
A Bounded First�In� First�Enabled Solution to the

��Exclusion Problem

Yehuda Afek

AT�T Bell Laboratories and Tel�Aviv University

and

Danny Dolev

IBM Almaden Research Center and Hebrew University

and

Eli Gafni

University of California� Los Angeles

and

Michael Merritt

AT�T Bell Laboratories

and

Nir Shavit

Tel�Aviv University

This paper presents a solution to the �rst�come� �rst�enabled ��exclusion problemof ���� Unlike the
solution in ���� this solution does not use powerful read�modify�write synchronization primitives�
and requires only bounded shared memory� Use of the concurrent timestamp system of ��� is key
in solving the problem within bounded shared memory�

Categories and Subject Descriptors� D���	 �Operating Systems�� Process Management
Mutual

exclusion

Additional Key Words and Phrases� concurrency� time stamps� atomic registers�

�� INTRODUCTION

Consider a system of n asynchronous processes that communicate only by reading
from and writing to bounded atomic registers� The programof each process contains
a piece of code called the critical section� The ��exclusion problem is to guarantee
that the system does not enter a global state in which more than � processes are
executing their critical section ����
To illustrate the problem� imagine that each process controls some device which

from time to time needs to enter a mode of high electrical power consumption�
The main circuit breaker can withstand at most � devices at high electrical power
consumption� By allowing each process to switch its device on only when it is in its

Eli Gafni was supported by NSF Presidential Young InvestigatorAward under grant DCR����	��
� matching funds from XEROX Co� under grant W��				� This work was performed while this
author was at Tel�Aviv University� Parts of this research were conducted while Nir Shavit was
at the Hebrew Univerity� IBM Almaden Research Center and Stanford University� and visiting
AT�T Bell Laboratories and MIT�



� � Afek� Dolev� Gafni� Merritt� Shavit

critical section� an ��exclusion solution will protect the circuit breaker from burning
out�
The ��exclusion problem is an extension of mutual exclusion �where � � 	
� a

classic problem in concurrency control ��� ��� This extension was �rst de�ned and
solved by Fischer� Lynch� Burns� and Borodin in ���� A solution is required to
withstand the slow�down or even the crash of processes �up to � � 	 of them
�
and should not require the active collaboration of processes that are not currently
requesting a resource� �Solutions to the more di�cult ��assignment problem ���
must assign each process in the critical section to a distinct slot�� in addition to
maintaining the ��exclusion property�

Lamport observed ��� that a �rst�come� �rst�served mutual exclusion algorithm

can be constructed by preceding a mutual exclusion mechanism with a �fo�queue�
The possibility of faults precludes the straightforward use of any such �rst�come�
�rst�served mechanism�the �rst process to enter the mechanismmay fail� preventing
progress by those following ��� ��� To resolve this dilemma� the notion of process en�
abling was introduced� a process is enabled to enter the critical section if su�ciently
many steps of that process will carry it into the critical section� independently of
the actions of other processes� The key distinction between enabling and actual
entry to the critical section is that a process might become enabled passively by the
action of some other process changing shared memory� whereas entry to the critical
section can take place only by a positive action of the given process�� ��� ��� The
�rst�in� �rst�enabled condition was introduced as the natural fairness condition for
��exclusion� generalizing the �rst�come� �rst�served condition for mutual�exclusion�
The di�culty of solving fault�tolerant distributed problems such as ��exclusion

depends critically on the available concurrent objects from which solutions are to be
constructed� A recent paper by Herlihy ��� established the existence of a hierarchy
of concurrent objects� Herlihy�s hierarchy classi�es objects according to the number
of processes among which these objects can solve the consensus problem� despite
any number of faults� An object has a consensus number k if k is the maximum
number of asynchronous fail�stop processes for which the object can be used to
solve the consensus problem� Thus objects with higher consensus number cannot be
deterministically and fault�tolerantly implemented by employing objects with lower
consensus numbers� The consensus number of atomic read�write shared memory is
one�
The only formerly known �rst�in� �rst�enabled solution to the ��exclusion prob�

lem� due to ��� ��� was de�ned and solved based on the use of read�modify�write prim�
itives� whose consensus number is�� Rudolph� in ���� solved the problem assuming
the weaker fetch�and�add primitive� whose consensus number is two� In ��� �� ���
bounded solutions were presented using only atomic shared memory� but they im�
plement a weaker form of fairness� n��overtaking� �A process may be overtaken
by as many as n� later processes� before becoming enabled� First�in� �rst�enabled
corresponds to ��overtaking� These notions are formally de�ned in Section ���
�

Though bounded�size memory �rst�come� �rst�served solutions to the mutual
exclusion problem were presented in ��� ��� it was not known how to generalize these
techniques to the case of ��exclusion� It seems that in order to achieve �rst�in� �rst�

�An appendix of ��� describes an earlier version of the algorithm of this paper� and erroneously
claims it to be �rst�in� �rst�enabled�



First�In� First�Enabled ��Exclusion � �

enabled fairness� a process must be able to deduce the relative order among other
processes� not only between itself and others� and this must be done in the face of
concurrent state changes by the other processes� It has remained open whether any
shared�memory solution having less than n��overtaking was achievable� without
resorting to the use of communication primitives of greater power than atomic
read�write shared memory� �Henceforth� atomic read�write shared memory will be
referred to as shared memory�

This paper presents a �rst�in� �rst�enabled solution to the ��exclusion problem�

using only shared memory as communication primitives� The de�nitions and proofs
are all natural generalizations of mutual exclusion� The paper contains a complete
solution that uses unbounded �integer
 values in the shared memory as timestamps
�similar to the ticket algorithm for mutual�exclusion ���
� In addition� we indicate
how these unbounded values can be replaced by implementations of concurrent
timestamp systems ��� from bounded shared memory� such as those presented in
��� �� �� ��� �In these cases� the resulting solution requires O�n
 bits of shared
memory per process�


�� THE ��EXCLUSION PROBLEM

A system consists of n processes f	� � � � � ng� Each process is a state machine� possibly
with an in�nite number of states� We consider an interleaving model of concurrency�
where executions are modeled as sequences of steps� Each step is performed by a
single process� A process i performs either a write step� x �� v� or a read step�
v �� x� where v is a local variable and x is a shared register� or performs some
local computation� and moves to a new state� from which one or more subsequent
steps are enabled� Process states consist of the values of local variables and of the
control �program counter
� A system state consists of the states of the processes
and registers� For convenience� we assume that each process can take at least one
step from any system state�
A run is an alternating sequence ��nite or in�nite
 of states and process steps�

s�� e�� s�� � � �� where each event �the triple si��� ei� si
 corresponds to a step of a
single process in the obvious way�
We assume that each process can be described by a program that consists of two

distinguished sections� a remainder section and a critical section� Each process
alternates between executing its remainder and its critical section as follows�

Process i�
repeat forever

remainder sectioni
critical sectioni

end repeat

It is convenient to assume that these sections begin and end with local steps of
i� e�g� Begin remainder sectioni and End remainder sectioni� If i has taken a
Begin remainder sectioni step� we say i has entered the remainder section� If i
has taken a End remainder sectioni step� we say i has left the remainder section�
and in between i is in the remainder section� Similar notation is used later for other
sections of code� Two or more processes are concurrently in particular sections of
code in a system state if they are all in the given sections in the given state�
If a process i takes only �nitely many steps in a given run of the system and



� � Afek� Dolev� Gafni� Merritt� Shavit

stops outside the remainder section� or enters the critical section and never leaves�
we say i is faulty in the run�
The ��exclusion problem is to guarantee that the system does not enter a global

state in which more than � processes are in their critical section ���� To coordinate
the entrance to the critical section� entry and exit sections are added to the program
of each process�

Process i�
repeat forever

remainder sectioni
entryi
critical sectioni
exiti

end repeat

The following properties are required from any solution to the problem�

Definition ���� ��Exclusion� No more than � processes are ever concurrently
in their critical sections�

Definition ���� ��Lockout Avoidance� If fewer than � processes are faulty� any
process that is not faulty and leaves the remainder region later re�enters it�

�Note that if � or more processes are faulty and stay in the critical section forever�
the ��exclusion condition requires that no other process enter its critical section�
Hence� the de�nition of ��lockout avoidance only requires progress when less than
� processes are faulty�

Lockout avoidance can be strengthened in the following way� The de�nition of

the entry section is re�ned to consist of two sections� a doorway and a waiting room�
Any process must pass through the doorway in a bounded number of steps� whether
or not other processes take steps� Execution of the waiting room may consist of
an unbounded number of steps� as a process is busy waiting there for space in the
critical section to become available�

Process i�
repeat forever

remainder sectioni
doorwayi
waiting roomi
entryi
critical sectioni
exiti

end repeat

The strengthened fairness property imposes the following constraint�

Definition ���� First�Come� First�Served� If process i leaves the doorway before
process j enters the doorway� then i enters the critical section before j�

As noted by ���� the �rst�come� �rst�served property and the ��lockout avoidance
property cannot be mutually satis�ed when � is greater than one� To see this�
suppose process i is required by the �rst�come� �rst�served property to enter its
critical section before process j� but process i fails� Since process failures are not



First�In� First�Enabled ��Exclusion � �

detectable� process j must wait forever� even if there are no other processes in their
critical sections� This violates the ��lockout avoidance property when l � 	� Thus�
for the general ��exclusion problem� the �rst�come� �rst�served condition must be
weakened� Rather than requiring the earliest process to be serviced �rst� we require
instead that it be enabled �rst�

Definition ���� Process i is enabled �to enter the critical section� in a system
state s� if in any run that starts in s and in which i takes an in�nite number of
steps �regardless of the number of faults�� i enters the critical section�

Note that an enabled process remains enabled until it enters its critical section�
Thus� lockout avoidance can be strengthened to the following property�

Definition ���� First�In� First�Enabled� If i last left the doorway before j last
entered it� i is in the waiting room� and j is in the critical section� then i is enabled�

Note that for � � 	� where ��exclusion reduces to mutual exclusion� the �rst�in�
�rst�enabled property implies the �rst�come� �rst�served property�
The algorithm of Section �� actually satis�es a stronger� bounded �rst�in� �rst�

enabled condition� for any �nite run �� if i last left the doorway before j last entered
it� i is in the waiting room� and j is in the critical section� then there exists k � �
such that in any extension of � in which i takes k additional steps� and regardless
of the number of faults� i enters its critical section�
The �rst�in� �rst�enabled fairness condition can be weakened by allowing some

bounded number of processes to pass a process in the waiting room�

Definition ���� Process i is overtaken by process j in a �nite run if i last left
the doorway before j last entered it� i is in the waiting room� j is in the critical
section� and i is not enabled�

An ��exclusion algorithm is k�overtaking if there is a run in which a process is
overtaken by other processes k distinct times in a single pass through the waiting
room� As we observe above� the bounded solutions of ��� �� �� are n��overtaking�
In these algorithms� there could be ��	 processes in the critical section� a process

i may leave the doorway� and if run alone� enter the critical section� But while i is
still in the waiting room� another process could pass through the doorway and enter
the critical section� Then i cannot enter the critical section� no matter how many
steps it takes� until at least one of the other processes leaves the critical section�
Despite the possibility of entering the critical section once it left the doorway� the
possibility of being blocked means i is not yet enabled�

�� THE SOLUTION

The algorithm presented in Figure � is a �rst�in� �rst�enabled solution to the ��
exclusion problem� It uses the procedures of Figure 	� which implement a concurrent
timestamp system�

��� Concurrent Timestamp Systems

A concurrent timestamp system provides some of the semantics of a fetch�and�
increment abstraction� such as might be used in ticket algorithms ��� �� ��� Fetch�
and�increment can be used to assign unique integer values �timestamps
 as each
process passes through the doorway� The timestamps can then be used to assign



� � Afek� Dolev� Gafni� Merritt� Shavit

priorities to processes for entry to the critical section� Unfortunately� fetch�and�
increment assumes registers of unbounded size� Even if it were de�ned using modu�
lar arithmetic� it cannot be implemented from shared memory without introducing
waiting� and so is not fault�tolerant ����
As we show� the unbounded values and strong atomic semantics of fetch�and�add

are not necessary in the context of ��exclusion� Concurrent timestamp systems are
an abstract mechanism for resolving the relative priority of competing processes�
without the drawbacks of fetch�and�add�
A concurrent timestamp system is an object shared by the processes� each of

which interacts with it via two procedures� Label and Scan� The Label procedures
return no values� and the Scan procedures return a permutation of the n process
identi�ers� Concurrent timestamp systems are de�ned formally below� Intuitively�
in the Labeli procedure� a process i updates a stored timestamp to be later than all
the timestamps previously reserved by other processes� Since the Labeli procedure
does not return a value� this timestamp is not directly visible to the calling proce�
dure� The timestamp system stores the array of timestamps� ordered according to
a serialization of the Label procedures�
The Scani procedure returns a permutation � of the processes� such that the j�th

location in the permutation is the rank of a timestamp reserved by process j among
a set of timestamps� where each was reserved for the corresponding process at some
time during the Scan� Again� the timestamps themselves are not directly observed
by the calling procedure� �As before� the calls and returns to these procedures
correspond in runs to local Begin Label� End Label� Begin Scan and End Scan��

steps� where we add the permutation � returned by the Scan as a parameter to the
End Scan step�

Figure 	 presents a natural� unbounded implementation of a concurrent times�

tamp system� UCTSS� In this implementation� the Label and Scan procedures
access an array Label �	� � � � � n�� of n integer variables� written by process i and
read by all� Each process also maintains a local array Tempi�	� � � � � n� of integer
variables� The function order �Tempi
 returns the permutation �s�� � � � � sn
� where
sk is the lexicographic rank of the pair �Tempi�k�� k
 in the set f�Tempi�	�� 	
�
� � � � �Tempi�n�� n
g� �For example� order ��	��	� 	
� �	���� �
� �	���� �
� ������ �

 is
��� �� 	� �
�


procedure Labeli�
Begin Labeli

forall j � f	� � � � � ng do Tempi�j� �� Label�j� od�
if maxj�f���ng�Tempi�j��� �� Label �i� then Label �i� �� y� where y � x�

End Labeli�

procedure Scani�
Begin Scani

forall j � f	� � � � � ng do Tempi�j� �� Label�j� od�
End Scani�order �Tempi���

Fig� 	� UCTSS� an unbounded concurrent timestamp system implementation�



First�In� First�Enabled ��Exclusion � �

The notation forall j � f	� � � � � ng do Sj od means that the n distinct Sj
statements may be executed in any order�

Definition ���� Any concurrent timestamp system is a collection of Labeli
and Scani procedures and data structures satisfying the following two properties�

Safety�� Each �nite sequence of Begin Label� End Label� Begin Scan� and
End Scan steps that can occur when these procedures are called �provided only that
the Labeli and Scani procedures are called sequentially by each process i� are also
sequences that can occur when the procedures in Figure 	� are called in their place�
regardless of the number of faults�

Liveness�� In any run in which a process is not faulty and begins a Label or Scan
procedure� �takes a Begin Label or Begin Scan step�� that procedure terminates
�the process takes an End Label or End Scan step��

These properties are the only properties of the Scan and Label procedures used
in the proofs below�� Implementations of concurrent timestamp systems from
bounded�size shared memory are presented in ��� �� �� �� ��� In particular� Gawlick�
Lynch and Shavit show speci�cally that the program sections and data structures
of Figure 	 can be replaced with reads and writes of bounded�size shared memory�
satisfying the safety and liveness properties above��

Next� we state several straightforward properties of the Label and Scan proce�
dures that will be used in the proofs below� In these proofs� as in the algorithm of
the next section� we assume that no single process invokes more than one of these
procedures concurrently��

Proposition ���� The following are properties of any concurrent timestamp
system� that hold in any run�

�	� If j begins a Labelj procedure after i �nishes a Labeli� then any Scan�
by any process� performed entirely after both labeling procedures� and entirely
before any subsequent labeling procedures by i� returns a permutation ordering
i before j�

�
� If a Scani procedure returns a permutation ordering i before j� then every
Scani procedure thereafter� until the start of the next Labeli procedure �if any��
returns a permutation ordering i before j�

�The I�O automaton formalism is used in ���� We have used a simpler� less general formalism
to describe the speci�cs of ��exclusion and our solution� Brie�y� our model is easily cast in the
I�O automaton formalism by mapping Begin section and End section to the input and output
actions of the CTSS automaton of ����
�Space� and time�e�cient implementations of concurrent timestamp systems are a topic of active
research� The Gawlick� Lynch and Shavit construction ���� using a snapshot primitive implemen�
tation from ��� as a subroutine� uses n registers of size O�n��� and each Scan or Label operation
requires at most O�n�� primitive read and write operations� At the time of writing� the construc�
tion of a concurrent timestamp system from single�writer�multi�reader registers with the best time
and space complexity is due to Dwork� Herlihy� Plotkin� and Waarts ���� It uses n registers of size
O�n� and requires at most O�n� reads and writes per Scan or Label operation�
�The properties in Proposition �� may also be taken� together with the liveness property of
concurrent timestamp systems� as an axiomatic speci�cation of the Label and Scan procedures
used in the ��exclusion algorithm�



	 � Afek� Dolev� Gafni� Merritt� Shavit

��� Suppose a Labeli procedure Li entirely precedes a Labelj procedure� which
in turn precedes a Scanj procedure Sj � where the Scanj returned a permutation
ordering j before k� If i performs a new Scani procedure that begins after Sj
ends� without having executed a new Labeli procedure since Li� then the Scani
procedure returns a permutation ordering i before k�

��� Suppose there is a set C of processes such that each i � C executes a Labeli
procedure� Li� and �after some number of Scani procedures� a Scani procedure�
Si� but that there are no Labeli procedures after Li� �And the other processes
are not constrained�� Let Labelj be the Label operation which begins last�
among the �nal Labels by processes in C� and let C� � C contain those pro�
cesses in C whose �nal Label operations end after the beginning of Labelj �
�Hence C� contains at least process j�� Then there is a process i � C� such that
the last Scani procedure returns a permutation in which i is ordered after the
other processes in C�

��� Suppose some set C of processes are such that each i � C executes a Labeli
procedure� Li� possibly followed by Scani procedures� but with no later Labeli
procedures after Li� �And the other processes are not constrained�� Let Lj

be the Label procedure by a process in C that ends last� If each process i � C
executes a Scani procedure� Si� that begins after Lj ends� then there is a process
i � C such that xi returns a permutation in which i is ordered before the other
processes in C�

The reader can verify that these are properties of runs of the UCTSS in Fig�
ure 	 �Proofs also appear in ����
 By the safety property� any �nite sequence of
Begin Label� End Label� Begin Scan and End Scan events of a concurrent times�
tamp system �providing each process runs operations sequentially
 is also a sequence
from a run of UCTSS� Hence� these properties hold for runs of arbitrary concurrent
timestamp systems�

��� The ��Exclusion Algorithm

The code of process i is described in Figure ��
When entering the doorway� a process �rst raises a �ag by setting xi to true� then

reserves a timestamp by executing the Label procedure� and �nally records in Si
all the processes whose �ags are set �i�e�� that were not in the remainder
 before i
left the doorway� In the waiting room process i waits until the number of processes
with an earlier timestamp� and which are neither in the remainder now and that
were not in the remainder when i went through the doorway� is less than �� Process
i in the waiting room need not consider the timestamp of processes that were in
the remainder when i left the doorway� since such processes might temporarily have
an earlier timestamp� but by the time they next pass through the doorway� their
timestamp will be later than that of i� After leaving the critical section� process i
clears the �ag xi� signaling that it went back to the remainder� Finally� it performs
an additional Labeli procedure� so that when it resets xi in its next pass through
the doorway� the timestamp it holds will not be too early�

	� CORRECTNESS PROOF

Lemma ���� The algorithm in Figure 
� satis�es the ��exclusion property�



First�In� First�Enabled ��Exclusion � 


x�� � � � � xn� shared variables
y�� � � � � yn � Si � �Li�Testi� local variables
repeat forever

�� remainder sectioni

	� xi �� true� �� Begin doorwayi ��
�� Labeli�
� Si �� ��
�� forall j � f	� � � � ng do

if xj � true then Si �� Si � fjg od� ��End doorwayi ��

�� repeat �� Begin waiting roomi ��
�� forall j � Si do yj �� xj od�
�� �Li �� Scani �
�� Testi �� fj � Sij yj � true � �Li�j� � �Li�i�g �
�� until �jTestij � l�� �� End waiting roomi ��

	�� critical sectioni

		� xi �� false� �� Begin exiti ��
	�� Labeli� �� End exiti ��
end repeat

Fig� �� A First�In� First�Enabled ��exclusion algorithm� Code for process i�

Proof� By way of contradiction� assume that in a run ending in state s there is a
set C of more than � processes� each in the critical section� In this run� each process
in C executed a Label and then at least one Scan procedure� and no later Label
procedures� By part �� of Proposition ��� there is a process i � C so that the
last Scani execution returned a permutation that ordered at least jCj � 	 processes
before i and no Labelj for j � C comes entirely after the last Labeli� That is�
the last Labelj procedure �line �
 of each of the other processes j in C could not
have started after i �nished its Labeli procedure in line �� Hence� j �nished its last
execution of line 	 before i last started line �� and when i executed line � it must
have seen xj � true� Finally� the value of xj is true between j�s leaving line 	 and
j beginning line 		� after the critical section� Hence� every element of C other than
i will be included in the set Testi computed by i in line �� following its last Scani�
But jCj�	 � l� contradicting the assumption that i entered the critical section�
The next lemmaargues that in consecutive executions of the until loop by process

i� the size of Testi is monotonically non�increasing�

Lemma ���� Let T k and T k�� be the values of Testi computed in two successive
iterations of the waiting room loop by process i �without an intervening critical
section or doorway�� If j � T k��� then j � T k�

Proof� Assume that j � T k��� Then j � Si for the set Si computed in the most
recent preceding execution of the doorway� and in the k � 	�st pass through the
waiting room� the value of xj is true and �Li�j� � �Li�i�� Suppose that j 	� T k� Then
in this k�th pass through the loop� i observed either xj as false or �Li�i� � �Li�j��
First consider the case that xj was observed to be false� Then process i read xj

at least three times� once true �in the most recent preceding execution of line ��



�� � Afek� Dolev� Gafni� Merritt� Shavit

since j � Si
� then false and then �during the k� 	�st pass
 true again� In between
these three observations of xj� i did not perform any Labeli procedures� Then a
write by j of xj �� false must have occurred between the �rst two reads of xj by
i� and another write by j of xj �� true must have occurred between the last two
reads by i� But between these two writes by j a Labelj procedure by j occurred�
that is� j must have �nished a Label procedure before i read xj � true the �nal
time� and this Labelj started after i read xj �� true� hence after i�s last Labeli
procedure� �See Figure ��
 By the �rst property in Proposition ��� �Li�i� � �Li�j� in
the subsequent Scani�s� a contradiction�

Process i Process j
�� Labeli
�� xj � true

		� xj �� false

�� read for T k �� �� xj � false 	�� Labelj

	� xj �� true

�� read for T k�� �� �� xj � true

�� �Li�i� � �Li�j� �� �� Scani

Fig� � Sequence used in proof of Lemma ����

It follows that in the k�th pass through the loop� i observed xj as true� Since
j 	� T k� i must have observed �Li�i� � �Li�j�� But since no Label operations are
performed in the waiting room loop� part �� of Proposition �� implies that i
observes the same relation� �Li�i� � �Li�j�� in the k � 	�st pass through the loop� a
contradiction�

Lemma ���� The algorithm in Figure 
 satis�es the ��lockout avoidance property�

Proof� Assume that in some in�nite run there exists a set� Stuck� of k � 	 non�
faulty processes that leave the remainder region and never re�enter it� Since these
processes are non�faulty� they take an in�nite number of steps outside the critical
section� By the liveness property of concurrent timestamp systems� only a �nite
number of steps are ever taken inside any single Scan or Label procedure� Hence�
the processes in Stuck fail the waiting room loop test in�nitely many times� Then
each process i in Stuck executed a �nal Labeli procedure before entering the loop�
and then executed in�nitely many Scan procedures� but no later Label procedures�
�And the other processes are not constrained�
 By part �� of Proposition ���
there is a process i � Stuck such that a Scani procedure returns a permutation
in which i is ordered before every other process j in Stuck� Moreover� part �� of
Proposition �� implies every subsequent Scani procedure orders i before the other
processes in Stuck� Hence� the processes in Stuck eventually do not contribute to
the failure of i�s loop test�
By part �� of Proposition ��� if any process j runs a Labelj procedure that

strictly follows i�s last Labeli procedure� then every Scani that in turn follows
this Labelj procedure will observe �Li�i� � �Li�j� and hence thereafter j will not
contribute to the failure of i�s loop tests� Call the set of such j the LateLabels�



First�In� First�Enabled ��Exclusion � ��

Finally� denote by Remainder the set of processes j that eventually enter the
remainder section and never leave� Eventually� i will always observe xj � false�
and so the processes in Remainder will eventually stop contributing to the failure
of i�s tests�
Since i continues to fail the loop test� it follows that there are at least � processes

that are in neither Stuck� LateLabels nor Remainder� Then these processes are
faulty�they either stop taking steps or take in�nitely many steps in the critical
section�

Lemma ���� The algorithm in Figure 
 satis�es the �rst�in� �rst�enabled prop�
erty�

Proof� Let � be a �nite system run ending in a state in which process i is in
the waiting room and j is in the critical section� and suppose that i last left the
doorway before j last entered it�
If i is not enabled to enter the critical section� then there exists a run extending �

by an arbitrary number of steps of i �and perhaps of other processes
� in which i does
not enter the critical section� In particular� there is a run �� in which i executes an
unsuccessful pass through the waiting room loop that takes place completely after
j�s entrance to the critical section� This requires at most n reads and a Scani by
i� to �nish one unsuccessful pass through the loop that may be concurrent with
j�s entrance to the critical section� and then n reads and a Scani by i to �nish
the second unsuccessful pass through the waiting room loop� �By the liveness
property of concurrent timestamp systems� the Scani procedures terminate�
 The
nonexistence of such a run would imply that i is enabled�
Choose such an extension �� of � that ends with the execution of line �� Testi

�� fj � Sij yj � true � �Li�j� � �Li�i�g� in this second unsuccessful pass through the
waiting room loop� Let Ti be the value of Testi in the �nal state of ��� computed
by i in this last pass through the loop� and let Tj be the value of Testj in the �nal
state of �� �Computed by j in its last pass� in �� through the waiting room loop
before entering the critical section�
 Since j passed the test and i did not� it follows
that there is a process k in Ti that is not in Tj �
Following arguments similar to the proof of Lemma ��� we claim that if k is in

Testi� xk must have the value true continuously between the last execution of line
� by i �which read xk � true
 and the last read of xk in line � by i �which also read
xk � true
� Suppose this is not the case� Then as Figure � illustrates� a Labelk
occurs strictly after the last Labeli� and by part �� of Proposition ��� �Li�i� � �Li�k�
after the subsequent Scani�s� contradicting the fact that k is in Ti�
Now we consider the relative order of events at Process i and j� �See Figure ��


By assumption� i last left the doorway before j last entered it� Hence� the last
execution of line � by i precedes the last execution of line 	 by j� Moreover� by the
construction of ��� j enters the critical section before the last read of xk in line �
by i� Therefore� the last read by j of xk also takes place in the interval between
the last execution of line � by i and the last read of xk in line � by i� Hence� this
read by j of xk returns true� and k is in the set Sj in the �nal state of �� and
in Si in the �nal state of ��� Since k is not in Tj� it must be that �Lj�j� � �Lj �k��
Then by part �� of Proposition ��� �Li�i� � �Li�k�� which would exclude k from Ti�
a contradiction�
�If the Scan and Label procedures are guaranteed to terminate in a bounded



�� � Afek� Dolev� Gafni� Merritt� Shavit

Process i Process k
�� Labeli

�� read for Si �� �� xk � true

		� xk �� false

	�� Labelk
	� xk �� true

�� read for Ti �� �� xk � true

�� �Li�i� � �Li�k� �� �� Scani

Fig� �� Sequence relating processes i and k� used in proof of Lemma ����

Process i Process j
	� xi �� true

�� Labeli

�� xk � true between here��� �� �� xk � true

	� xj �� true

�� Labelj
�� xk � true �� Read for Sj� ��
�� xk � true �� Read for Tj� ��
�� Scanj �� �Lj�k� � �Lj�j� ��

	�� Begin critical sectionj
�� ���and here� �Read for Ti�� �� �� xk � true

�� �Li�k� � �Li�i� �� �� Scani

Fig� �� Sequence relating processes i and j� used in proof of Lemma ����

number of steps� as in UCTSS and the cited bounded implementations� the con�
struction of �� in Lemma �� requires extending � by only a bounded number of
steps of i� Hence� the algorithm actually satis�es the stronger� bounded �rst�in�
�rst�enabled condition de�ned in Section ���



� OPEN PROBLEMS

Other generalizations of the mutual exclusion problem that allow several processes
to execute separate critical sections concurrently are the Dining and Drinking
Philosophers problems ��� �� ��� These problems involve multiple resources� each of
which must be accessed in mutual exclusion� Thus� no two processes that share a
common resource �represented by an edge in a process graph
 enter the correspond�
ing critical section at the same time� Each process must accumulate a su�cient set
of resources in order to make progress� Given a primitive for accessing any single
resource in mutual exclusion� the task is to coordinate processes so that the system
does not deadlock� and each process eventually acquires all necessary resources�
Since these problems are built on mutual exclusion primitives �as opposed to ��
exclusion
� they typically cannot withstand even a single process fault� It would
be interesting to explore a generalization which combines multiple resources each
accessed in ��exclusion�
Our formulation of the �rst�in� �rst�enabled condition may seem unsatisfactory�

in that it conditions the early process�s enabling on the later process�s actual entry
into the critical section� rather than its enabling� The following stronger de�nition



First�In� First�Enabled ��Exclusion � ��

might seem more natural�

Definition ���� First�In� First�Enabled� If i last left the doorway before j last
entered it� i and j are in the waiting room and j is enabled� then i is enabled�

Using the unbounded concurrent timestamp implementationUCTSS� our algorithm
satis�es this property� However� we do not know of proof rules which allow this
property to be demonstrated for arbitrary �speci�cally� bounded
 implementations
of the timestamp system� For example� a process i may become enabled passively
when some other process j takes a step inside of the implementation of a Labelj or
Scanj procedure� In the corresponding run of UCTSS� i may not yet be enabled�
or may already be enabled�the safety and liveness properties we assume do not
relate the points at which processes are enabled�
Being enabled is a kind of branching property�whether it is true in a state

depends on the possible futures of that state� Implementation relations based on
language inclusion� such as we use to specify concurrent timestamp systems� do not
preserve such properties� �The implementation may restrict nondeterminism� for
example� so that processes are enabled in an implementation� but not in the corre�
sponding state of the speci�cation�
 We need a speci�cation theory that strengthens
the implementation relation to include constraints on enabling� while maintaining
an appropriate degree of abstraction �from particular implementations
�
Self�stabilizing algorithms have the interesting property of converging to correct

global states� no matter how they are initialized ���� It would also be interesting
to investigate self�stabilizing solutions to the ��exclusion problem� and indeed� self�
stabilizing variants of concurrent timestamp systems�

ACKNOWLEDGMENTS

The authors would like to thank the area editor and the referees� whose extensive�
detailed comments and close reading of the paper led to many improvements�

REFERENCES

	� Y� Afek� H� Attiya� D� Dolev� E� Gafni� M� Merritt� and N� Shavit� Atomic snapshots of
shared memory� In Proc� �th Annual ACM Symp� on Principles of Distributed Computing�
pages 	�	� August 	���� Also Journal of the ACM� to appear�

�� H� Attiya� A� Bar�Noy� D� Dolev� D� Koller� D� Peleg� and R� Reischuk� Achievable cases in
an asynchronous environment� In Proc� of the ��th IEEE Annual Symp� on Foundations of

Computer Science� pages ����� October 	����

� K� Chandy and J� Misra� The drinking philosophers problem� ACM Transactions on Pro�

gramming Languages and Systems� ������������ October 	����

�� E� Dijkstra� Solution of a problem in concurrent programming control� Communications of

the ACM� ��������� September 	����

�� E� Dijkstra� Hierarchical ordering of sequential processes� Acta Informatica� 	�		��	�� 	��	�

�� E� Dijkstra� Self�stabilizing systems in spite of distributed control� Communications of the

ACM� 	��		��������� November 	����

�� D� Dolev� E� Gafni� and N� Shavit� Towards a non�atomic era� ��exclusion as a test case� In
Proc� ��th Annual ACM Symp� on the Theory of Computing� pages ������ May 	����

�� D� Dolev and N� Shavit� Bounded concurrent time�stamp systems are constructible� In
Proc� �	st Annual ACM Symp� on Theory of Computing� pages �������� May 	����

�� C� Dwork� M� Herlihy� S� Plotkin� and O� Waarts� Time lapse snapshots� In Proc� of the 	st

Israel Symp� on Theory of Computing and Systems� pages �������� May 	����



�� � Afek� Dolev� Gafni� Merritt� Shavit

	�� C� Dwork and O� Waarts� Simple and e�cient bounded concurrent timestamping or bounded
concurrent timestamp systems are comprehensible� In Proc� �
th ACM Symp� on the Theory

of Computing� pages �������� May 	����
		� M� Fischer� N� Lynch� J� Burns� and A� Borodin� Resource allocation with immunity to

limited process failure� In Proc� ��th IEEE Annual Symp� on Foundations of Computer

Science� pages ������� October 	����
	�� M� Fischer� N� Lynch� J� Burns� and A� Borodin� Distributed FIFO allocation of identical

resources using small shared space� ACM Transactions on Programming Languages and

Systems� 		�	�����		�� January 	����
	� R� Gawlick� N� Lynch� and N� Shavit� Concurrent time�stampingmade simple� In Proc� of the

	st Israel Symp� on the Theory of Computing and Systems� pages 	�	�	��� Springer�Verlag�
May 	����

	�� M� Herlihy� Wait�free synchronization� ACM Transactions on Programming Languages and

Systems� 	�	��	���	��� January 	��	�
	�� A� Israeli and M� Pinhasov� A concurrent time�stamp scheme which is linear in time and

space� In Proc� of the �th International Workshop on Distributed Algorithms� pages ���	���
November 	���� Also� Technical Report� Technion� Haifa� Israel� March 	��	�

	�� H� Katse � A new solution to the critical section problem� In Proc� 	�th Annual ACM

Symp� on the Theory of Computing� pages ������ May 	����
	�� L� Lamport� A new solution of Dijkstra�s concurrent programming problem� Communications

of the ACM� 	������������ August 	����
	�� L� Lamport� The mutual exclusion problem� Part II� Statement and solutions� Journal of the

ACM� ���������� April 	����
	�� G� Peterson� Myths about the mutual exclusion problem� Information Processing Letters�

	����		��		�� June 	��	�
��� G� Peterson� Personal communication� 	����
�	� L� Rudolph� Software Structures for Ultra�Parallel Computers� PhD thesis� New York Uni�

versity� 	��	�


