj writing the id
value j� and toggle bit t� read by the second read of rk by Pi� The 	nal read by Pi of pj�i returns c�
the result of an earlier write by Pj during an update� Since during an update Pj assigns to pj�i the
negation of the value read in qi�j � that read�qi�j� must have read �c� and so must have preceded Pi�s
most recent write to qi�j of c� This implies two things� 	rst that the read�qi�j� operation by Pj is
part of the same� 	nal update operation considered above� and secondly that any earlier update by
Pj must have been 	nished before the writei�qi�j � c�� The partial order of events in this discussion
is�

Pi �scan� Pj �update
readi�pj�i � c� readj�qi�j � �c� �! Handshake reads� !�
writei�qi�j � c� writej�pj�i � c� �! Handshake writes� !�
readi�rk�id � j� rk�toggle � t�� �! First collect of rk in line �� !�

writej�rk�id � j� rk�toggle � t�� �! Write� !�
readi�rk�id � j� rk�toggle � t�� �! Second collect of rk in line �� !�
readi�pj�i � c� �! Second handshake collect� !�

It follows that no other write operation by Pj can be serialized between Pi�s 	nal two reads of rk�
Then these two reads by Pi of rk return values written by two successive writes by Pj � so the toggle
bit values returned must be di�erent� t� �� t�� �The 	rst of these writes by Pj does not appear in
the sequence above� it is Pj �s most recent previous write� and must precede the 	rst operation by
Pj � the readj�qi�j � �c���

The previous lemma says that the scans with successful double collects can be serialized cor

rectly� It remains to argue that the scans which return borrowed values use values from scans
that run entirely within their interval� As discussed� the crucial embedded scan lemma must make
concession to the non
atomicity of writes to the handshake and data registers�

��

Lemma ��� Let � � ������� be a run of the bounded multi�writer algorithm in which a particular
scani operation detects changes in process Pj�s handshake bit or writes by Pj to data registers during
three dierent double collects� Then the value of viewj read after the last collect was written by an
updatej operation that began after the �rst of these six collects started�

Proof� The proof of this lemma rests on the sequence of relevant atomic write steps that Pj makes
in successive updates�

write to pj�i
write to viewj

write to rk�
write to pj�i
write to viewj

write to rk�
�
�
�

Observing any three changes� in the pj�i or data registers� means that an intervening scan must
have taken place and have been recorded in viewj� Either this scan or a more recent scan by Pj

will be read by Pi�

These two lemmas imply�

Lemma ��� Let � � ������� be a run of the bounded multi�writer algorithm in which a particu�
lar scani operation beginning in event �u returns �d�� ���� dm� in event �w� Then snapshot��v� �
�d�� ���� dm� for some v� u � v � w�

As before� the pigeon
hole principle implies that in �n#� double collects one must be successful
or some updater must be observed moving three times� Hence scans are wait
free� This in turn
implies that updates are wait
free�

Theorem � The bounded multi�writer algorithm implements a wait�free multi�writer snapshot
memory�

� Discussion and Directions for Further Research

The distributed snapshot of Chandy and Lamport ���� provides a simple solution to the similar
problem for message
passing systems� The distributed snapshot algorithm has proven a useful tool
in solving other distributed problems �see� e�g�� ��� ����� and it is likely snapshot memories will
play a similar role in concurrent programming�

�

Interestingly� distributed snapshots are not true images of the global state� instead� a dis

tributed snapshot returns one of a set of global states� each of which occurs in a system execution
which is indistinguishable to the processes from the actual execution� This means that concur

rent distributed snapshots may return con$icting images�two or more snapshots may not both be
consistent with the process�s other observations� Scans of snapshot memories are� by de	nition�
simultaneously serializable with the update operations� By applying the emulators of ��� to the
constructions presented in this paper� implementations of atomic snapshot memory are obtained
in message
passing systems� Snapshots obtained this way are true images of the global state� In
addition� these implementations are resilient to process and link failures� as long as a majority of
the system remains connected�

Anderson ��� �� has obtained� independently� bounded implementations of single
writer atomic
snapshots� Memory operations in Anderson�s implementation of the single
writer snapshot memory
perform ���n� reads and writes to atomic single
writer multi
reader registers� in the worst case�

Anderson originally posed the multi
writer snapshot problem� and uses single
writer atomic
snapshots to construct multi
writer atomic snapshots ��� ��� Together with the bounded single

writer algorithm of this paper� this provided the 	rst polynomial construction of a shared memory
object that can be instantaneously checkpointed� The multi
writer algorithm of this paper gives
an alternative implementation� building instead on multi
writer atomic registers� The e�ciency of
these constructions may be compared by considering two compound constructions� tracing back
to operations on single
writer atomic registers� Anderson�s multi
writer algorithm� based on the
bounded single
writer algorithm of this paper� requires ��n�� single
writer operations per update
or scan operation in the worst case� Our multi
writer algorithm� based on multi
writer registers� in
turn implemented from single
writer registers� requires ��n�� single
writer operations per update
or scan operation in the worst case �using the most e�cient known construction of multi
writer
registers from single
writer� due to Li� Tromp and Vitanyi ������ It is interesting to speculate
whether other� more e�cient solutions can be found��

Indeed� an interesting open question is the inherent complexity of implementing atomic snap

shots� in terms of both time and space� In all known bounded algorithms the scanners write to the
updaters�is this necessary% The scans do a large number of reads�is this also necessary%

Another question is to 	nd other applications for atomic snapshots� in addition to the ones
already known�

The most challenging avenue of research seems to be the relation between the power of un

bounded and bounded wait
free algorithms� Can any primitive that is not syntactically unbounded�

be implemented using bounded shared memory% Speci	cally� is there a uniform transformation of
any unbounded wait
free solution for some problem into a bounded wait
free solution% Even a
precise de	nition of this class of problems is not obvious�

Finally� snapshot memories� though seemingly more powerful than registers� nevertheless have
bounded wait
free implementations from those simple primitives� In a paper that constructed a

�Note that this measure of complexity ignores the size of the shared registers that are read and written in a single
operation� The registers in these algorithms contain at most ��n� Data �elds�

�Clearly� procedures that return integer or other unbounded values will not have bounded implementations�

��

computability hierarchy of atomic primitives� Herlihy showed that many interesting primitives do
not have wait
free implementations from registers ����� Is it possible to �close the gap� further� and
construct yet more powerful primitives from registers% More ambitiously� is it possible to construct
a complexity hierarchy of objects implementable from atomic registers� with natural notions of
reduction and robust cost measures% Such a theory might provide a theoretical basis for the
intuition that snapshot memories are more powerful than single
writer registers�

Acknowledgements� The authors thank Maurice Herlihy and Nancy Lynch for helpful discus

sions� and Galit Shemesh for comments on an earlier version of the paper�

��

References

��� Abrahamson� K� On achieving consensus using a shared memory� Proceedings of the �th ACM
Symposium on Principles of Distributed Computing� �Aug� ����� ��������

��� Anderson� J� H�� and Gouda� M� G� The virtue of patience� Concurrent programming with
and without waiting� �Jan� ����� Unpublished manuscript�

��� Anderson� J� H� Composite registers� Technical Report TR
��
��� Department of Computer
Science� The University of Texas at Austin �Sept� ������

��� Anderson� J� H� Multiple
writer composite registers� Technical Report TR
��
�� Department
of Computer Science� The University of Texas at Austin �Sept� ������

��� Anderson� J� H� Composite registers� Proceedings of the �th Annual ACM Symposium on
Principles of Distributed Computing �Aug� ����� ������

�� Aspnes� J� Time
 and space
e�cient randomized consensus� Proceedings of the �th ACM
Symposium on Principles of Distributed Computing �Aug� ����� ��������

��� Aspnes� J�� and Herlihy� M� P� Fast randomized consensus using shared memory� Journal of
Algorithms� �Sept� ����� �������

��� Aspnes� J�� and Herlihy� M� P� Wait
free data structures in the asynchronous PRAM model�
Proceedings of the 	nd Annual Symposium on Parallel Algorithms and Architectures �July
����� ��������

��� Attiya� H�� Bar
Noy� A�� and Dolev D�� Sharing memory robustly in message
passing systems�
Proceedings of the �th ACM Symposium on Principles of Distributed Computing� �Aug� �����
�������

���� Attiya� H�� Dolev� D�� and Shavit� N� Bounded polynomial randomized consensus� Proceedings
of the �th ACM Symposium on Principles of Distributed Computing� �Aug� ����� ��������

���� Attiya� H�� Lynch� N� A�� and Shavit� N� Are wait
free algorithms fast% Proceedings of the

�st IEEE Symposium on on Foundations of Computer Science� �Oct� ����� �����

���� Bracha� G�� and Toueg� S� A distributed algorithm for generalized deadlock detection� Pro�
ceedings of the Third Annual ACM Symposium on Principles of Distributed Computing �Aug�
����� ��������

���� Chandy K� M�� and Lamport� L� Distributed snapshots� Determining global states of dis

tributed systems� ACM Transactions on Computing Systems�
� � �Jan� ����� �����

���� Dolev� D�� Gafni� E�� and Shavit� N� Toward a non
atomic era� �
exclusion as a test case�
Proceedings of the 	�th Annual ACM Symposium on the Theory of Computing �May� �����
������

���� Dolev� D�� and Shavit� N� Bounded concurrent time
stamp systems are constructible" Pro�
ceedings of the 	�st Annual ACM Symposium on Theory of Computing �May ����� �������

��

��� Gafni� E� Perspective on distributed network protocols� A case for building blocks� Proceedings
of MILCOM��� �Oct� ���� Monterey� California�

���� Herlihy� M� P� Wait free implementations of concurrent objects� Proceedings of the �th ACM
Symposium on Principles of Distributed Computing� �Aug� ����� �������

���� Herlihy� M� P�� and Wing� J� M� Linearizability� A correctness condition for concurrent ob

jects� ACM Transactions on Programming Languages and Systems� �	� � �July ����� �������
Preliminary version appeared as Axioms for concurrent objects� in Proc� ��th ACM Symp� on
Principles of Programming Languages� �Jan� ����� ������

���� Katse�� H� P� A new solution to the critical section problem� Proceedings of the ��th Annual
ACM Symposium on the Theory of Computing �May� ����� �����

���� Lamport L� The mutual exclusion problem� part II� Statement and solutions� J� ACM�

� �
�Feb� ���� ��������

���� Lamport L� On interprocess communication� part I� Basic formalism� Distributed Computing�
�� � ����� ������

���� Lamport L� On interprocess communication� part II� Algorithms� Distributed Computing� ��
� ����� ������

���� Li� M�� Tromp� J�� and Vitanyi� P� M� B� How to share concurrent wait
free variables� ICALP
������ Expanded version� Report CS
R���� CWI� Amsterdam� April �����

���� Lynch� N� A�� and Tuttle� M� Hierarchical correctness proofs for distributed algorithms�
Proceedings of �th ACM Symposium on Principles of Distributed Computation �Aug� �����
�������� Expanded version available as Technical Report MIT�LCS�TR
���� Laboratory for
Computer Science� Massachusetts Institute Technology� Cambridge� MA�� April �����

���� Misra� J� Axioms for memory access in asynchronous hardware systems� ACM Transactions
on Programming Languages and Systems� �� � �Jan� ���� ��������

��� Owicki� S� Axiomatic Proof Techniques for Parallel Programs� PhD thesis� Cornell University
�Aug� ������

���� Owicki� S�� and Gries� D� An axiomatic proof technique for parallel programs� Acta Informatica�
�� � �Jan� ���� ��������

���� Peterson� G� L� Concurrent reading while writing� Transactions on Programming Languages
and Systems� �� � �Jan� ����� �����

���� Peterson� G� L�� and Burns� J� E� Concurrent reading while writing ii � The multi
writer case�
Proceedings of the 	�th Annual IEEE Symposium on Foundations of Computer Science �Oct�
����� ��������

���� Scha�er� R� On the correctness of atomic multi
writer registers� Technical Report
MIT�LCS�TM
��� Massachusetts Institute of Technology� Laboratory for Computer Science
�June ������

��

���� Vitanyi� P� M� B�� and Awerbuch� B� Atomic shared register access by asynchronous hardware�
Proceedings of 	�th Annual Symposium on Foundations of Computer Science �Oc�t ���� ����
����

��

