
Slide � The Key to Polynomial End�to�End Communication �

Yehuda Afeky � Baruch Awerbuch z � Eli Gafni x �

Yishay Mansour �� Adi Ros�en k � Nir Shavit ��

Abstract

We consider the basic task of of end�to�end communication in dynamic networks� that is�
delivery in �nite time� of data items generated on�line by a sender� to a receiver� in order and
without duplication or omission�

A dynamic communication network is one in which links may repeatedly fail and recover�
In such a network� though it is impossible to establish a communication path consisting of non�
failed links� reliable communication is possible� if there is no cut of permanently failed links
between a sender and receiver�

This paper presents the �rst polynomial complexity end�to�end communication protocol
in dynamic networks� In the worst case the protocol sends O�n�m� messages per data item
delivered� where n and m are the number of processors and number of links in the network
respectively� The centerpiece of our solution is the novel slide protocol� a simple and e�cient
method for delivering tokens across an unreliable network� Slide is the basis for several self�
stabilizing protocols and load�balancing algorithms for dynamic networks that have subsequently
appeared in the literature�

We use our end�to�end protocol to derive a �le�transfer protocol for su�ciently large �les�
The bit communication complexity of this protocol is O�nD� bits� where D is the size in bits
of the �le� This �le�transfer protocol yields an O�n� amortized message complexity end�to�end
protocol�

�Preliminary versions of the various results in this paper appeared in Proc� of the ��th IEEE Annual Symp� on
Foundation of Computer Science ����� and Proc� of the Eleventh Annual ACM Symp� on Principles of Distributed
Computing� ���	
AMS��� AGR�	��

yDepartment of Computer Science� Tel�Aviv University� Tel�Aviv ����� Israel�
zComputer Science Department� Johns Hopkins Univ� and Dept� of Mathematics and Lab� for Computer Science�

M�I�T�� Cambridge� MA �	���� Supported by Air Force Contract TNDGAFOSR�������� ARO contract DAAL���
��K������ NSF contract CCR�����	� and a special grant from IBM�

xComputer Science Department� U�C�L�A�� CA ���	�� Supported by NSF Presidential Young Investigator Award
under grant DCR������� � matching funds from XEROX Co� under grant W�������

�Department of Computer Science� Tel�Aviv University� Tel�Aviv ����� Israel� Part of the research was done
while the author was at Laboratory for Computer science� MIT� partially supported by NSF ���	��CCR� ARO
DALL�����K���� and ISEF fellowship� and at IBM � T� J� Watson Research Center� P� O� Box ���� Yorktown
Heights� NY ������

kDepartment of Computer Science� Tel�Aviv University� Tel�Aviv ����� Israel�
��Department of Computer Science� Tel�Aviv University� Tel�Aviv ����� Israel� Part of this work was performed

while this author was at the Hebrew University� Jerusalem and the TDS group at MIT� Supported by Israeli Commu�
nications Ministry Award� and by NSF contract no CCR������	� by ONR contract no N��������K����� by DARPA
contract no N���������K���	�� and a special grant from IBM�

�

� Introduction

A basic problem in computer networks is that of end�to�end communication� that is� the delivery
in �nite time of data items� generated at a designated sender processor to a designated receiver
processor without duplication� omission� or reordering of the data�items� The data items could
represent transactions of a stock exchange� �les to be transferred� interactive remote processing
messages� etc� In almost all cases� the sequence of data items is produced on�line and is not
available at the beginning of the protocol�s execution�

In a reliable network� where communication links never fail� end�to�end communication is easily
performed by establishing a �xed communication path between the sender and the receiver� and
sending all data items along this path� However� communication networks like ARPANET �MRR�	

and DECNET �Wec�	
� have a dynamic topology� i�e�� links may repeatedly fail and recover� making
it impossible to rely on any single communication path�

The �classical� approach to the problem in dynamic networks is to construct a new communi�
cation path every time the previous path fails� purging any messages in transit on the old path�
However� this approach is limited since its implementations e�g�� �Fin��� Gal��� AAG��� AS���
AAM��� AGH�	
� require strong assumptions regarding the allowable patterns of link failures in
the network� In some works �AAG��� AS��� AAM��
� the assumption is that the whole network
stabilizes for a period of time long enough to allow the construction of a path and the delivery of
at least one data item over it� Moreover� as networks become larger and presumably topological
changes occur more often� the above approach yields protocols that might grind to a halt� However�
as noted in previous works �Vis��� AE��
� the existence of an operational communication path is
not a necessary condition for communicating between two processors� A necessary condition for
communication is that even though there is never a point in time during which there is a path
of operational links between sender and receiver� they are eventually connected� there is no cut of
permanently failed links separating the sender from the receiver� Formally this means that there
exists no partition of the network into two sets� one containing the sender and the other the receiver�
such that from some time and on� no message can be delivered from any processor in one set to
any processor in the other set�

Early papers �Vis��� AE��
 solving the end�to�end communication problem under the eventual
connectivity condition employed �unbounded sequence numbers�� implying that both the message
size and the amount of memory needed grow with the number of data items transmitted� Therefore�
the space and communication complexity of those protocols is unbounded in terms of the size of the
network� In recent years a sequence of works gave bounded and increasingly e�cient solutions to the
problem� The �rst bounded end�to�end communication protocol under the eventual connectivity
fairness condition �AG��
 required only O�� space per�link� but had an exponential communication
complexity�

This paper presents the �rst polynomial complexity end�to�end communication protocol in dy�
namic networks� In the worst case the protocol sends On�m� messages per data item delivered�
where n and m are respectively the total number of processors and links in the network� A prelim�
inary version by three of the authors �AMS��
 presented an algorithm with a message complexity
of On��� Another preliminary end�to�end protocol by two of the authors� based on the resyn�
chronization protocol �AG��
 for unreliable networks� constructed an end�to�end communication
protocol with an improved Onm� message complexity� Though the presented algorithm is a factor
of n slower than �AG��
� it is substantially simpler and more streamlined than either of the above�
and unlike them can be used to yield an e�cient �le�transfer protocol� Furthermore� its key com�

�

ponent is the novel slide protocol which we have reason to beleive will become a popular building
block for dynamic network algorithms� In fact� a recent work �KOR��
 builds upon the slide to
obtain an end�to�end communication protocol with logarithmic space complexity� and at the same
time polynomial communication complexity� In the table below we compare the performace of the
various known end�to�end communication protocols�

Paper Communication Complexity Space Complexity

	Vis
�� AE
� unbounded� � unbounded� �

	AG

� Alg� �� unbounded� � constant� O�D�

	AG

� Alg� �� exponential� O�D � exponential�n�� logarithmic� O�logn�D�

present work polynomial� O�n�mD� linear � O�nD�

	AG�� polynomial� O�nm logn�mD� linear� O�n�D�

	KOR�� polynomial� O�n�mD� logarithmic� O�logn�D�

Slide is a simple and e�cient method for delivering tokens across an unreliable network� Like the
Merlin�Schweizer deadlock avoidance algorithm �MS�	
� it uses store�and�forward bu�er hierarchies
to control packet �ow� However� the similarity ends here� slide allows packets the freedom to move
in the network obliviously and permits deadlocks caused by individual packets that are delayed
in the network for an inde�nite periods of time� It uses the bu�er hierarchy to balance the �ow
of packets� so that if enough packets of a given type are put into the network by a sender� some
packets must reach the receiver processor�

We construct our �rst end�to�end communication protocol by combining slide with the majority
selection mechanism of �AAF��	
� We then present a second protocol without majority selection�
which has the advantage of being data�oblivious� i�e� the protocol does not access the data being
transmitted� This modular separation of messages into a �control bits� part and a �data� part is
standard practice in communication protocols� A combination of key elements of the two protocols�
in conjunction with the Information Dispersal Algorithm IDA� of Rabin �Rab��
� allows us to
design a �le�transfer protocol with OnD� bit communication complexity for �les of su�ciently
large size D�

The rest of the paper is organized as follows� The slide protocol is presented in subsection ����
Section � introduces the dynamic network model� Section � provides an informal overview of our
protocols� Section � includes their formal statement� proof of correctness and analysis� speci�cally
that of the slide protocol�

� Model and Problem Statement

��� The Network Model

Consider a communication network in the form of an undirected graph G � V�E�� jV j � n

jEj � m� where the nodes are the processors and the edges are the links of communication�

Processors are modeled as interactive Turing machines� and run message driven programs� We
do not require that they have distinct identi�ers� and in fact except for the sender and the receiver

�

they all run the same program� Each undirected link consists of two directed links� delivering
messages in the opposite directions� Below we describe the properties of a directed link� We
associate with each message a send event and a receive event� each event has its time of occurrence
according to a global time� unknown to the nodes� We assume no two events occur exactly at the
same time� A message is said to be in transit at any time after its send event and before its receive
event�

Each link has constant capacity� in the sense that only a constant number of messages can be
in transit on a given link at a given time� For clarity of presentation we present the protocols in
a model in which each link has On� capacity Lemma ��� However� The model of On� capacity
links is easily reduced to the model of constant capacity links by maintaining a bu�er of On�
outstanding messages for each link� This reduction does not increase the space complexity of our
protocols since their space complexity is On� in either case� Each link delivers messages in FIFO
order� that is� the sequence of messages received over it is a pre�x of the sequence of messages sent
over the link� Also� the communication is asynchronous� There is no a�priori bound on message
transmission delays over the links�

A directed link is non�viable if starting from some message and on it does not deliver any
message� the transmission delay of this message and any subsequent message sent on this link is
considered to be in�nite ��� The sequence of messages received over the link is in this case a
proper pre�x of the sequence of messages sent� Otherwise� the link is viable� An undirected link
is viable if both directed links that it consists of are viable� We say that a node v is eventually
connected to a node u if there exists a simple� path from v to u consisting entirely of undirected
viable links� Note that if there is a cut of the network� disconnecting the sender from the receiver�
such that all the directed links crossing the cut become non�viable� then it becomes impossible to
deliver messages from the sender to the receiver�

Note that we model the undirected graph as a by�connected directed graph� We thus assume
that for each link either both its directed link are viable� or both are non�viable� In this case� the
assumption stated above of eventual connectivity between the sender and the reciever is a necessary
minimal condition to allow communication between the sender and the receiver� In the model of
directed graphs� it could be the case that there exists a directed viable path from the sender to the
receiver and maybe a di�erent one from the receiver to the sender�� yet all undirected links are
non�vaible� We do not consider in the present paper this more di�cult� model� and are dealing
only with undirected graphs�

��� Other Models

The model described above is called the ���delay model� in �AG��
� and the �fail�stop model�
in �AM��
� As mentioned in the introduction� we deal with networks that frequently change their
topology� In such dynamic networks� links may fail and recover many times yet processors never
fail� �AAG��
� and each failure or recovery of a network link is eventually reported at both its
endpoints by some underlying link protocol� It is not hard to see that any problem de�ned in the
context of the dynamic�network model can be reduced to the same problem de�ned in the context
of the fail�stop networks model� Given a network under the dynamic model� and an algorithm
for networks of the fail�stop model� one can apply the given algorithm as follows� A message to
be forwarded on a link is stored in a bu�er� which is manipulated by a lower�level protocol that
leaves the message in the bu�er until all previous messages have been delivered� and until the link
recovers� if it is down� A protocol similar to the data�link initialization protocol �BS��
 is used

�

to guarantee that no message is lost or duplicated� Any link in the dynamic network that fails
and never recovers for a long enough period to allow the delivery of a message is represented by
a non�viable link in the fail�stop model� each link that eventually recovers for such a long enough
period of time is represented by a viable link� Any two nodes that are eventually connected in the
dynamic network model are eventually connected in the fail�stop model�

��� The End�to�End Problem

The purpose of the end�to�end communication protocol is to establish a directed� �virtual link� to
be used for the delivery of data items inserted from the environment to one distinguished processor�
called the sender and usually denoted by S� to a second distinguished processor� called the receiver
and usually denoted by R� that in turn will extract them to its environment� It is required that
this virtual link be viable if the sender is eventually connected to the receiver� This virtual link
should have the same properties as a �regular� network link� namely�

Safety� The sequence of data items output by the receiver is a pre�x of the sequence of data items
input by the sender�

Liveness� If the sender is eventually connected to the receiver� then each data item input by the
sender is eventually output by the receiver�

An algorithm for the end�to�end communication problem generates a sequence of input events
of data items at the sender and a sequence of receive events of data items at the receiver� that obey
the safety and liveness properties�

��� The Complexity Measures

We consider the following complexity measures�

Message� The total number of messages sent in the worst case in the period of time between two
successive data item output events at the receiver�

Communication� The total number of bits sent in the worst case in the period of time between
two successive data item output events at the receiver�

Space� The maximum amount of space per incident link� measured in bits� required by a node�s
program throughout the protocol�

De�nition � A protocol is bounded if its communication and space complexities are independent
of the number of data items� depending only on the size of the network and the size of a data item�

De�nition � A protocol is polynomial if its communication and space complexities are upper�
bounded by polynomials of the size of the network�

We would like to stress the fact that being able to send receive� an in�nite number of messages
does not require either the sender or the receiver to have in�nite space� A single bu�er at the sender
receiver� su�ces in order to store the next data item to be transmitted� The precise formulation
of this �interactive� statement of the problem can be found in �LMF��
�

�

� Informal Description

In this section� we informally describe the slide protocol� and then describe three end�to�end com�
munication protocols that use it as a building block� The formal presentation of these protocols�
their proof of correctness and their analysis follow in the next section�

��� The Slide Protocol

The purpose of the slide protocol is to deliver messages from a sender to a receiver over an unreliable
network� We refer to these message as tokens� since for the purpose of the slide protocol we are
indi�erent to the contents of the messages� In the slide protocol one designated processor� the
sender� inputs tokens messages� into the network� The sender can be in either of two states�
enabled� or disabled and it may insert new tokens into the network only if it is enabled� A second
designated processor� the receiver� outputs the tokens from the network� Tokens are neither lost
nor duplicated in the network� and the total number of tokens in it at any given time is bounded�
If the sender and the receiver are eventually connected� then eventually the sender is in the enabled
state� that is� the insertion of a new token into the network is possible� The order in which the
tokens are output by the receiver is� however� not necessarily that in which they were input by
the sender� More formally� if the sender and the receiver are eventually connected� then the slide
protocol establishes between them a non�FIFO� bounded�capacity virtual communication link that
does not lose or duplicate messages�

The slide protocol is based on the storing and forwarding of tokens between the processors of
the network� Each undirected link is viewed as a pair of directed anti�parallel links� Each processor
maintains for each incident incoming link an array of slots numbered � through n� We regard the
elements of the array as ordered in increasing order of levels� Each slot has room for one token�
and each array is used to store tokens arriving on the link associated with it� tokens from an array
can be sent over any outgoing link� The key to the protocol is the condition that a token be sent
from any slot i at processor v to slot j at the v� u� array at processor u� only if j � i� To this end�
the processors maintain for each outgoing link a variable holding an upper bound on the lowest
numbered slot available at the other side of the link� The tokens are sent from slots with a number
higher than the bound� and thus are guaranteed to conform to the above condition� Every time a
token is removed from an array� a signal to this e�ect is sent over the incoming link associated with
the array� Since the only source of tokens for a speci�c array is the processor on the other end of
its associated link� the bound can be maintained by incrementing it every time a token is sent over
the link� and decrementing it every time a signal is received over the link� Thus the bound is never
smaller than the number of tokens in the array on the other side of the link plus the number of
tokens in transit over the link� As the links obey the FIFO rule� the above mentioned variable is at
any time t an upper bound for the lowest numbered slot that is available in the receiving processor
upon the arrival of a token that is sent at time t�

New tokens enter the network only at the sender and to a special slot at level n� The receiver
has always a vacant slot of level �� and removes and outputs any token it receives �� If the sender
and the receiver are eventually connected� then eventually the special slot at the sender is vacant�
The tokens travel in the network from the sender to the receiver� sliding from higher numbered
slots to lower numbered slots as they advance from link to link� Therefore� each token can make at

�We remark that for every node but the receiver� slots of level � are redundant� as a token cannot be sent from
such slots�

�

most n hops in the network� Since the protocol maintains for each link �n slots� and as we prove
in the sequel� this also bounds the total number� per link� of tokens in slots plus tokens in transit
at any given time� the total number of tokens in the network at any given time is at most �nm�
This is the capacity of the slide protocol� denoted C� In Lemma � we show that we can replace the
assumption that link capacity is On� by an assumption that link capacity is O��� by maintaining
a �n messages bu�er of outstanding messages for each link�

��� The Majority Algorithm

We construct a simple end�to�end communication algorithm by operating the slide from the sender
processor S to the receiver processor R� To send a data item to R� processor S sends consecutively
��C � � duplicates of the data item to R using the slide� To output the �rst data item� R waits for
C � � data items and outputs one of them� and for each subsequent data item R waits for the next
��C�� data items� takes the majority of the values received� and outputs this value� This is similar
to the protocol of �AAF��	
� Since S sends ��C � � duplicates of each data item and the slide can
delay only up to C data items� the receiver is ensured to receive enough data items to allow the
output of the next data item�

��� The Labels Algorithm

In the labels algorithm� each data item is marked with a unique label� enabling the receiver to
distinguish between a new data item that has yet to be output and an old item that has already
been output� The protocol is thus data�oblivious in that it does not use the data itself for the
control of the protocol� The labels are not �sequence numbers� since they need not de�ne an order
on the items� Since the slide protocol has a bounded token capacity� one can design an algorithm
requiring only a bounded range of labels by devising a technique allowing the sender to know which
labels it can reuse� We do so in the following way�

Given a designated sender S� and receiver R� of an end�to�end communication problem� we
operate two slide protocols� one from S to R and another from R to S� The slide operated from R

to S is used by R to return to S tokens it received�

Let C � Onm� denote the maximum number of tokens that a single slide protocol can delay�
Let L denote a set of Onm� labels� and at any point in time� let free L be a variable holding the
subset of L from which S can take a label to mark a new data item since the label does not appear
in any token in the network� Initially� free L � L�

Processor R keeps for each label an indicator saying whether R may accept a new data item
with this label or not� initially� R may accept a data item with any label� Whenever S wishes
to send a data item to R� it extracts a label l from free L and starts sending tokens of the form
l� data item� to R� S stops sending these tokens either when the �rst such token is received back
from R� or after C �� such tokens are sent� Any token that arrives at R is returned to S using the
R�to�S slide protocol� Before returning the token� R processes the token as follows� If the status
of the label appearing in the token is acceptable� it outputs the received data item and sets the
status of that label to not acceptable� otherwise if the status of the label is not acceptable�
it ignores the token since the received data item has already been output� Processor S counts� for
each label� the number of tokens it sends and the number of tokens it receives back from R� If and
when all the tokens containing a certain label arrive back� S can use the label again for transmitting
future data items� Before doing so� S must inform R that it should again set the status of the label

�

to acceptable� This is done by �reset� messages sent to R� In order not to increase the complexity
of the algorithm by adding the �reset� messages and in order to avoid deadlocks� a �reset� message
is �piggy�backed� on the tokens sent to R� To this end� upon the receipt by S of the last token
having label l� l is added to a set of �pending reset� labels� To each data item sent� S adds a �reset�
message for a label from the �pending reset� set if the set is not empty�� When R receives a token
contains a �reset� message for l� it sets l to the acceptable status� If and when S receives back all
the tokens containing a �reset� message for a certain label l� S concludes that l is in the acceptable
state at R� and that the S�to�R slide is �clean� of tokens carrying either a data item labeled by l�
or a reset message for l� Therefore� l can be safely returned to free L for future use by S�

Since the capacity of each slide is bounded by C� no more than C � � tokens have to be sent by
S before at least one reaches R and the data item is output� The algorithm is technically designed
so that to ensure that at any time the number of tokens stored in R before being returned to S�
is bounded� Together with the fact that each slide can delay up to C token� this implies that a set
of ��C � � labels allows the algorithm to run without deadlocks see Section �����

��� The Data Dispersal Algorithm

We now show an algorithm that achieves OnD� bit communication complexity� for the cases in
which the data items are large with respect to the size of the network having size of �nm logn�
bits�� The same algorithm can also be used for smaller data items if the sender is allowed to lump
together several data items and transmit them together�

Recall that the slide protocol allows only a �nite number of packets to be delayed in the network�
Based on this property we are able to combine the slide protocol with Rabin�s Information Dispersal
Algorithm �Rab��
 to achieve the OnD� bit complexity� The general idea is that the sender splits
the data item into packets using the Information Dispersal Algorithm IDA� and sends them to the
receiver using slide� As the IDA allows the construction of the full data item from only a subset of
these packets� the protocol can tolerate the loss of the �nite number of packets that can be delayed
in the network during the execution of slide� In addition� the total size of the packets in any group
from which the data item can be constructed is not larger than the size of the data item itself�
therefore we build an e�cient algorithm with OnD� bit communication complexity�

More speci�cally� the sender creates� using the IDA� ��C � � packets� each of size O D

C��
� bits�

where D is the size of the data item� The sender sends each of these packets to the receiver� each
one along with its serial number as required by the IDA� This allows the receiver to construct the
full data item from only C � � packets� The sender sends the ��C � � packets and� since at most C
packets can be delayed� the receiver will receive enough packets to reconstruct the data item� The
only di�culty left is to make sure that the receiver does not use old delayed packets to reconstruct
data items subsequently sent� To overcome this di�culty� the sender selects for each data item
a label and adds it to all the packets of the data item� The receiver outputs the �rst data item
after calculating it from the �rst C � � packets it receives� for each subsequent data item it waits
for another ��C � � packets� checks which label has the majority among the labels in the packets�
and uses only the packets having this label� this is similar to the Majority Algorithm� For each
new data item the sender must use a label that is not present in the network� Therefore� as in the
Labels Algorithm� the receiver sends back to the sender every packet it receives through another
slide operated in the opposite direction� Thus the sender always knows which labels are present in
the network� As the capacity of each slide is bounded by C� ��C � � di�erent labels su�ce�

�

The bit communication complexity of the Data Dispersal Algorithm is OnD� bits per data
item if it is applied to large enough data items� As each packet is sent with a serial number of size
Ologmn� � Ologn� bits� the size of a data item that yields this complexity should be �nm logn�
bits� If the algorithm is applied to smaller data items� it achieves an amortized bit communication
complexity of OnD� bits� by combining several data items together�

� Formal Description and Proofs

In this section� we formally state the code of the slide� the Majority� the Labels and the Data
Dispersal Algorithms� prove their correctness� and analyze their complexities� The presentation of
the code is based on the language of guarded commands of Dijkstra �DF��
 where the code of each
process is of the form

Select G� � A��G� � A�� � � �Gl � Al End Select�

The code is executed by repeatedly selecting an arbitrary i from all guards Gi which are true and
executing Ai� A guard Gi is a conjunction of predicates�

The predicate Receive M is true when a message M is available to be received� If the
statements associated with this predicate are executed� then prior to this execution the message M
is received� The message may contain some values that are assigned� upon its receipt� to variables
stated in the Receive predicate e�g�� Receive TOKENdata���

Throughout the proofs we assume a global time� unknown to the nodes� and we denote the
value of variables in a node at a given time by a subscript of the node and a superscript of the time
e�g� X t

v��

��� The Slide Protocol

The protocol� given in Figure �� uses two types of messages� TOKEN messages which are used to
transfer the tokens themselves� and TOKEN LEFT messages that are used as signals to inform the
other side of a link that a token from the array associated with it was removed from the array�

Each node has associated with each incoming link an array of n slots ordered in levels from �
to n� Each of these slots is used to store a single token arriving on the respective incoming link�
In addition� each node maintains for each outgoing link a variable called bound� which is an upper
bound on the number of tokens in the array on the other end of the link plus the number of tokens
on the link plus �� Thus� bound is an upper bound on the height of the slot available for a token if
it is sent� This bound is maintained by initializing it to �� incrementing it by � every time a token
is sent over the outgoing link� and decrementing it by � every time a TOKEN LEFT message is
received over the corresponding incoming link� Whenever there is a token stored in a slot with a
higher number than the bound of some outgoing link� the token is removed from the slot and sent
over the link�

The di�erences between the sender and an ordinary node are due to the fact that the sender
is the node that inputs new tokens to the network� Therefore it has an additional �special array�
into which tokens are input from an external process� These tokens are input into slot number n
of the �special array�� Like all other arrays� tokens from this array can be sent over any link�

The receiver outputs any token it receives and never sends tokens�

�

Select

Initialization ��
for every incident link e

bound	e����
top	e����

�

Receive TOKEN LEFT on e ��
bound	e��bound	e���

�

Receive TOKEN�data� on e ��
top	e��top	e���
slots	e	top	e��data�

�

�e� e� s�t� top	e� � bound	e ��
�� e� not necessarily �� e ��

send TOKEN�slots	e�	top	e�� on e�
send TOKEN LEFT on e��
top	e���top	e����
bound	e��bound	e���

End Select

a� ordinary node�s code

Initialization ��
input array	n��vacant�

�

input array	n�vacant ��
input array	n�� next input�

�

input array	n��vacant
and �e s�t� bound	e� n ��

send TOKEN�input array	n� on e�
input array	n��vacant�
bound	e��bound	e���

�

b� additions for the sender �sender code is a � b�

Select

Receive TOKEN�data� on e ��
output�data��
send TOKEN LEFT on e�

End Select

c� receiver�s code

Figure �� The slide

�	

����� Correctness Proof of the slide Protocol

In this section we prove that�

Theorem ��� The slide protocol satis�es the following four properties�

P�� For each token� the total number of times it is sent over a link� is at most n� �we say that
each time a token is sent it is passed over a link� and that it performs a hop in the network	�

P
� At any time t� the number of tokens in the network is bounded by �nm� �C � �nm	�

P�� In any time interval in which new new tokens are inserted into the network� at most
On�m� new � n� token�passes can occur�

P�� If the sender and the receiver are eventually connected� the sender will eventually input a
new token�

Proof� We start with several de�nitions� The de�nition are used to count the number of di�erent
messages on a given link at a given time�

De�nition � Let tokenstu�v be the number of TOKENs in transit from u to v at time t� Let
signalstu�v be the number of TOKEN LEFT messages in transit from u to v at time t�

Lemma � At any time t and for any e � u� v��

bound�e
tu� � � top�e
tv � tokenstu�v � signalstv�u �

Proof� Upon initialization� the invariant holds� since the bound�e
 variables are initialized to �� the
top�e
 variables are initialized to 	� and no message is in transit in the network� By induction on
the events that change any of the values participating in the invariant we can show that it holds
for any t� There are four events to be considered� send and receive events of TOKEN messages
from u to v and send and receive events of TOKEN LEFT messages from v to u� Consider the
�rst case� a send event of a TOKEN message from u to v� bound�e
u is incremented by �� but so is
tokensu�v � The other three cases are proved similarly� �

The next lemma gives the main intuition for the progress in the protocol�

Lemma � If a token from slot i at node u is sent to node v and is stored there at slot j� then
j � i�

Proof� Let t be the time just before the token is sent from u� and t� the time just before it is
received at v� Denote by e the link between v and u� by new slot the slot number in which the
token is stored in v� and by old slot the slot number where it was stored in u�

Because top is incremented only when tokens arrive on the link� and because the links are FIFO�
we have�

top�e
t
�

v � top�e
tv � tokenstu�v �

��

By Lemma ��
top�e
t

�

v � � � bound�e
tu�

By the code old slot � bound�e
tu and new slot � top�e
t
�

v � �� hence old slot � new slot� �

Since new tokens enter the network into slot n� this proves property P�� of the slide�

Since all the tokens in the network are either stored in the arrays or in transit over links� the
following lemma proves property P���

Lemma � At any time t and for any e � u� v��

top�e
tv � tokenstu�v � n �

Proof� By Lemma � top�e
tv � tokenstu�v � bound�e
tu� �� For bound�e
 to be strictly greater than
n� a token must be sent over e when bound�e
 � n� By the code� this token must be stored in level
� n � �� By Lemma �� and since new tokens enter the network into level n slots� such a token
cannot exist� Thus for any t bound�e
tu � n� �

We can now also prove properties P�� and P��� We start by proving property P��� By
property P�� the total number of tokens in the network at the beginning of the time interval is
Onm�� By Property P�� each can make up to n hops in the network� thus contributing up to
On�m� token passes� Any token from the new new tokens can also make up to n hops�

The rest of the proof is devoted for proving property P��� By way of contradiction assume
that t is the last time at which the sender inputs a token�

As a result of property P�� and as there is only one TOKEN LEFT message per token pass�
there is a time t� � t after which no TOKEN or TOKEN LEFT messages are sent� As S and R

are eventually connected� there is a path R � v�� v�� � � � � vk��� vk � S� k � n� such that for each
	 � i � k � �� e � vi� vi��� is viable� hence there is a time t�� � t� by which all messages between
vi and vi��� in both directions� are delivered�

By induction on the length of the viable path from vi to R� we will show that vi cannot have a
token in a slot at level strictly greater than i after time t�� �

The receiver� v�� has no tokens stored at all� Denote by e the vi��� vi� link i � ��� and assume
the inductive hypothesis that vi�� has no token stored at level strictly greater than i � �� Since
at t�� all messages between vi�� and vi have arrived� by Lemma � and the inductive assumption
bound�e
t

��

vi
� i� As t�� � t�� no token is sent after t��� but according to the code this can happen only

if vi has no tokens in slots of level i� � or more� proving the induction step�

Thus slot n at S is vacant� and S will enable the input of a new token� contradicting the
assumption� �

The following lemma shows that our protocol applies in the model where links have constant
capacity by having an On� space bu�er at the tail of each link and sending every message only
after receiving an acknowledgment for the previous one� As the space complexity of the protocol
is already On� per link see below�� this change does not a�ect any of the complexity measures�

Lemma � At any time t� there are at most �n messages in transit in each direction on any link�

��

Proof� By Lemma �� for any e� e � u� v�� and any time t

tokenstu�v � bound�e
tu � �� and signalstv�u � bound�e
tu � � �

By the same arguments as in the proof of Lemma �� bound�e
tu � n� for any t� Hence tokenstu�v � n

and signalstv�u � n�

The same arguments hold for the opposite directions� thus on any link at any time there are at
most n TOKEN messages and n TOKEN LEFT messages in each direction� �

����� The Complexity of the Slide Protocol

Lemma 	 The number of messages sent by the slide protocol in any time interval where new new
tokens are input by the sender is bounded by On�m� new � n��

Proof� The only messages in the protocol are TOKEN messages and TOKEN LEFT messages�
and there is exactly one TOKEN LEFT message per TOKEN message� The lemma thus follows
from Property P��� �

Corollary
 �Communication Complexity� The number of bits sent by the slide protocol in
any time interval where new new tokens are input by the sender is bounded by On�m�new �n�D��
where D is the maximal number of bits in a token�

The following claim follows from the code of the protocol and its correctness�

Claim �Space complexity� The space required at each node is nD � � logn bits per incident
link� where D is the maximal number of bits in a token �if links have constant capacity then it is
�nD � n � � logn	�

��� The Majority Algorithm

The algorithm is informally described in Section ���� and its code is given in Figures � and ��

The Majority Algorithm uses the slide protocol� given in Section ���� as a lower�level building
block� The sender and the receiver of the Majority Algorithm communicate using this protocol�
each token to be sent by the sender of the Majority Algorithm is input by the sender of the slide�
and upon the arrival of a token to the receiver of the slide it is output by this receiver and received
by the receiver of the Majority Algorithm�

����� Correctness Proof of the Majority Algorithm

In this section we prove the Safety and Liveness properties of the Majority Algorithm�

Theorem ��� �Safety� At any time the output of the receiver is a pre�x of the input of the sender�

��

Select

true ��
data�item��next input�
for i��� to ��C � � do

Send�data�item��
od

End Select

b� sender�s code

Select

Initialize ��
items�set����
�rst item��true�

�

Receive�data�item� ��
items�set��items�set � fdata�itemg�
call check and output�

End Select

a� receiver�s code

Figure �� The Majority Algorithm

Procedure check and output
if �rst item and jitems�setj � C � � then

�� �rst data item ��
output�any data item of�items�set���
items set����
�rst item��false�

else if �not �rst item� and jitems�setj � ��C � � then
�� all other data items ��

output�majority�items�set���
items set����

endif

endif

c� procedure check and output

Figure �� The Majority Algorithm

��

Proof� We denote by I � I�� I�� � � �� and by O � O�� O�� � � �� the input to the sender and the
output of the receiver� respectively� Denote by ti� i � 	 the time at which Oi is output�

To prove the theorem� we claim that the majority of the tokens received by the receiver in the
interval of time ti��� ti
 carry data item Ii� First we show that no token that carries Ik� k � i could
have been received before ti�

The following de�nitions are used to count the number of tokens in the system�

De�nition � Let in�t�t
�� be the number of tokens input by the sender to the slide in interval of time

t� t�
� Let out�t�t
�� be the number of tokens received by the receiver from the slide in the interval of

time t� t�
�

Denote by t� some time before the beginning of the execution of the algorithm�

De�nition 	 delayt � in�t��t� � out�t��t� �the number of tokens delayed by the slide at time t	�

By the code� the total number of tokens that have been received by the receiver by time ti is�

out�t��ti� � C � �� i� ����C� ���

Since the network capacity is C� the total number of tokens sent by the sender at any time t is at
most C more than the total received by the receiver at the same time� t� Thus�

in�t��ti� � i��C� �� ��

Therefore� no token carrying Ik� k � i can be sent by the sender before ti� Hence� no such token
can be received by the receiver at t� t � ti�

We claim that no more than C tokens containing data item Ik� k � i may be received in the
interval of time ti��� ti
� This� together with the fact that no token carrying Ik� k � i can arrive
at time t � ti� completes the proof of the safety property because it implies that of the � � C � �
tokens received in ti��� ti
 at least C � � carry data item Ii�

To prove the claim� we distinguish between two sets of tokens� those that carry data items
Ik� k � i� which we call old� and all other tokens� We have already proved that all the tokens
received by ti�� are old and that the total number of such tokens received by the receiver by ti�� is
� � C���i����C� Since the total number of old tokens ever sent by the sender is � � C���i����
at most C may be received by the receiver in the interval of time ti��� ti
� �

Theorem ��� �Liveness� If the sender and the receiver are eventually connected� then the receiver
eventually outputs any data item given to the sender�

Proof� If the sender inputs the i�th data item� then it tries to send i��C��� tokens counted over
the whole run�� As the sender and the receiver are eventually connected� by Property P�� of the
slide all the tokens are eventually input by the slide� Since the slide can delay at most C tokens�
the receiver will eventually receive i��C � ��� C tokens� and thus outputs the i�th data item� �

��

����� The Complexity of the Majority Algorithm

Lemma � The message complexity of the majority algorithm is On�m� messages �

Proof� Clearly in ti��� ti
 the receiver receives � �C � � tokens� Since the slide can hold at most
C tokens� at most � �C � � tokens are sent by the sender in ti��� ti
� As C � Onm�� the lemma
follows from Lemma �� �

Since every bit in this algorithm is duplicated On�m� times� we establish the following corollary�

Corollary � �Communication Complexity� The bit communication complexity of the majority
algorithm is On�mD� bits� where D is the size in bits of a data item�

Lemma �� �Space Complexity� The space complexity of any node except the receiver is OnD�
bits and OnmD� bits for the receiver� where D is the size in bits of a data item�

Proof� Each token sent in the Majority Algorithm consists of D bits� Combining that with the
space complexity of the slide results in space complexity of OnD� for the Majority Algorithm for
any node except the receiver� The receiver requires in addition OnmD� bits� �

��� The Labels Algorithm

The algorithm is informally described in Section ���� and the code of the algorithm is given in Figure
�� In the algorithm we use two slide protocols between the sender and the receiver� operating in
opposing directions� In the code we use the subscripts S � R and R� S to denote operation with
respect to the slide from the sender to the receiver and the slide from the receiver to the sender�
respectively� Similarly to the Majority Algorithm� the slide is a lower�level building block used by
the Labels Algorithm� Tokens to be sent by the Labels Algorithm are input by the sender of the
corresponding slide protocol� and upon their arrival to the corresponding receiver� they are output
by it� and received by the process of the Labels Algorithm�

Each token sent from S to R consists of three �elds� a label� marking the token� a data item�
and a piggy�backed reset�label� The set L is a set of ��C�� labels� where C is the capacity of a single
slide� Each token received by R is stored in a bu�er before being returned to R� As the two slide
pprotocols may operate at di�erent paces� many tokens may be stored in the bu�er� Therefore� we
use at S a variable missing that counts the number of tokens that were sent but not returned yet�
By delaying the input of a new data item until missing � ��C� we can limit the number of tokens
stored at R� The array count counts for each label l how many tokens labeled by l are currently
in the network� The function extractset� extracts an arbitrary element from set� If set is empty
the function returns null�

����� Correctness Proof of the Labels Algorithm

In this section we prove the Liveness and Safety properties of the Labels Algorithm�

The �life�cycle� of each label� as viewed by the sender� consists of four periods of time� First the
label is in free L� second it is removed from free L to label tokens in the network� third it is pending
reset� and then it is piggy�backed to tokens in order to be reset at the receiver� After all tokens

��

Select

Initialization ��
send bu�er����
� l 	 L status	l��acceptable�

�

ReceiveS�R �l�data�item�l�reset� ��
if �status	l�acceptable � then

output�data�item��
status	l��not acceptable �

endif

status	l�reset��acceptable �
send bu�er��send bu�er� f�l �
�l�reset�g�

�

send bu�er �� � ��
�l�
�l�reset���extract�send bu�er��
sendR�S �l�
�l�reset��

End Select

b� receiver�s code

Select

Initialization ��
labels to reset����
free L��L�
sending��false�
missing����

�

sending�false and missing � ��C ��
data�item��next input�
current label��extract�free L��
current reset label��extract�labels to reset��
count	current label����
sending��true�

�

sending�true ��
SendS�R �current label�data�item�current reset label��
count	current label��count	current label���
missing��missing���
if �count	current label� C � �� then

sending��false�
endif

�

ReceiveR�S �l�
�reset label� ��
if �l�current label� then sending��false� endif
missing��missing���
count	l��count	l���
if �count	l��� then

labels to reset��labels to reset � flg�
free L �� free L � freset labelg�

endif

End Select

a� sender�s code

Figure �� The Labels Algorithm

��

resetting a label return to S� the label is returned to free L to start a new �life�cycle�� We de�ne
subsets of the labels� corresponding to the sets of labels that are in each of the above mentioned
periods in the �life�cycle� of a label�

De�nition
 Let sendingt be the set of labels that at time t are used to label tokens that are either
delayed by any of the two slide protocols or are in the receivers send bu�er� Let pending resett be
the set of labels that at time t are in the set labels to reset of the sender� Let resettingt be the set
of labels that at time t are piggy�backed on tokens that are either by any of the two slide protocols
or in the receivers send bu�er�

Claim �� At the sender� at any time t� missingt � ��C�

Proof� The variable missing is incremented when a token is sent by the sender� By the code� at
most C � � tokens are sent between any two input events at the sender� The input event at the
sender can occur only when missing � ��C� Therefore� for any time t missing � ��C � �� �

Note that this implies that� at any time send bu�er at the receiver stores at most ��C�� tokens�

Lemma �� At any time t�

�� jsendingtj � ��C � � and jresettingtj � ��C � ��

� jsendingtj� jpending resettj � ��C � ��

Proof� Part � follows immediately from Claim ��� To prove part �� note that each time a label
is added to sending� either pending reset is empty� or a label is extracted from it� Therefore part
� follows from part �� To formally prove it� assume by way of contradiction that t� is the earliest
time when jsendingj� jpending resetj � ��C � �� This means that� at t�� a label was added either
to sending or to pending reset�

By the code� a label is added to pending reset if and only if at t� the last token containing the la�
bel at the �sending� �eld arrived at S� which means that the label is extracted at the same time from
sending� contradicting the assumption that t� is the earliest time jsendingj� jpending resetj � ��C � ��

If the label is added to sending� then by the code� if at this time pending reset is not empty� a
label to be reset is sent with the tokens and this label is extracted from pending reset� contradicting
the assumption that at t� the sum of the cardinalities increases�

Thus� pending resetmust be empty at t�� therefore jsendingj� jpending resetj � ��C � � yields
jsendingj � ��C � �� contradicting part �� �

Lemma �� If jLj � ��C � �� then free L is never empty��i�e�� the sender will always have a label
to send with a new data item	�

Proof� The lemma follows Lemma ��� �

Theorem ��� �Liveness� If the sender and the receiver are eventually connected� then any data
item input by the sender is eventually output by the receiver�

��

Proof� Let us �rst prove the following two lemmas�

Lemma �� If the sender and the receiver are eventually connected� then there is no deadlock at
the sender �i�e� eventually� missing � ��C	�

Proof� Assume by way of contradiction that there is a time t such that for any t� � t� missing �
��C��� By the code� the sender can send after t at most C �� tokens� therefore there is a time t���
after which the sender does not send any more tokens� Assume the sender has sent until t�� k tokens
counted over the whole run�� As the slide can delay only up to C tokens� the receiver has received
by t�� at least k � C tokens� All these tokens are added to send bu�er� Since the sender and the
receiver are eventually connected by property P�� of the slideall these tokens are eventually input
by the R�to�S slide� As this slide can delay at most C tokens as well� the sender will eventually
receive at least k � ��C tokens� Therefore missing will eventually be � ��C� �

This implies that any data item available for input will eventually be input by the sender�
Clearly� at least one token with a copy of each data item is received by the receiver� Thus it
remains to prove that one copy of each data item will be output� For this� we need the following�

Lemma �	 Let acceptablet be the set of labels whose state is acceptable at time t in R� Then at
any time t� free L � acceptablet�

Proof� Clearly the invariant holds when the algorithm starts�

A label l is extracted from acceptable only when R receives a token with l at the �labeling� �eld�
Since at this time there is no token in the network labeled with l� l cannot be in free L�

A label l is added to free L only when all tokens with the label at the �reset� �eld return to S�
Assume this happens at time t� Since these tokens return to S� they were received by R� setting
l to the acceptable status� Assume the last one was received by R at t�� t� � t� But in the time
interval t�� t
 there is no token with l at the �labeling� �eld in the slideto R� Therefore at t l is in
the acceptable status in R� �

Thus� the label l used by the sender with a new data item at time t is in the acceptable status
at time t at the receiver� Furthermore� at t there is no other token in the network with label l in it�
Thus� when the �rst copy of a token with label l� after time t� arrives at the receiver� the receiver
outputs the new data item� �

Theorem ��	 �Safety� At any time the output of the receiver is a pre�x of the input of the sender�

Proof� The liveness property implies that every data item that is input at the sender is eventually
output at the receiver� Next we claim that there is no duplication in the sequence of data items
output by the receiver� This claim is proved by way of contradiction� Assume that data item Ii is
output twice by the receiver at times t� and t�� Thus at both times the receiver received a token
of the form l� Ii� l�� and status�l
 was acceptable� Since at t� status�l
 is set to not acceptable

this implies that at some time t�� t� � t� � t�� a token of the form 	� 	� l� is received by R� At time
t no such tokens exist in the network since l is extracted from free L� and any new such tokens
can be created by the sender only after all tokens of the form l� Ii� 	� have arrived to S� Therefore
such token are created only after t�� contradicting the fact that such token arrives at R at t��

It remains to show that there is no reordering in the output sequence� This follows from the
fact that the sender sends the i����st data item only after the i�th data item has been output by
the receiver� �

��

����� The Complexity of the Labels Algorithm

Lemma �
 The message complexity of the labels algorithm is On�m��

This lemma follows from the properties of the slide and from the bounded number of tokens
input into each of the two slide protocols used� as proved in the following two lemmas�

Lemma � In any time interval between two consecutive output events of the receiver at most
Onm� tokens are input to the S�to�R slide�

Proof� The lemma follows from the following two facts� �� the maximum number of tokens that
can be input to the slide between any two consecutive inputs events is bounded by C � �� and
�� any interval between two consecutive output events may overlap in time at most two intervals
between consecutive input events� �

Lemma �� In any time interval between two consecutive output events of the receiver� at most
Onm� tokens are input to the R�to�S slide�

Proof� Denote by OUTi and OUTi�� the two output events that form the time interval� The
tokens that can be input to the R�to�S slide in this time interval are the tokens in send bu�er at
OUTi� the tokens that are delayed by the S�to�R slide at OUTi� and the tokens sent by the sender
in the time interval OUTi� OUTi��
�

By Claim �� the number of tokens in send bu�er is at most Onm�� Slide can delay also at
most Onm� tokens at any time� By the previous lemma the sender sends in this time interval at
most Onm� tokens� �

Each token sent in the Labels algorithm consists of a data item plus a label of size Ologn�
bits� We thus get the following corollaries�

Corollary �� �Communication Complexity� The bit communication complexity of the labels
algorithm is On�mD � logn��� where D is the number of bits in a data item�

Lemma �� �Space Complexity� The space complexity of any node except the receiver and the
sender is OnD � n logn�� where D is the size in bits of a data item�

Proof� Each token sent in the Labels Algorithm consists of OD � logn� bits� Combining that
with the space complexity of the slide� results in space complexity of OnD�n logn� for the Labels
Algorithm� �

Note that the space complexity of the sender and the receiver is Onm logn�D��

��� The Data Dispersal Algorithm

The algorithm is informally described in Section ���� and the code of the algorithm is given in
Figure �� As in the Labels Algorithm� we use two separate slide protocols� one from the sender
to the receiver and another in the opposite direction� We use the subscripts S � R and R� S

�	

Select

Initialization ��
free L �� L�
sending��false�
missing����

�

sending�false and missing � ��C ��
data�item��next input�
l��extract�free L��
using the IDA with parameters

C � � and ��C � ��
create packets � to ��C � ��

send bu�er��
S�C��
i�� f�l�i�packeti�g�

count	l����
sending��true�

�

sending�true ��
�l�i�packet���extract�send bu�er��
SendS�R �l�i�packet��
count	l��count	l���
missing��missing���
if jsend bu�erj�� then sending��false � endif

�

ReceiveR�S �l�i�packet� ��
missing��missing���
count	l��count	l���
if �count	l��� then free L� free L � flg� endif

End Select

a� sender�s code

Select

Initialization ��
packets�set����
�rst item��true�
packets�to�return����

�

ReceiveS�R�l�i�packet� ��
packets�set��packets�set � f�l�i�packet�g �
call check and output�

�

packets�to�return �� � ��
�l�i�packet���extract�packets�to�return��
SendR�S �l�i�packet��

End Select

b� receiver�s code

Procedure check and output
if �rst item�true and

jpackets�setj�C � � then
�� �rst data item ��

using the IDA calculate the data item from the
C � � packets in packets�set�

output�data�item��
packets�to�return��packets�to�return � packets�set�
packets�set����
�rst item��false�

else if �rst item�false and
jpackets�setj���C � � then

�� all other data items ��
majority�label��majority�of�labels�packets�set��
using the IDA calculate the data item

from the packets in packets�set
having the label �majority�label��

output�data�item��
packets�to�return��packets�to�return � packets�set�
packets�set����

endif

endif

c� procedure check and output
Figure �� The Data Dispersal Algorithm

��

the same way as for the Labels Algorithm� The interaction between the slide protocols and the
processes of the present algorithm is the same as the interaction stated for the Labels Algorithm�

Let L denotes a set of � �C � � labels � The sender maintains for each label l
L a counter�
count�l
� that holds at any time the number of tokens labeled l that are present in the network� The
sender can� therefore� conclude at any time which labels are present in the network� The function
extractset� extracts an arbitrary element from set�

Rabin�s Information Dispersal Algorithm requires that the data be represented as a sequence
of numbers over the �eld Zp� where p is a prime bigger than the number of packets to be created
by the IDA� We use the IDA to create � �C � � packets� therefore we need a prime p� such that
p � �nm� �� Since m � n�� any p such that p � �n	� � would do� In order to keep the size of the
smallest data item to which the Data Dispersal Algorithm can be applied as small as possible� we
should use the smallest p for which the above inequality holds� Since for any x there is a prime q
such that x � q � �x� there is always a prime that can be represented in dlog�n	� ��e bits� Since
each packet must contain at least one full number over Zp� the size of the smallest data item to
which the Data Dispersal Algorithm can be applied is �nm logn��

����� Correctness Proof of the Data Dispersal Algorithm

In this section we prove the Safety and Liveness properties of the Data Dispersal Algorithm�

Theorem ��
 �Safety� At any time the output of the receiver is a pre�x of the input of the sender�

Proof� We denote by I � I�� I�� � � �� and by O � O�� O�� � � �� the input to the sender and the
output of the receiver� respectively� Let ti be the time when the receiver outputs Oi� and denote by
li the label added to the ��C�� packets calculated by the IDA from Ii at the sender� By the code�
the tokens used at ti to calculate Oi at the receiver are the ��C�� tokens received by it in the time
interval ti��� ti
� By the same arguments as in the proof of Theorem ���� at least C � � of these
tokens contain the label li� thus the majority of labels will be li� and the receiver will calculate
Oi from the tokens containing li� Since at the time the sender extracts li from free L� there is no
token containing it in the network� the receiver will use at ti only packets calculated from Ii at
the sender� As noted before� the receiver has at least C � � such packets at ti� and the IDA will
correctly calculate Ii at ti� Thus Oi � Ii for any i� �

The proof of the Liveness property requires the following technical lemma�

Lemma �� For any time t� missing � ��C � ��

The proof is similar to the proof of Claim ���

Note that this also implies that the receiver never stores more than � �C � � tokens in all its
bu�ers�

Theorem �� �Liveness� If the sender and the receiver are eventually connected� then the receiver
will eventually output any data item input by the sender�

The proof is similar to the proof of Theorem ����

��

����� The Complexity of the Data Dispersal Algorithm

Lemma �� The message complexity of the data dispersal algorithm is On�m� messages�

Proof� Denote by ti the time the i�th data item is output at the receiver� We use for the S�to�R
slide the same notation as in Section ������ out�ti�ti��� � ��C � � and for any t� 	 � delayt � C� thus
C�� � in�ti�ti��� � ��C��� By Property P�� of the slide C � Onm� and applying this to Lemma
� yields a message complexity of On�m� for the S�to�R slide�

The tokens that are input toR�to�S slide in the time interval ti� ti��
 must be in tokens to return

just after ti� since new tokens are added to this set only at output events at the receiver� By Lemma
��� the receiver stores at any time at most � �C � � tokens� In the worst case all of them are in
tokens to return at ti� Thus at most ��C � � tokens are input to the R�to�S slide in the time in�
terval ti� ti��
� Applying this to Property P�� of the slide and the results of Lemma �� we obtain
a message complexity of On�m� for this slide�

Combining the two slide protocols results in a message complexity of On�m� for the Data
Dispersal Algorithm� �

Lemma �� �Communication Complexity� The bit communication complexity of the data dis�
persal algorithm is OnD� bits� where D is the size in bits of a data item� if D � �nm logn��

Proof� Each token sent in the Data Dispersal Algorithm consists of a packet of size O D

C��
� bits�

a label of size Ologn� bits� and a serial number of size Ologn� bits� The message complexity of
the algorithm is On�m�� and half of the messages are of size O D

C��
� logn� bits� while the other

half have constant size� The total number of bits sent between any two consecutive output events
at the receiver is� therefore� On�m� D

C��
� log n�� � OnD � n�m logn�� For data items of size

�nm logn� the bit complexity is thus OnD�� �

Lemma �� �Space Complexity� The space complexity of any node except the receiver and the
sender is OD

m
� n logn�� where D is the size in bits of a data item�

Proof� Each token sent in the algorithm is of size O D

C��
� logn�� Combining that with the space

complexity of the slide� results in space complexity of On D

C��
�logn��� Since C � �nm� the space

complexity is OD
m
� n log n�� �

Note that using the analysis of the IDA �Rab��
 the space complexity of the sender and the
receiver is On�m� log n�� �

� Conclusion

This paper introduces the slide protocol and uses it to provide the �rst polynomial complexity
end�to�end communication protocol in dynamic networks� Since its initial publication �AGR��
�
slide has been used as the basis for several new algorithms� including the elegant self�stabilizing
protocols �AV��� APSV��� Var��
� a load�balancing scheme �AAMR��
� and a multi�commodity
�ow algorithms �AL��� AL��
� We believe it will �nd further applications in network protocol
design as issues of availability and fault�tolerance become more critical in distributed applications�

�It was pointed out to us by Michael Saks
Sak��� that based on the slide and the majority mechanisms� for �les
of size at least ��n�m� log n� bits� one can build an O�nD� communication complexity �le�transfer protocol without
resorting to coding techniques such as the IDA�

��

� Acknowledgments

We thank Michael Merritt and Mike Saks for their many helpful comments�

References

�AAF��	
 Y� Afek� H� Attiya� A� Fekete� M� J� Fischer� N� Lynch� Y� Mansour� D� Wang� and
L� D� Zuck� Reliable communication over unreliable channels� Journal of the ACM�
��������������� �����

�AAG��
 Y� Afek� B� Awerbuch� and E� Gafni� Applying static network protocols to dynamic
networks� In Proc� of the
�th IEEE Ann� Symp� on Foundation of Computer Science�
pages ������	� October �����

�AAM��
 Y� Afek� B� Awerbuch� and H� Moriel� A complexity preserving reset procedure� Tech�
nical Report MIT LCS TM����� MIT� May �����

�AAMR��
 W� Aiello� B� Awerbuch� B� Maggs� and S� Rao� Approximate load balancing on dy�
namic and asynchronous networks� In Proc�
�th ACM Symp� on Theory of Computing�
pages �������� ACM� May �����

�AE��
 B� Awerbuch and S� Even� Reliable broadcast protocols in unreliable networks� NET�
WORKS� ����������� �����

�AG��
 Y� Afek and E� Gafni� End�to�end communication in unreliabel networks� In Proc� of
the �th ACM Symp� on Principles of Distributed Computing� pages �������� August
�����

�AG��
 Y� Afek� � and E� Gafni� Bootstrap network resynchronization� An e�cient technique
for end�to�end communication� In Proc� of the Tenth Ann� ACM Symp� on Principles
of Distributed Computing �PODC	� August �����

�AGH�	
 B� Awerbuch� O� Goldreich� and A� Herzberg� A quantitative approach to dynamic
networks� In Proc� �th ACM Symp� on Principles of Distributed Computing� pages
�����	�� August ���	�

�AGR��
 Y� Afek� E� Gafni� and A� Rosen� The slide mechanism with applications in dynamic
networks� In Proc� ��th ACM Symp� on Principles of Distributed Computing� pages
������ August �����

�AL��
 B� Awerbuch and T� Leighton� A simple local�control approximation algorithm for
multicommodity �ow� In Proc� ��th IEEE Symposium on Foundations of Computer
Science �FOCS	� pages �������� �����

�AL��
 B� Awerbuch and T� Leighton� Improved approximation algorithms for multi�
commodity �ow problem and local competative routing in dynamic networks� In Proc�

�th ACM Symposium on Theory of Computing �STOC	� pages �������� �����

�AM��
 B� Awerbuch and Y� Mansour� An e�cient topology update protocol for dynamic
networks� Unpublished manuscript� January �����

��

�AMS��
 B� Awerbuch� Y� Mansour� and N� Shavit� Polynomial end to end communication�
In Proc� of the ��th IEEE Ann� Symp� on Foundation of Computer Science� pages
�������� October �����

�APSV��
 B� Awerbuch� B� Patt�Shamir� and G� Varghese� Self�stabilization by local checking
and correction� In Proc� of the �
nd IEEE Ann� Symp� on Foundation of Computer
Science� pages �������� October �����

�AS��
 B� Awerbuch and M� Sipser� Dynamic networks are as fast as static networks� In Proc�
of the
�th IEEE Ann� Symp� on Foundation of Computer Science� pages �	����	�
October �����

�AV��
 B� Awerbuch� � and G� Varghese� Distributed program checking� a paradigm for build�
ing self�stabilizing distributed protocols� In Proc� of the �
nd IEEE Ann� Symp� on
Foundation of Computer Science� pages �������� October �����

�BS��
 A� E� Baratz and A� Segall� Reliable link initialization procedures� IEEE Transaction on
Communication� February ����� Also in� IFIP �rd Workshop on Protocol Speci�cation�
Testing and Veri�cation� III�

�DF��
 E� W� Dijkstra and W� H� J� Feijin� A Method of Programming� Addison�Wesley� �����

�Fin��
 S� G� Finn� Resynch procedures and fail�safe network protocol� IEEE Trans� on Comm��
COM������	����� June �����

�Gal��
 R� G� Gallager� A shortest path routing algorithm with automatic resynch� Unpublished
note� March �����

�KOR��
 E� Kushilevitz� R� Ostrovsky� A� Ros!en� Log�Space Polynomial End�to�End Commu�
nication� In Proc� of the
�th Ann� ACM Symposium on the Theory of Computing
STOC�� pages �������� May ����

�LMF��
 N� Lynch� Y� Mansour� and A� Fekete� The data link layer� Two impossibility results�
In Proc� of the ACM Symp� on Principles of Distributed Computing� August �����

�MRR�	
 J� M� McQuillan� I� Richer� and E� C� Rosen� The new routing algorithm for the
arpanet� IEEE Trans� on Communication� COM������ May ���	�

�MS�	
 P� M� Merlin and P� J� Schweitzer� Deadlock avoidance in store�and�forward networks
�� Store�and�forward deadlock� IEEE Transaction on Communications� �������������
March ���	�

�Rab��
 M� O� Rabin� E�cient dispersal of information for security� load balancing� and fault
tolerance� Journal of the ACM� ������������� �����

�Sak��
 M� Saks� personal communication� �����

�Var��
 G� Varghese� Dealing with Failure in Distributed Systems� PhD thesis� MIT� Depart�
ment of Electrical Engineering and Computer Science� �����

�Vis��
 U� Vishkin� A distributed orientation algorithm� IEEE Trans� Info� Theory� June �����

�Wec�	
 S� Wecker� DNA� the digital network architecture� IEEE Trans� on Comm�� COM�
�����	����� April ���	�

��

