Supporting Increment and Decrement Operations
in Balancing Networks*

William Aiellof Costas Busch? Maurice Herlihy*

Marios Mavronicolas® Nir ShavitT Dan Touitoull

November 6, 1998

Abstract

Counting networks are a class of distributed data structures that
support highly concurrent implementations of shared Fetch&Increment
counters. Applications of these counters include shared pools and
stacks, load balancing, and software barriers [4, 16, 18, 23]. A lim-
itation of counting networks is that the resulting shared counters can
be incremented, but not decremented.

A recent result by Shavit and Touitou [23] showed that the sub-
class of tree-shaped counting networks can support, in addition, decre-
ment operations. This paper generalizes their result, showing that any
counting network can be extended to support atomic decrements in a
simple and natural way. Moreover, it is shown that decrement oper-
ations can be supported in networks that provide weaker properties,

*This paper combines, unifies, and extends results appearing in preliminary form in [2]
and [6]. A preliminary version of the paper will appear at the 16th International Sym-
posium on Theoretical Aspects of Computer Science (STACS’99) March 4-6, 1999, Trier,
Germany.

"Bellcore, Morristown, NJ 07960. Email: aiello@wind.bellcore.com

‘Department of Computer Science, Brown University, Providence, RI 02915. Email:
{cb, mph}@cs.brown.edu

$Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus.
Partially supported by funds for the promotion of research at University of Cyprus.
Part of the work of this author was performed while at AT&T Labs — Research,
Florham Park, NJ, as a visitor to the Special Year on Networks, DIMACS Center
for Discrete Mathematics and Theoretical Computer Science, Piscataway, NJ. Email:
mavronic@turing.cs.ucy.ac.cy

Department of Computer Science, School of Mathematical Sciences, Tel-Aviv Univer-
sity, Tel-Aviv 69978, Israel. Email: shanir@math.tau.ac.il

IIDC Herzliya, Tel-Aviv, Isracl. Email: danidin@math.tau.ac.il

such as K -smoothing. In general, we identify a broad class of proper-
ties, which we call boundedness properties, that are preserved by the
introduction of decrements: if a balancing network satisfies a partic-
ular boundedness property for increments alone, then it continues to
satisfy that property for both increments and decrements.

Our proofs are purely combinatorial and rely on the novel concept
of a fooling pair of input vectors that we introduce.

1 Introduction

1.1 Motivation-Overview

Counting networks were originally introduced by Aspnes et al. [4] and sub-
sequently extended in [1, 13, 15]. They are designed to provide highly con-
current implementations of shared FetchéIncrement counters, shared pools
and stacks, load balancing modules, and software barriers (see, e.g., [4, 16,
18, 23]).

Counting networks are constructed from basic computing elements called
balancers. On an abstract level, a balancer can be thought of as a routing
switch for elements called tokens. It has a collection of input wires and a
collection of output wires, respectively called the balancer’s fan-in and fan-
out. Tokens arrive asynchronously on arbitrary input wires, and are routed
to successive output wires in a “round-robin” fashion. If one thinks of a
balancer as having a state ‘toggle” variable tracking which output wire the
next token should exit on, then a token traversal amounts to a FetchédToggle
operation, retrieving the value of the output wire and changing the toggle
state to point to the next wire. The distribution of tokens on the output
wires of a balancer thus satisfies the step property [4]: if y; tokens exit on
output wire 7, then 0 < y; —y; <1 for any j > 1.

A balancing network is a network of balancers, constructed by connect-
ing balancers’ output wires with other balancers’ input wires in an acyclic
fashion, in a way similar to the way comparator networks are constructed
from comparators [9, Chapter 28]. The network itself has a number of input
and output wires. A token enters the network on an input wire, traverses a
sequence of balancers, and exits on an output wire. A balancing network is a
K -smoothing network [1, 4] if, when all tokens have exited the network, the
difference between the maximum and minimum number of tokens that exit
on any output wire is bounded by K, regardless of the distribution of input
tokens. Smoothing networks can be used for distributed load balancing.

A 1-smoothing network is a counting network if it satisfies the same step
property as a balancer: when all tokens have traversed the network, if y;
tokens exit on output wire ¢, then 0 < y; —y; <1 for any 57 > 7. Counting
networks can be used to implement FetchéIncrement counters: the [-th
token to exit on the j-th output wire returns the value j+ (I — 1)weoy, where
Weut 18 the network’s fan-out.

A limitation of counting networks is that they support increments but
not decrements. Many synchronization algorithms and tools require the abil-
ity to decrement shared objects. For example, the classical synchronization
constructs of semaphores [12], critical-regions [17], and monitors [14] all rely
on applying both increment and decrement operations on shared counters
for both correctness and efficiency (see, e.g., [25, Chapter 6]). Moreover,
several concurrent algorithms for classical multiprocessor synchronization
problems such as the mutual ezclusion problem [11] and the readers-writers
problem [10], involve coordination using both the incrementation and the
decrementation of shared counters.

Shavit and Touitou [23] provided the first counting network algorithm to
support decrements for the class of networks that have the layout of a binary
tree. They did so by introducing a new type of token for the decrement op-
eration, which they named the antitoken.” Unlike a token, which traverses
a balancer by fetching the toggle value and then advancing it, an antitoken
sets the toggle back and then fetches it. Informally, an antitoken “cancels”
the effect of the most recent token on the balancer’s toggle state, and vice
versa. In the same paper, Shavit and Touitou introduced the gap step prop-
erty, as an extension to the step property correctness criterion, intended to
capture correctness when there are both tokens and antitokens traversing
the network. They provide an operational proof that counting trees [24]
satisfy the gap step property when traversed by tokens and antitokens.

Shavit and Touitou [23] also introduced the notion of “elimination,”
which, they show, can be used to implement a highly concurrent “pool” or
“stack” of items using a counting tree. This is done by having each token
represent an enqueue opeartion of an item, and each antitoken represent
a dequeue operation, a request to take out an item. If a token and an
antitoken meet at a balancer in the counting tree, they can “eliminate” one
another; that is, the process shepherding the token can hand the value to
the process shepherding the antitoken, and both processes can exit without
need to traverse the rest of the tree. Even with “elimination,” the counting

*The name was actually suggested by Yehuda Afek (personal communication).

tree still preserves the desired gap step property.

It is natural to ask whether the same properties hold for arbitrary count-
ing networks.! More generally, what properties of balancing networks are
preserved by the introduction of antitokens? In this paper, we give the first
general answer to this question. We show the following results.

e If a balancing network is a counting network when inputs are tokens,
then it remains a counting network when inputs include both tokens
and antitokens. This result implies that any counting network can be
extended to support a FetchéfDecrement operation.

e Any counting network, not just elimination trees, permits tokens and
antitokens to eliminate one another when implementing a concurrent
pool.

e If a balancing network is a K-smoothing network when inputs are
tokens, then it remains a K-smoothing network when inputs include
both tokens and antitokens.

e More generally, we identify a broad class of properties, which we call
boundedness properties, that are preserved by the introduction of anti-
tokens: if a balancing network satisfies a particular boundedness prop-
erty when inputs are tokens, then it continues to satisfy that property
when inputs include both tokens and antitokens. The step property
and the K-smoothing property are examples of boundedness proper-
ties.

An interesting aspect of our work is that, unlike [23], our proofs are
combinatorial, not operational. They rely on the novel concept of a fooling
pair of input vectors, which, we believe, is of independent interest.

1.2 Our Techniques and Main Result

Aspnes et al. [4] introduced the convention of assigning the value 1 to each
token, a convention maintained by later constructions [1, 5, 8, 13, 15, 19,
20, 24]. Shavit and Touitou [23] assigned the value 1 to both tokens and
antitokens, while embedding the cancelling nature of antitokens in the gap

TThis is especially so since efficient (low contention) implementations of tree-shaped
counting networks require the use of randomized “diffraction” mechnisms [24], which can-
not be “hardwired.” Having a hardwired (fixed layout) network is significant for hardware
implementations, and for systems with real-time constraints.

step property. Here, however, it is convenient to assign the value -1 to each
antitoken, and 1 to each token.

Generalizing the approach taken by Aspnes et al. [4], we represent a
balancer as an “operator” carrying an integer input vector to an integer
output vector. The i-th entry in the input vector represents the algebraic
sum of tokens and antitokens received on the i-th input wire, and similarly
for the output vector. For example, if this value is zero, then the same
number of tokens and antitokens have arrived on that wire. In the original
definition of counting networks, which permitted only tokens, all such values
were non-negative. We treat a balancing network in the same way, as an
“operator” on integer vectors.

We show that any balancing network satisfying the step property for non-
negative, integer input vectors, also satisfies the step property for arbitrary
integer input vectors. implying that any counting network can be extended
to support decrements. Moreover, we show that any balancing network that
satisfies the K-smoothing property for non-negative, integer input vectors,
satisfies the same property for arbitrary integer input vectors. In fact, we
show the following general result. Think of a set of possible output vectors as
defining a property of a balancing network. A boundedness property satisfies
two conditions:

e it is a subset of the K-smoothing property, for some K > 1, and
e it is closed under the addition of any constant vector.

Both the K-smoothing and the step property are examples of boundedness
properties. Our principal result is that any balancing network that satisfies
a boundedness property when its input vector consists only of non-negative
integers, it will continue to satisfy that boundedness property even when its
input vector consists of arbitrary integers.

To prove our result, we introduce the concept of a fooling pair of input
vectors. Let the state of any given balancer, viewed as a toggle mechanism,
be the “position” of its toggle. Say that two input vectors are a fooling pair
to any given balancer if they “drive” the balancer, starting from the same
state, to identical states. The state of a balancing network is defined as the
collection of the states of its balancers. Naturally, two input vectors are a
fooling pair to the balancing network if they drive it, starting from the same
state, to identical states. For a specific initial state of a balancing network,
fooling pairs partition the set of input vectors into equivalence classes. We
establish interesting combinatorial properties of fooling pairs.

Roughly speaking, we prove our main equivalence result as follows. Con-
sider any balancing network with some boundedness property; take any ar-
bitrary, integer input vector and the corresponding integer output vector.
By adding to the input vector an appropriate vector that belongs to the
equivalence class for some given initial state, we obtain a new input vector
such that all of its entries are non-negative integers. We show that the out-
put vector corresponding to the new input vector is, in fact, equal to the
original output vector plus a constant vector. Hence, our main equivalence
result follows from closure of the boundedness property under addition with
a constant vector.

The rest of this paper is organized as follows. Section 2 provides a
framework for our discussion. Fooling pairs and their properties are treated
in Section 3. Section 4 presents our main equivalence result. We conclude,
in Section 5, with a discussion and some open problems.

2 Framework

In this section, we present some general definitions, which extend those
in [1, 8, 13, 15] to account for both tokens and antitokens; they somehow
simplify and formalize corresponding ones in [23].

This section is organized as follows. Section 2.1 specifies some notation.
Balancers and balancing networks are introduced in Sections 2.2 and 2.3,
respectively. Section 2.4 treats boundedness properties.

2.1 Notation

For any integer g > 2, x(9) denotes the vector (zo, 21, . . .,xg_1>T, while
[x(9)] denotes the integer vector ([zo], [21],..., [24-1])T. For any vector
x| denote ||x||; = X970 ;. We use 09 to denote (0,0, ...,0)T, a vector
with ¢ zero entries; similarly, we use 1) to denote (1,1,..., 1>T7 a vector
with ¢ unit entries. We use r9 to denote the ramp vector 0,1,...,9—1)7.

A constant vector is any vector of the form ¢1(), for any constant c.

For any integer x and positive integer §, denote z div § and » mod ¢ the
integer quotient and remainder, respectively, of the division of = by 4; note
that 0 <z mod 6 < 6 —1and z = (z div §) 6 + 2 mod §. Say that § divides
x(9) if § divides each entry of x(9).

875 12
ceoO ® 0 Lo Yo
4 32
<9>o<3>o L1 Y1
1
(6)0 (9) T2 Y2
67 8
ceoO Ys
345
ceoO Ya

Figure 1: A balancer

2.2 Balancers

Balancing networks are constructed from acyclically wired elements, called
balancers, that route tokens and antitokens through the network, and wires.
For the sake of generality, our balancers are defined as “multibalancers,” in
the style of Aharonson and Attiya [1], Felten et al. [13], and Hardavellas
et al. [15]; however, we follow Shavit and Touitou [23] to insist that our
balancers handle both tokens and antitokens. We think of a token and an
antitoken as the basic “positive” and “negative” unit, respectively, that are
routed through the network.

So, for any pair of positive integers fi, and four, an (fin, four)-balancer,
or balancer for short, is a routing element receiving tokens and antitokens
on f;, input wires, numbered 0,1,..., f;, — 1, and sending out tokens and
antitokens to f,,; output wires, numbered 0,1,..., four — 1; fin and f,; are
called the balancer’s fan-in and fan-out, respectively. Tokens and antito-
kens arrive on the balancer’s input wires at arbitrary times, and they are
output on its output wires. Roughly speaking, a balancer acts like a “gener-
alized” toggle, which, on a stream of input tokens and antitokens, alternately
forwards them to its output wires, going either down or up on each input
token and antitoken, respectively. For clarity, we assume that all tokens
and antitokens are distinct. Figure 1 depicts a balancer with three input
wires and five output wires, stretched horizontally; the balancer is stretched
vertically. In the left part, tokens and antitokens are denoted with full and
empty circles, respectively; the numbering reflects the real-time order of to-
kens and antitokens in an execution where they traverse the balancer one
by one (called a sequential execution).

For each input index ¢, 0 < ¢ < f;;, —1, we denote by z; the balancer input
state variable that stands for the algebraic sum of the numbers of tokens and
antitokens that have entered on input wire #; that is, z; is the number of
tokens that have entered on input wire 7 minus the number of antitokens
that have entered on input wire i. Denote x{fin) = (zo, 21, . . .,xfm_1>T; call
x(®in) an input vector. For each output index j, 0 < j < four — 1, we denote
by y; the balancer output state variable that stands for the algebraic sum of
the numbers of tokens and antitokens that have exited on output wire j; that
is, y; is the number of tokens that have exited on output wire j minus the
number of antitokens that have exited on output wire 5. The right part of
Figure 1 shows the corresponding input and output state variables. Denote
yUent) = (yo, y1, . . s Yfom—1) 5 call y(fout) an output vector.

The configuration of a balancer at any given time is the tuple <x(f"")7 y(f‘”“)>;
roughly speaking, the configuration is the collection of its input and output
state variables. In the initial configuration, all input and output wires are
empty; that is, in the initial configuration, x(fin) = 0lfin) and y(fou) =
0(fout) . A configuration of a balancer is quiescent if there are no tokens or
antitokens in the balancer. Note that the initial configuration is a quiescent
one. The following formal properties are required for an (fin, four)-balancer.

1. Safety property: in any configuration, a balancer never creates either
tokens or antitokens spontaneously.

2. Liveness property: for any finite number ¢ of tokens and ' of antitokens
that enter the balancer, the balancer reaches within a finite amount of
time a quiescent configuration where all the t tokens and ¢’ antitokens
have exited the network; that is, a balancer never “swallows” tokens
or antitokens.

3. Step property: in any quiescent configuration, for any pair of output
indices j and k such that 0 <j <k < four — 1,0 <y; —yp < 1.

From the safety and liveness properties it follows that for any quiescent
configuration (xUin) y(fou)y of a balancer ||xUin)||, = ||yUeut)||;; that is, in
a quiescent configuration, the algebraic sum of tokens and antitokens that
exited the balancer is equal to the algebraic sum of tokens and antitokens
that entered it.

We are interested in quiescent configurations of a balancer. For any input
vector x(fin) denote y(fout) = b(x(fi")) the output vector in the quiescent
configuration that b will reach after all ||x{/ir)||; tokens and antitokens that

entered b have exited; write also b : x(fin) — y(fout) to denote the balancer
b. The output vector can also be written [1, 4, 8] as

||X(fzn)||1 1(fout) — I-(fout)
fout

fout)

y(

For any quiescent configuration <x(fi")7 y(fm“)> of a balancer b : x(fin) —
yfeut) the state of the balancer b, denoted statey,((x(fin), y(fout)}) 'is defined
to be

statey ((x(Fin) y(Fourdyy = ||1xUin) ||} mod fou
since the configuration is quiescent, it follows that
stateb(<x(fi"),y(f0“t)>) = ||y(fm“)||1 mod fout -
Thus, for the sake of simplicity, we will denote
stateb(x(fi")) = stateb(<x(f"")7 y(fm“)>) .

We remark that the state of an (fin, four)-balancer is some integer in
the set {0,1,..., four — 1}, which captures the “position” to which it is set
as a toggle mechanism. This integer is determined by either the balancer
input state variables or the balancer output state variables in the quiescent
configuration. Note that the state of the balancer in the initial configuration
is 0. Moreover, the linearity of the modulo taking operation immediately
implies the linearity property for the state of a balancer.

Lemma 2.1 Consider a balancer b : x\fin) — y(Few) Then, for any input

vectors ngi") and X(zfi"),

stateb(x(lfi") + x(zfi")) = (stateb(x(lfi")) + stateb(x(zfi"))) mod fout -

2.3 Balancing Networks

A (Wi, Wour)-balancing network B is a collection of interwired balancers,
where output wires are connected to input wires, having w;, designated
input wires, numbered 0,1,..., w;, — 1, which are not connected to out-
put wires of balancers, having w,,; designated output wires, numbered
0,1,..., weu — 1, similarly not connected to input wires of balancers, and
containing no cycles. Tokens and antitokens arrive on the network’s input

o 10 -3 -3 0 0 0 0
. 31 -3 0 0 0 0
vy B 313 0 0 0 0
vy 13 4 -1 0 0 0
e, 8 123 0 0 0 0
b 15|11 2 0 -1 0 0
v B T]2 0 0 0 0
e T8 1 -1 -1 -1 -1
0 0 -1 -1

-1 11 -1

-1 -1 -1 -1

-1 -1 -1 -1

Figure 2: A balancing network

wires at arbitrary times, and they traverse a sequence of balancers in the
network in a completely asynchronous way till they exit on the output wires
of the network. Figure 2 depicts a balancing network with eight input wires
and twelve output wires, using the same conventions as in Figure 1.

For each input index 7, 0 < ¢ < wy;, — 1, we denote by z; the network
input state variable that stands for the algebraic sum of the numbers of
tokens and antitokens that have entered on input wire ¢; that is, x; is the
difference of the number of tokens that have entered on input wire ¢ minus
the number of antitokens that have entered on input wire i. Denote x(%in) =
(X0, 1y vy Togy,—1) 13 call x(win) an input vector. For each output index j,
0 < 7 < Wour — 1, we denote by y; the network output state variable that
stands for the algebraic sum of the numbers of tokens and antitokens that
have exited on output wire j; that is, y; is the number of tokens that have
exited on output wire 7 minus the number of antitokens that have exited on
output wire i. Denote y(wou) = (Yos Y1y -+ Yuwsy—1) 1 call y(wout) an output
vector.

The configuration of a network at any given time is the tuple of config-
urations of its individual balancers. In the initial configuration, all input

10

Yo
Y1
Y2
Ys
Y4
Ys
Ye
Y7
Ys
Yo
Y10

Y11

and output wires of balancers are empty. The safety and liveness prop-
erty for a balancing network follow naturally from those of its balancers.
Thus, a balancing network eventually reaches a quiescent configuration in
which all tokens and antitokens that entered the network have exited. In
any quiescent configuration of B we have ||x(®in)||; = ||y(®ou)||;; that is, in
a quiescent configuration, the algebraic sum of tokens and antitokens that
exited the network is equal to the algebraic sum of tokens and antitokens
that entered it.

Naturally, we are interested in quiescent configurations of a network.
For any quiescent configuration of a network B with corresponding input
and output vectors x(®n) and y(weut) respectively, the state of B, denoted
states(x(®in)), is defined to be the collection of the states of its individual
balancers. We remark that we have specified x(®n) as the single argument
of stateg, since x(*in) uniquely determines all input and output vectors
of balancers of B, which are used for defining the states of the individual
balancers. Note that the state of the network in its initial configuration is a
collection of 0’s. For any input vector x(*in), denote yWout) = B(x(“”'"))
the output vector in the quiescent configuration that B will reach after
all ||x(@in)||; tokens and antitokens that entered B have exited; write also
B : x(win) — y(wout) o denote the network B.

Not all balancing networks satisfy the step property. A (win, Wout)-
counting network is a (W;p, Weut)-balancing network for which, in any quies-
cent configuration, for any pair of indices j and k such that 0 < j < k <
Wout — 1, 0 < yj — yi < 1; that is, the output of a counting network has the
step property. For example, the network depicted in Figure 2 is a counting
network [8], where the integers on the wires represent the input and output
state variables of the balancers that correspond to some particular input
vector.

The definition of a counting network can be weakened as follows [1, 4].
For any integer K > 1, a (wWin, Wout)-K -smoothing network is a (Wipn, Wout)-
balancing network for which, in any quiescent configuration, for any pair of
indices j and k such that 0 < 5,k < weur — 1, 0 < |y; — yi| < K; that is, the
output vector of a K-smoothing network has the K-smoothing property: all
outputs are within K to each other.

For a balancing network B, the depth of B, denoted depth(B), is de-
fined to be the maximum distance from any of its input wires to any of
its output wires. In case depth(B) = 1, B will be called a layer. If
depth(B) = d is greater than one, then B can be uniquely partitioned into
layers By, By, ..., By from left to right in the obvious way.

11

2.4 Boundedness Properties

Fix any integer g > 2. For any integer K > 1, the K-smoothing property [1]
is defined to be the set of all vectors y9) such that for any entries y; and yg
of y(9), where 0 < j, k < g—1, ly; —yk| < K. A boundedness property is any
subset of some K-smoothing property, for any integer K > 1, that is closed
under addition with a constant vector. Clearly, the K-smoothing property
is trivially a boundedness property; moreover, the set of all vectors y9 that
have the step property [4] is a boundedness property, since any step vector
is 1-smooth (but not vice versa). We remark that there are infinitely many
boundedness properties.

A boundedness property captures precisely the two properties possessed
by both K-smooth and step vectors upon which our later proofs will rely.
Although we are unaware of any interesting property, other than the K-
smoothing and step, that is a boundedness one, we chose to state our results
for any general boundedness property in order to make explicit the two
critical properties that are common to the classes of K-smooth vectors and
step vectors; moreover, arguing in terms of a boundedness property will
allow for a single proof of all claims found to hold for both the K-smoothing
property and the step property.

Say that a vector y has the boundedness property II if y € II. Say that
a balancing network B : x(Win) — y(Wout) has the boundedness property TI if
for every input vector x(®in), B(X(“”'")) e II.

3 Fooling Pairs

In this section, we introduce fooling pairs and prove several properties of
them.

Say that input vectors ngi") and x(zfi") are a fooling pair to balancer
b : X(fzn) — y(fout) lf
stateb(x(lfi")) = stateb(x(zfi"));

roughly speaking, a fooling pair “drives” the balancer to identical states in
the two corresponding quiescent configurations. We start by showing;:

Proposition 3.1 Consider a balancer b : xUin) — y(fou) Take any input

vectors x(lf i) gnd x(zf ") that are a fooling pair to balancer b. Then, for any

mput vector X(f""),

12

(1) the input vectors ngi") + xUmn) and x(zfi") + xUin) are a fooling pair to

balancer b;
(2) b(x(lfin) + X(fin)) _ b(X(lfin)) = b(X(zfin) + X(fm)) _ b(X(zfi")),

Proof: We first show (1). Clearly, by Lemma 2.1,

stateb(x(lfi") + xUm)y = (stateb(x(lfi")) + statey (x(Fi7))) mod fou
and

stateb(x(zfi") + xUm)y = (stateb(x(zfi")) + statey (xFi7))) mod fou .
Since ngi") and x(zfi") are a fooling pair to b, stateb(x(lfi")) = stateb(ngi")),

it follows that
stateb(x(lfi") + x(f"")) = stateb(x(zfi") + X(fm));

thus, ngi") + x(fin) and x(zfi") + xFin) are a fooling pair to b, as needed.
We continue to show (2). Cleatly,

b(X(lfin) + X(fin)) B b(X(lfm))
_||X(1f”7') _I_ X(fzn)Hl 1(fout) _ r(fout)-‘ ’VHX(lf”l)Hl 1(fout) _ r(fout)-‘

fout fout
‘Hx(lfin)”1 1Uout) 4 || xUind ||| 1(out) — plfour) ||X(1fin)||1 1 (fout) _ p(four)
fout w - { fout w
(U div four) Fou 1070 4 (311 mod fou) 100 4 ||scin) ||y 1Uou) — plfour)
- - |-
™ 3 div four) Four 10220 + (x| mod foue) 10eu0) — plfou)
- |

CY ™1 div Fou) Foue 100 + statey (x /™)) 1Ueut) 4 ||xc(fin) ||y 1 fou) — plJour)

|
CY ™1 div fou) Four1out) + statey (/i) 1.(Fowr) — ﬂfmﬂ

Jout

(by definition of state)
_ Sta,teb(x(lfln)) 1(fout) _I_ ||X(fzn)||1 1(fout) _ r(fout)-‘ B

- (ngfi")Hl div fou) 1Ueut) 4 :
out

13

stateb(x(lfi")) 1(fout) _ plfour)
fout

’V(Hngi")Hl div fout) 1(fout) 4

= ([l div four) 1) + { f
out

(fin) (fout) _ w(fout)
("l div fout>1<fom>_{stateb<x1)flt r w

Stateb(x(lfln)) 1(fout) _I_ ||X(fzn)||1 1(fout) _ r(fout)-‘ B

fOUt fout

Similarly, we can show that

b(x(zfin) + X(f,'n)) B b(X(zfm))

’VSta;teb(X(lfln)) 1(fout) _I_ ||X(fzn)||1 1(fout) _ r(fout)-‘ B ’VSta;teb(X(lfln)) 1(fout) _

I-(fout) -‘

fOUt fout

Since ngi") and x(zfi") are a fooling pair to b, stateb(x(lfi")) = stateb(ngi")).

It follows that
(e iy — b)) = b 4 xUin)y — b))
as needed. -

We continue to extend the concept of a fooling pair from a single bal-
ancer to a network. Say that input vectors x(lwi") and x(zwi") are a fooling
pair to network B : x(Win) — y(Wout) if for each balancer b of B, the input
vectors of b in quiescent configurations corresponding to x(lwi") and xéwm)7
respectively, are a fooling pair to b; roughly speaking, a fooling pair “drives”
all balancers of the network to identical states in the two corresponding qui-
escent configurations. We continue to generalize Proposition 3.1 to the case

of a balancing network.

Proposition 3.2 Consider a balancing network B : x(Win) — y(Wout) = Tyfe
any nput vectors x(lwi") and x(zwi") that are a fooling pair to network B.

Then, for any input vector X(“’i"),

(1) the input vectors x(lwi") + x(®in) gnd x(zwi") + x(®in) are a fooling pair to
network B;

14

lrstateb(x(zfi"))]_(fout) _|_ ||X(fln)||1]_(fout) — r(fout)-‘) ’VStalteb(X(zfln)) 1(fout) _

I-(fout) -‘

(2) B 4 xlvim)) = Bl ")) = B (o)) - B).

Proof: By induction on the depth d of the network B. For the basis case,
where d = 1, B is a single layer, and the claim follows immediately by
applying Proposition 3.1 to each of the balancers of B separately.

Assume inductively that the claim holds for all networks of depth at most
d — 1. For the induction step, let B = B'B”, where B’ : x(Win) — z(wmea) and
B" : zg(wmea) —5 y(Wout) are networks of depth at most d — 1; that is, B is the
“cascade” of B’ and B”.

For the induction step, we start by showing (1). Since the input vectors
x(lwi") and x(zwi") are a fooling pair to B, it follows that they are a fooling pair
to B’. Thus, by induction hypothesis (1) for B’, for any input vector x(win)
the input vectors X(lwi") + x(win) and x(zwi") + x(®in) are a fooling pair to B'.
It remains to show that the vectors B’(x(lwi") +x(®in)) and B’(x(zwi") 4 x(win))
are a fooling pair to B”.

By induction hypothesis (2) for B,

B/ 4 xm)) = B) 4+ B (e) - B ()
and

B 4 xi)) = B 4 B 4 xln)) - B).
Furthermore, by induction hypothesis (2) for B/,

B (x8) x(wm)y — prden)y = g (i) 4 xlwin)y g i)y

(win) (win)

while, by assumption, B'(x; ') and B'(x; ™) are a fooling pair for B”. We

apply induction hypothesis (1) to B”, taking B’(X(lwi")) for x(lu”")7 B’(x(zwi"))

for x(zu”")7 and B’(X(zwi")+x(wi"))—B’(x(zwi")) = B’(X(lwi")+x(wi"))—B’(x(lwi"))

for x(%in): it implies that the input vectors

B(xi") 4 B () 4 xie)) — B) = B i)
and

B (x{) 4+ B/ (x (") 4 xwin)y — grx)y = B (i) 4 x(win))

are a fooling pair to B”, as needed.

15

We continue to show (2). Since the input vectors x(lwi") and x(zwi") are

a fooling pair to B, it follows that they are a fooling pair to B’. So, by
induction hypothesis (2) for B,

B/(X(lwin)_l_x(win)) — B/((wm))_l_B/((wm)_l_x(w,'n)) —B/(X(zwm)).

Thus,
B(x{"in) 4 x(win)y — B(x{win)y
= BB) — BB ("))
= BB) 4 B+ x i) — B) - BB ().
Since the input vectors x(lwi") and x(zwi") are a fooling pair to B, it follows

that the vectors B’(X(lwi")) and B’(x(zwi")) are a fooling pair to B”. Thus,
we apply induction hypothesis (2) for B” by taking B’(X(lwi")) for x(lw"")7
B’(X(zwi")) for xéwm)7 and B’(x(zwi") +x(win)) — B’(x(zwi")) for x(*in) to obtain
that

B"(B/(xn)) 4 B () 4 x(win)y — B/ (x{%im))) — B (B ()

= BB (X(w’")+ B'(x(zw’" 4+ x(win)) — B'(x “’m))) _ B”(B’(x(zwi")))
B (B (x§) + x(win))) — B (B (x{"")))

= B 4 xlwin)) - By

It follows that B(x(lw’") + x(win) B(x (“’m)) — B(x(w’") —I—X(“’m)) —l’)’(x(zu”"))7
which completes the proof of (2). |

We continue to establish further interesting properties of fooling pairs.
Say that x(®in) is a null vector to network B : x(in) — y(wout) if the vectors
x(®in) and 0(in) are a fooling pair to B. Intuitively, a null vector “hides”
itself in the sense that it does not alter the state of B by traversing it. We
state an immediate property of null vectors.

Proposition 3.8 Consider a balancing network B : x(Win) — y(Wout) = Tyfe
any nput vectors x(lwi") and x(zwi") that are a fooling pair to network B.

Assume that x(zwi") 15 a null vector to network B. Then, x(lwi") 15 also a null

vector to network B.

We continue to show:

16

Proposition 3.4 Consider a balancing network B : x(in) — y(Wout) = Tyfe
any input vector x(Win) that is null to B. Then, for any integer k > 0,

(1) B(kx(win)) = gB(x(win));
(2) kx(win) is a null vector to B.

Proof: We start by showing (1). We proceed by induction on k. For the
basis case where k = 0, the claim holds trivially.

Assume inductively that the claim holds for all integers &’ such that
k" < k — 1. For the induction step, consider the integer k. Clearly,

fex(@in) = (k= 1)x(win) 4 x(win)
so that
Blkxn)) = B((k — 1)x) 4+ xlvin)).
We apply Proposition 3.2(2) by taking x(win) for x(lu”")7 o(win) for X(Z“’i")7

and (k — 1)x(in) for x(®in) to obtain that
B((k — 1)X(win) + X(win)) — B((k _ 1)X(win)) T B(X(wm)) _ B(O(wm))
= (k= 1)B(xm)) 4 B(xwin)y — B(olwin))
(by induction hypothesis)
= kB(xWin)y,

as needed.

We continue to show (2). We proceed by induction on k. For the basis
case where k = 0, the claim holds trivially. Assume the claim holds for all
integers k' such that k' < k — 1. For the induction step, consider the integer
k. Clearly,

Ex(win) - = (k — 1)X(“’"") + x(win) |

By assumption, x(®) is a null vector to B. We apply Proposition 3.2 by
taking x(®in) for x(lw"")7 0(win) for xéwm)7 and (k — 1)x(Win) for x(win) to

obtain that the input vectors
x(Win) (k= 1)x(Win) = fx(win)
and

0(win) 4 (k — 1)x(win) = (k — 1)x(win)

17

are a fooling pair to B. By induction hypothesis, (k— 1)x(“’i") is a null vector
to B. It follows, by Proposition 3.3, that kx(“n) is a null vector to B, as
needed. [

For any balancing network B, denote W, (B), the product of the fan-
outs of balancers of B. The next claim establishes a sufficient condition for
null vectors.

Proposition 3.5 Consider a balancing network B : x(Win) — y(wour) = fq.
sume that Wy (B) divides x(win) | Then, x(in) s a null vector to B.

Proof: By induction on the depth d of B. For the basis case where d = 1,
B is a single layer. Take any single balancer b : xfin) —y ylfout) of B. By
definition of Wy (B), four divides Wy (B). Since Wy (B) divides x(win) it
follows that f,,; divides x(win). Hence, fo,u+ divides the restriction xfin) of
x(®in) 5o that x(fin) is a null vector to b. Since b was chosen arbitrarily, this
implies that x(*in) is a null vector to B, as needed.

Agsume inductively that the claim holds for all balancing networks of
depth at most d—1. Write B = B'B”, where each of B’ and B" is a balancing
network of depth at most d — 1. Since W, (B) divides x(win) and Wouw (B) =
Wout (B YWout (B"), it follows that W, (B') divides x(in) Tt follows by
induction hypothesis for network B’, that x(*) is a null vector to network
B

It remains to show that B/(x(“in)) is a null vector to network B”. Since
Wout(B) divides x(“in) | Proposition 3.4(1) implies that W, (B) divides
B’(X(“”'")). Since Wout(B) = Wou (B)Y Wout (B"), it follows that W, (B")
divides B'(x(*in)). Thus, by induction hypothesis for network B”, B'(x(win))
is a null vector to network B”, which completes the proof. [|

4 Equivalence Result

In this section, we show our equivalence result. We start by proving;:

Proposition 4.1 Fiz any boundedness property II. Consider any balancing
network B : x(Win) — y(Wout) that has the boundedness property TL. Assume
that Wou (B) divides x(®in) - Then, y(Wout) s g constant vector.

Proof: Assume, by way of contradiction, that there exist entries y; and
yr of y(@eut) such that y; # yg. Thus, clearly, |y; — yr| > 1.

18

Since B has the boundedness property, it follows that |y; — yx| < K for
some universal integer K > 1.

Since W,y (B) divides x(in) it follows by Proposition 3.5 that x(®in) is
a null vector to network B. Thus, by Proposition 3.4(1), B((K +1)x(®in)) =
(K 4+ 1)B(x(win)) = (K + 1)y(wout),

Consider the jth and kth entries y; and y;, respectively, of B((K +
1)x(“”'")). Since B has the boundedness property, |y; — y;| < K. However,

yi—y, = (K+ 1Ly — (K+ Ly
= (K+ 1Dy —),
so that
ly; —vel = (K +1)|y; — il
> K+1,
a contradiction. []

We finally show our main result:

Theorem 4.2 Fiz any boundedness property 11. Consider any balancing
network B : x(Win) — y(Wout) gyeh that y(Weut) has the boundedness property
II whenever x(in) is a non-negative vector. Then, B has the boundedness
property 11.

Proof: Consider any arbitrary input vector x(¥in). We will show that
B(x(“”'")) has the boundedness property II.

Construct from x(®in) an input vector x(*in) such that for each index 1,
0 < i< wy—1, 7 is the least multiple of Wy (B) such that #; + z; > 0.
Clearly, W, (B) divides %(®i»), By Proposition 4.1, B(x(®n)) is a constant
vector, while by Proposition 3.5, (%) is a null vector to network B. We
apply Proposition 3.2(2) with x(wi») for x(lw"")7 0(win) for xéwm)7 and x(win)
for x(*in); we obtain that

B(i(wm) T X(win)) — B(X(win)) + B(i(wi")) _ B(O(win))

so that

B(xWin)y = B(xlwin) 4 x(win)y _ g(x(win)y,

Since x(win) 4 x(win) is a non-negative input vector, it follows, by as-
sumption on B, that B(f{(“”'") + x(“”'")) has the boundedness property II.
Since B(f{(“’i")) is a constant vector, it follows, by closure of a bounded-
ness property under addition with a constant vector, that B(x(“”'")) has the
boundedness property II, as needed. [|

5 Conclusion

We have shown that any balancing network that satisfies any given bound-
edness property on all non-negative input vectors, it will also satisfy the
same property for any arbitrary input vector. Interesting examples of such
properties are the step property and the K-smoothing property. A signifi-
cant consequence of our result is that all known (deterministic) constructions
of counting and smoothing networks [1, 3, 4, 5, 8, 13, 15, 19, 20, 24] will
correctly handle both tokens and antitokens, and therefore simultaneously
support both the increment and decrement operations. Another signifi-
cant consequence is that the sufficient timing conditions for linearizability
in counting networks established in [21, 22] immediately carry over when
introducing antitokens in addition to tokens. Our work leaves open several
interesting questions and problems.

Aiello et al. [3] present an interesting construction of a randomized count-
ing network; they use randomized balancers, which distribute tokens on out-
put wires according to some random permutation. Does this network operate
correctly when simultaneously traversed by both tokens and antitokens? It
seems to appear that the randomized balancers need to somehow “remem-
ber” the entire history of the random permutations in order for antitokens
(resp., tokens) to trace back the paths of tokens (resp., antitokens).

Other interesting properties of balancing networks include the threshold
property [4, 7] and the weak threshold property [7], outlined below. Let x(®in)
and y(@eu) be the input vector and the corresponding output vector of a bal-
ancing network that has any of these properties. For the threshold property,
we require that yo = [||x(“)||; /weyu:], while for the weak threshold prop-
erty, we require that there is some output index j, possibly j # 0, such that
y; = [||x"in)||; /weui]. Since we have not established that either of these
properties is a boundedness property, our result does not apply a fortiori
to these properties. It would be extremely interesting to see whether these
properties are preserved by the introduction of antitokens. We conjecture
that different techniques are required for handling these questions.

20

References

[1]

[2]

E. Aharonson and H. Attiya. Counting networks with arbitrary fan-out.
Distributed Computing, 8(4):163-169, 1995.

W. Aiello, M. Herlihy, N. Shavit, and D. Touitou. Inc/dec counting
networks. Manuscript, Dec. 1995.

W. Aiello, R. Venkatesan, and M. Yung. Coins, weights and contention
in balancing networks. In Proceedings of the 15th Annual ACM Sympo-
stum on Principles of Distributed Computing (PODC’94), pages 193
205, Los Angeles, Aug. 1994.

J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of
the ACM, 41(5):1020-1048, Sept. 1994.

C. Busch, N. Hardavellas, and M. Mavronicolas. Contention in counting
networks (abstract). In Proceedings of the 13th annual ACM Sympo-
stum on Principles of Distributed Computing (PODC’94), page 404,
Los Angeles, Aug. 1994.

C. Busch and M. Mavronicolas. The strength of counting networks (ab-
stract). In Proceedings of the 15th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC’96), page 311, Philadelphia,
May 1996.

C. Busch and M. Mavronicolas. Impossibility results for weak threshold
networks. Information Processing Letters, 63(2):85-90, July 1997.

C. Busch and M. Mavronicolas. An efficient counting network.
In Proceedings of the 1st Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing

(IPPS/SPDP’98), pages 380-385, Mar. 1998.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algo-
rithms. MIT Press and McGraw-Hill Book Company, Cambridge, MA,
1992.

P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with
“readers” and “writers”. Communications of the ACM, 14(10):667-668,
Oct. 1971.

21

[11]

[12]

[13]

[14]

[15]

[21]

E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, Sept. 1965.

E. W. Dijkstra. Cooperating sequential processes. In Programming
Languages, pages 43-112. Academic Press, 1968.

E. W. Felten, A. LaMarca, and R. Ladner. Building counting networks
from larger balancers. Technical Report TR 93-04-09, University of
Washington, Apr. 1993.

P. B. Hansen. Operating System Principles. Prentice-Hall, Englewood
Cliffs, NJ, 1973.

N. Hardavellas, D. Karakos, and M. Mavronicolas. Notes on sorting and
counting networks. In Proceedings of the 7th International Workshop
on Distributed Algorithms (WDAG’93), volume 725 of Lecture Notes in
Computer Science, pages 234-248, Lausanne, Switzerland, Sept. 1993.
Springer-Verlag.

M. Herlihy, B.-H. Lim, and N. Shavit. Scalable concurrent counting.
ACM Transactions on Computer Systems, 13(4):343-364, Nov. 1995.

C. A. R. Hoare and R. N. Periott. Operating Systems Techniques. Aca-
demic Press (New York NY), London, 1972.

S. Kapidakis and M. Mavronicolas. Distributed, low contention task
allocation. In Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing (SPDP’96), pages 358-365, Washington, Oct.
1996.

M. Klugerman. Small-Depth Counting Networks and Related Topics.
PhD thesis, Department of Mathematics, Massachusetts Institute of
Technology, Sept. 1994.

M. Klugerman and C. G. Plaxton. Small-depth counting networks.
In Proceedings of the 24th Annual ACM Symposium on the Theory of
Computing (STOC’92), pages 417-428, Victoria, B.C., Canada, May
1992.

N. Lynch, N. Shavit, A. Shvartsman, and D. Touitou. Counting net-
works are practically linearizable. In Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing (PODC’96),
pages 280-289, New York, May 1996.

22

[22]

M. Mavronicolas, M. Papatriantafilou, and P. Tsigas. The impact
of timing on linearizability in counting networks. In Proceedings of
the 11th International Parallel Processing Symposium (IPPS’97), pages
684688, Los Alamitos, Apr. 1997.

N. Shavit and D. Touitou. Elimination trees and the construction
of pools and stacks. Theory of Computing Systems, 30(6):545-570,
Nov./Dec. 1997.

N. Shavit and A. Zemach. Diffracting trees. ACM Transactions on
Computer Systems, 14(4):385-428, Nov. 1996.

A. Silberschatz and P. B. Galvin. Operating System Concepts. Addison
Wesley, 4th edition, 1994.

23

