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1. INTRODUCTION

Consider a system of n asynchronous processes that communicate only by reading
from and writing to bounded atomic registers. The program of each process contains
a piece of code called the eritical section. The f-exclusion problem is to guarantee
that the system does not enter a global state in which more than £ processes are
executing their critical section [?].

To illustrate the problem, imagine that each process controls some device which
from time to time needs to enter a mode of high electrical power consumption.
The main circuit breaker can withstand at most £ devices at high electrical power
consumption. By allowing each process to switch 1ts device on only when it is in its
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critical section, an f-exclusion solution will protect the circuit breaker from burning
out.

The f-exclusion problem is an extension of mutual exclusion (where £ = 1), a
classic problem in concurrency control [?, ?]. This extension was first defined and
solved by Fischer, Lynch, Burns, and Borodin in [?]. A solution is required to
withstand the slow-down or even the crash of processes (up to £ —1 of them),
and should not require the active collaboration of processes that are not currently
requesting a resource. (Solutions to the more difficult ¢-assignment problem [?]
must assign each process in the critical section to a distinct “slot” | in addition to
maintaining the f-exclusion property.)

Lamport observed [?] that a first-come, first-served mutual exclusion algorithm
can be constructed by preceding a mutual exclusion mechanism with a fifo-queue.
The possibility of faults precludes the straightforward use of any such first-come,
first-served mechanism—the first process to enter the mechanism may fail, preventing
progress by those following [?, 7], To resolve this dilemma, the notion of process en-
abling was introduced: a process is enabled to enter the critical section if sufficiently
many steps of that process will carry 1t into the critical section, independently of
the actions of other processes. “The key distinction between enabling and actual
entry to the critical section is that a process might become enabled passively by the
action of some other process changing shared memory, whereas entry to the critical
section can take place only by a positive action of the given process,” [?, ?7]. The
first-in, first-enabled condition was introduced as the natural fairness condition for
f-exclusion, generalizing the first-come, first-served condition for mutual-exclusion.

The difficulty of solving fault-tolerant distributed problems such as f-exclusion
depends critically on the available concurrent objects from which solutions are to be
constructed. A recent paper by Herlihy [?] established the existence of a hierarchy
of concurrent objects. Herlihy’s hierarchy classifies objects according to the number
of processes among which these objects can solve the consensus problem, despite
any number of faults. An object has a consensus number & if k is the maximum
number of asynchronous fail-stop processes for which the object can be used to
solve the consensus problem. Thus objects with higher consensus number cannot be
deterministically and fault-tolerantly implemented by employing objects with lower
consensus numbers. The consensus number of atomic read/write shared memory is
one.

The only formerly known first-in, first-enabled solution to the f-exclusion prob-
lem, due to [?, ?], was defined and solved based on the use of read-modify-write prim-
itives, whose consensus number is co. Rudolph, in [?], solved the problem assuming
the weaker felch-and-add primitive, whose consensus number is two. In [?, 7, 7],
bounded solutions were presented using only atomic shared memory, but they im-
plement a weaker form of fairness, n-overtaking. (A process may be overtaken
by as many as n? later processes, before becoming enabled. First-in, first-enabled
corresponds to 0-overtaking. These notions are formally defined in Section 77.)!

Though bounded-size memory firsi-come, first-served solutions to the mutual
exclusion problem were presented in [?, 7], it was not known how to generalize these
techniques to the case of f-exclusion. It seems that in order to achieve first-in, first-

TAn appendix of [?] describes an earlier version of the algorithm of this paper, and erroneously
claims it to be first-in, first-enabled.
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enabled fairness, a process must be able to deduce the relative order among other
processes, not only between itself and others, and this must be done in the face of
concurrent state changes by the other processes. It has remained open whether any
Z_overtaking was achievable, without
resorting to the use of communication primitives of greater power than atomic

shared-memory solution having less than n

read/write shared memory. (Henceforth, atomic read/write shared memory will be
referred to as shared memory.)

This paper presents a first-in, first-enabled solution to the f-exclusion problem,
using only shared memory as communication primitives. The definitions and proofs
are all natural generalizations of mutual exclusion. The paper contains a complete
solution that uses unbounded (integer) values in the shared memory as timestamps
(similar to the ticket algorithm for mutual-exclusion [?]). In addition, we indicate
how these unbounded values can be replaced by implementations of concurrent
timestamp systems [?] from bounded shared memory, such as those presented in
[7, 7,27, ?]. (In these cases, the resulting solution requires O(n) bits of shared
Memory per process.)

2. THE ¢-EXCLUSION PROBLEM

A system consists of n processes {1,...,n}. Each processis a state machine, possibly
with an infinite number of states. We consider an interleaving model of concurrency,
where executions are modeled as sequences of steps. Each step is performed by a
single process. A process i performs either a write step, & := v, or a read step,
v := x, where v 1s a local variable and x is a shared register, or performs some
local computation, and moves to a new state, from which one or more subsequent
steps are enabled. Process states consist of the values of local variables and of the
control (program counter). A system state consists of the states of the processes
and registers. For convenience, we assume that each process can take at least one
step from any system state.

A run is an alternating sequence (finite or infinite) of states and process steps,
So, €1, 81, ..., where each event (the triple s;_1,€;, ;) corresponds to a step of a
single process in the obvious way.

We assume that each process can be described by a program that consists of two
distinguished sections: a remainder section and a critical section. FEach process
alternates between executing its remainder and its critical section as follows:

Process 1:

repeat forever
remainder _section;
critical_section;

end repeat

It is convenient to assume that these sections begin and end with local steps of
7, e.g. Begin remainder section; and End remainder section;. If ¢ has taken a
Begin remainder section; step, we say ¢ has eniered the remainder section. If ¢
has taken a End_remainder section; step, we say ¢ has left the remainder section,
and in between i is in the remainder section. Similar notation is used later for other
sections of code. Two or more processes are concurrently in particular sections of
code in a system state if they are all in the given sections in the given state.

If a process ¢ takes only finitely many steps in a given run of the system and
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stops outside the remainder section, or enters the critical section and never leaves,
we say ¢ 18 faulty in the run.

The f-exclusion problem is to guarantee that the system does not enter a global
state in which more than £ processes are in their critical section [?]. To coordinate
the entrance to the critical section, entry and exit sections are added to the program
of each process:

Process 1:

repeat forever
remainder _section;
entry;
critical_section;
exit;

end repeat

The following properties are required from any solution to the problem:

DerFINITION 2.1. f-Exclusion: No more than £ processes are ever concurrently
wn their critical sections.

DEFINITION 2.2. {-Lockout Avoidance: If fewer than £ processes are faulty, any
process that is not faulty and leaves the remainder region later re-enters it.

(Note that if £ or more processes are faulty and stay in the critical section forever,
the f-exclusion condition requires that no other process enter its critical section.
Hence, the definition of f-lockout avoidance only requires progress when less than
£ processes are faulty.)

Lockout avoidance can be strengthened in the following way. The definition of
the entry section is refined to consist of two sections, a doorway and a waiting room.
Any process must pass through the doorway in a bounded number of steps, whether
or not other processes take steps. Execution of the waiting room may consist of
an unbounded number of steps, as a process is busy waiting there for space in the
critical section to become available.

Process i:

repeat forever
remainder _section;
doorway;
waiting room;
entry;
critical_section;
exit;

end repeat

The strengthened fairness property imposes the following constraint:

DEeFINITION 2.3. First-Come, First-Served: If process i leaves the doorway before
process j enters the doorway, then ¢ enters the critical section before j.

As noted by [?], the first-come, first-served property and the ¢-lockout avoidance
property cannot be mutually satisfied when £ is greater than one. To see this,
suppose process ¢ is required by the first-come, first-served property to enter its
critical section before process j, but process ¢ fails. Since process failures are not
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detectable, process j must wait forever, even if there are no other processes in their
critical sections. This violates the f-lockout avoidance property when [ > 1. Thus,
for the general f-exclusion problem, the first-come, first-served condition must be
weakened. Rather than requiring the earliest process to be serviced first, we require
instead that it be enabled first.

DEFINITION 2.4. Process i is enabled (to enter the critical section) in a system
state s, if in any run that starts in s and wn which i takes an infinite number of
steps (regardless of the number of faults), i enters the critical section.

Note that an enabled process remains enabled until it enters its critical section.
Thus, lockout avoidance can be strengthened to the following property:

DEeFINITION 2.5. First-In, First-Enabled: If i last left the doorway before j last
entered it, i is in the waiting room, and j is in the critical section, then i is enabled.

Note that for £ = 1, where f-exclusion reduces to mutual exclusion, the first-in,
first-enabled property implies the first-come, first-served property.

The algorithm of Section 77 actually satisfies a stronger, bounded first-in, first-
enabled condition: for any finite run «, if ¢ last left the doorway before j last entered
it, ¢ is in the waiting room, and j is in the critical section, then there exists £ > 0
such that in any extension of « in which ¢ takes & additional steps, and regardless
of the number of faults, ¢ enters its critical section.

The first-in, first-enabled fairness condition can be weakened by allowing some
bounded number of processes to pass a process in the waiting room:

DEFINITION 2.6. Process i is overtaken by process j in a finite run if ¢ last left
the doorway before j last entered it, i 1s in the waiting room, j is in the critical
section, and i is not enabled.

An f-exclusion algorithm 1s k-overtaking if there is a run in which a process is
overtaken by other processes k distinct times in a single pass through the waiting
room. As we observe above, the bounded solutions of [?, 7, 7] are nZ-overtaking.

In these algorithms, there could be £—1 processes in the critical section, a process
¢ may leave the doorway, and if run alone, enter the critical section. But while 7 1s
still in the waiting room, another process could pass through the doorway and enter
the critical section. Then 7 cannot enter the critical section, no matter how many
steps 1t takes, until at least one of the other processes leaves the critical section.
Despite the possibility of entering the critical section once it left the doorway, the
possibility of being blocked means 7 is not yet enabled.

3. THE SOLUTION

The algorithm presented in Figure 2 is a first-in, first-enabled solution to the ¢-
exclusion problem. It uses the procedures of Figure 1, which implement a concurrent
timestamp system.

3.1 Concurrent Timestamp Systems

A concurrent timestamp system provides some of the semantics of a fetch-and-
increment abstraction, such as might be used in ticket algorithms [?, 7, ?]. Fetch-
and-increment can be used to assign unique integer values (timestamps) as each
process passes through the doorway. The timestamps can then be used to assign
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priorities to processes for entry to the critical section. Unfortunately, fetch-and-
increment assumes registers of unbounded size. Even if it were defined using modu-
lar arithmetic, it cannot be implemented from shared memory without introducing
waiting, and so is not fault-tolerant [?].

As we show, the unbounded values and strong atomic semantics of fetch-and-add
are not necessary in the context of f-exclusion. Concurrent timestamp systems are
an abstract mechanism for resolving the relative priority of competing processes,
without the drawbacks of fetch-and-add.

A concurrent timestamp system is an object shared by the processes, each of
which interacts with 1t via two procedures, Label and Scan. The Label procedures
return no values, and the Scan procedures return a permutation of the n process
identifiers. Concurrent timestamp systems are defined formally below. Intuitively,
in the Label; procedure, a process ¢ updates a stored timestamp to be later than all
the timestamps previously reserved by other processes. Since the Label; procedure
does not return a value, this timestamp is not directly visible to the calling proce-
dure. The timestamp system stores the array of timestamps, ordered according to
a serialization of the Label procedures.

The Scan; procedure returns a permutation # of the processes, such that the j’th
location in the permutation is the rank of a timestamp reserved by process j among
a set of timestamps, where each was reserved for the corresponding process at some
time during the Scan. Again, the timestamps themselves are not directly observed
by the calling procedure. (As before, the calls and returns to these procedures
correspond in runs to local Begin Label, End Label, Begin Scan and End_Scan(w)
steps, where we add the permutation # returned by the Scan as a parameter to the
End_Scan step.)

Figure 1 presents a natural, unbounded implementation of a concurrent times-
tamp system, UCTSS. In this implementation, the Label and Scan procedures

access an array Label[l,... n], of n integer variables, written by process i and
read by all. Each process also maintains a local array Temp;[l, ..., n] of integer
variables. The function order(Temp,) returns the permutation (s1,...,sy), where

s is the lexicographic rank of the pair (Temp,;[k], k) in the set {(Temp;[1],1),
.oy, (Temp;[n], n)}. (For example, order((1001, 1), (1500, 2), (1500, 3), (2564, 4)) is
(2,3,1,4))

procedure Label;;
Begin Label,
forall j € {1,...,n} do Temp;[j] := Label[j] od;
if maxjeqy pny (Temp;[s])) # Labelld] then Label[i] := y, where y > z;
End Label;;

procedure Scan;;
Begin_Scan;
forall j € {1,...,n} do Temp;[j] := Label[j] od;
End_Scan;(order (Temp;));

Fig. 1. UCTSS: an unbounded concurrent timestamp system implementation.
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The notation forall j € {1,...,n} do S; od means that the n distinct S;
statements may be executed in any order.

DEeFINITION 3.1. Any concurrent timestamp system is a collection of Label;
and Scan; procedures and data structures satisfying the following two properties:

Safety:. Fach finile sequence of Begin Label, End Label, Begin Scan, and
End_Scan steps that can occur when these procedures are called (provided only that
the Label; and Scan; procedures are called sequentially by each process i) are also
sequences that can occur when the procedures in Figure 1, are called in their place,
regardless of the number of faults.

Liveness:. In any run in which a process is not faulty and begins a Label or Scan
procedure, (takes a Begin Label or Begin Scan step), that procedure terminates
(the process takes an End Label or End_Scan step).

These properties are the only properties of the Scan and Label procedures used
in the proofs below.? Implementations of concurrent timestamp systems from
bounded-size shared memory are presented in [?, 7, 7, 7 ?]. In particular, Gawlick,
Lynch and Shavit show specifically that the program sections and data structures
of Figure 1 can be replaced with reads and writes of bounded-size shared memory,
satisfying the safety and liveness properties above.?

Next, we state several straightforward properties of the Label and Scan proce-
dures that will be used in the proofs below. In these proofs, as in the algorithm of
the next section, we assume that no single process invokes more than one of these
procedures concurrently.?

ProrosiTiON 3.1. The following are properties of any concurrent timestamp
system, that hold in any run:

(1) If j begins a Label; procedure after i finishes a Label;, then any Scan,
by any process, performed entirely after both labeling procedures, and entirely
before any subsequent labeling procedures by i, returns a permutation ordering
1 before j.

(2) If a Scan; procedure returns a permutation ordering i before j, then every
Scan; procedure thereafter, until the start of the next Label; procedure (if any),
returns ¢ permutation ordering i before j.

2The 1/O automaton formalism is used in [?]. We have used a simpler, less general formalism
to describe the specifics of ¢-exclusion and our solution. Briefly, our model is easily cast in the
I/O automaton formalism by mapping Begin_section and End_section to the input and output
actions of the C'TSS automaton of [7].

3Space- and time-efficient implementations of concurrent timestamp systems are a topic of active
research. The Gawlick, Lynch and Shavit construction [?], using a snapshot primitive implemen-
tation from [?] as a subroutine, uses n registers of size O(n2)7 and each Scan or Label operation
requires at most O(n2) primitive read and write operations. At the time of writing, the construc-
tion of a concurrent timestamp system from single-writer/multi-reader registers with the best time
and space complexity is due to Dwork, Herlihy, Plotkin, and Waarts [?]. It uses n registers of size
O(n) and requires at most O(n) reads and writes per Scan or Label operation.

4The properties in Proposition 77 may also be taken, together with the liveness property of
concurrent timestamp systems, as an axiomatic specification of the Label and Scan procedures
used in the f-exclusion algorithm.
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(3) Suppose a Label; procedure L; entirely precedes a Label; procedure, which
in turn precedes a Scan; procedure S;, where the Scan; returned a permutation
ordering j before k. If ¢ performs a new Scan; procedure that begins after S;
ends, without having executed a new Label; procedure since L;, then the Scan;
procedure returns a permutation ordering i before k.

(4) Suppose there is a set C of processes such that each i € C' executes a Label;
procedure, L;, and (after some number of Scan; procedures) a Scan; procedure,
Si, but that there are no Label; procedures after L;. (And the other processes
are not constrained.) Let Label; be the Label operation which begins last,
among the final Labels by processes in C, and let C' C C' contain those pro-
cesses in C whose final Label operations end after the beginning of Label;.
(Hence C' contains at least process j.) Then there is a process i € C' such that
the last Scan; procedure returns a permutation tn which i is ordered after the
other processes in C'.

(5) Suppose some set C' of processes are such that each i € C executes a Label;
procedure, L;, possibly followed by Scan; procedures, but with no later Label;
procedures after L;. (And the other processes are not constrained.) Let L;
be the Label procedure by a process in C' that ends last. If each process i € C
erecutes a Scan; procedure, S;, that begins after L; ends, then there is a process
t € C' such that §; returns a permutation in which ¢ is ordered before the other
processes in C'.

The reader can verify that these are properties of runs of the UCTSS in Fig-
ure 1 (Proofs also appear in [?].) By the safety property, any finite sequence of
Begin Label, End Label, Begin Scan and End_Scan events of a concurrent times-
tamp system (providing each process runs operations sequentially) is also a sequence
from a run of UCTSS. Hence, these properties hold for runs of arbitrary concurrent
timestamp systems.

3.2 The ¢-Exclusion Algorithm

The code of process 7 1s described in Figure 2.

When entering the doorway, a process first raises a flag by setting «; to true, then
reserves a timestamp by executing the Label procedure, and finally records in S;
all the processes whose flags are set (i.e., that were not in the remainder) before ¢
left the doorway. In the waiting room process ¢ waits until the number of processes
with an earlier timestamp, and which are neither in the remainder now and that
were not in the remainder when ¢ went through the doorway, is less than £. Process
¢ in the waiting room need not consider the timestamp of processes that were in
the remainder when ¢ left the doorway, since such processes might temporarily have
an earlier timestamp, but by the time they next pass through the doorway, their
timestamp will be later than that of ¢. After leaving the critical section, process i
clears the flag z;, signaling that it went back to the remainder. Finally, it performs
an additional Label; procedure, so that when it resets ; in its next pass through
the doorway, the timestamp it holds will not be too early.

4. CORRECTNESS PROOF
LEMMA 4.1. The algorithm wn Figure 2, satisfies the {-exclusion property.
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T1yeee,Tnt shared variables
Yl eorrYn, S, Li, Test;: local variables
repeat forever
0. remainder _section;
1. i = true; /* Begin.doorway; */
2. Label;;
3. S; = 0;
4. forall j € {1,...n} do
if z; = true then S; := S; U{j} od; /*End_doorway; */
5. repeat /* Beginwaiting room; */
6. forall j € S; do y; := z; od;
7. L; := Scan, ;
8. Test; := {7 € Si| y; = true A L;[5] < Li [} ;
9. until (| Test;| < 1); /* End_waiting.room; */
10. critical_section;
11.  x; = false; /* Begin_exit; */
12.  Label;; /* End_exit; */
end repeat
Fig. 2. A First-In, First-Enabled f-exclusion algorithm: Code for process .

Proof: By way of contradiction, assume that in a run ending in state s there is a
set C' of more than £ processes, each in the critical section. In this run, each process
in C' executed a Label and then at least one Scan procedure, and no later Label
procedures. By part 7?7 of Proposition 77, there is a process ¢ € C' so that the
last Scan; execution returned a permutation that ordered at least |C'| — 1 processes
before ¢ and no Label; for j € C comes entirely after the last Label;. That is,
the last Label; procedure (line 2) of each of the other processes j in C' could not
have started after ¢ finished its Label; procedure in line 2. Hence, j finished its last
execution of line 1 before ¢ last started line 4, and when ¢ executed line 4 it must
have seen z; = true. Finally, the value of z; is true between j’s leaving line 1 and
j beginning line 11, after the critical section. Hence, every element of C' other than
¢ will be included in the set Test; computed by ¢ in line 8, following its last Scan;.
But |C]—1> [, contradicting the assumption that ¢ entered the critical section. O

The next lemma argues that in consecutive executions of the until loop by process
t, the size of Test; 1s monotonically non-increasing.

LEMMA 4.2. Let T* and T**" be the values of Test; computed in two successive
iterations of the waiting room loop by process i (without an intervening critical
section or doorway). If j € T**L, then j € T*.

Proof: Assume that j € 7' Then j € S; for the set S; computed in the most
recent preceding execution of the doorway, and in the k + 1’st pass through the
waiting room, the value of z; is true and L;[j] < L;[i]. Suppose that j ¢ T*. Then
in this k’th pass through the loop, 7 observed either z; as false or Li[i] < Li[4].
First consider the case that z; was observed to be false. Then process ¢ read z;
at least three times; once true (in the most recent preceding execution of line 4,
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since j € S;), then false and then (during the k + 1’st pass) true again. In between
these three observations of z;, ¢ did not perform any Label; procedures. Then a
write by j of z; := false must have occurred between the first two reads of z; by
¢, and another write by j of ; := frue must have occurred between the last two
reads by 7. But between these two writes by j a Label; procedure by j occurred;
that is, j must have finished a Label procedure before ¢ read z; = true the final
time, and this Label; started after ¢ read x; := true, hence after ¢’s last Label;
procedure. (See Figure 3.) By the first property in Proposition ?7, L;[{] < L;[j] in
the subsequent Scan;’s, a contradiction.

Process ¢ Process j
2. Label;
4. T = true
11, zj := false
/* read for T* */ 6. x; = false 12. Label;
1. my := true
/* read for TF+1 */ 6. x; = true
/* Lild] < Li[5] */ 7. Scan;
Fig. 3. Sequence used in proof of Lemma 4.2.

It follows that in the k’th pass through the loop, ¢ observed z; as true. Since
j & T*, i must have observed L;[i] < L;[j]. But since no Label operations are
performed in the waiting room loop, part 7?7 of Proposition 7?7 implies that ¢
observes the same relation, L;[i] < L;[j], in the k 4+ 1’st pass through the loop, a

contradiction. [

LEMMA 4.3. The algorithm in Figure 2 satisfies the £-lockout avoidance property.

Proof: Assume that in some infinite run there exists a set, Stuck, of £ > 1 non-
faulty processes that leave the remainder region and never re-enter it. Since these
processes are non-faulty, they take an infinite number of steps outside the critical
section. By the liveness property of concurrent timestamp systems, only a finite
number of steps are ever taken inside any single Scan or Label procedure. Hence,
the processes in Stuck fail the waiting room loop test infinitely many times. Then
each process ¢ in Stuck executed a final Label; procedure before entering the loop,
and then executed infinitely many Scan procedures, but no later Label procedures.
(And the other processes are not constrained.) By part ?? of Proposition 77,
there is a process ¢ € Stuck such that a Scan; procedure returns a permutation
in which ¢ is ordered before every other process j in Stuck. Moreover, part 77 of
Proposition 77 implies every subsequent Scan; procedure orders ¢ before the other
processes in Stuck. Hence, the processes in Stuck eventually do not contribute to
the failure of ¢’s loop test.

By part 77 of Proposition 77, if any process j runs a Label; procedure that
strictly follows ¢’s last Label; procedure, then every Scan; that in turn follows
this Label; procedure will observe L;[i] < L;[j] and hence thereafter j will not
contribute to the failure of ¢’s loop tests. Call the set of such j the LateLabels.
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Finally, denote by Remainder the set of processes j that eventually enter the
remainder section and never leave. Eventually, ¢+ will always observe z; = false,
and so the processes in Remainder will eventually stop contributing to the failure
of ¢’s tests.

Since ¢ continues to fail the loop test, it follows that there are at least £ processes
that are in neither Stuck, LateLabels nor Remainder. Then these processes are
faulty—they either stop taking steps or take infinitely many steps in the critical
section. [

LEMMA 4.4. The algorithm in Figure 2 satisfies the first-in, first-enabled prop-
erty.

Proof: Let a be a finite system run ending in a state in which process ¢ 1s in
the waiting room and j is in the critical section, and suppose that i last left the
doorway before j last entered it.

If ¢ 1s not enabled to enter the critical section, then there exists a run extending «
by an arbitrary number of steps of i (and perhaps of other processes), in which ¢ does
not enter the critical section. In particular, there is a run o’ in which ¢ executes an
unsuccessful pass through the waiting room loop that takes place completely after
j’s entrance to the critical section. This requires at most n reads and a Scan; by
¢, to finish one unsuccessful pass through the loop that may be concurrent with
j’s entrance to the critical section, and then n reads and a Scan; by ¢ to finish
the second unsuccessful pass through the waiting room loop. (By the liveness
property of concurrent timestamp systems, the Scan; procedures terminate.) The
nonexistence of such a run would imply that ¢ is enabled.

Choose such an extension o’ of « that ends with the execution of line 8, Test;
= {j € Si| y; = true A L;[j] < L;[d]}, in this second unsuccessful pass through the
waiting room loop. Let 7; be the value of Test; in the final state of o/, computed
by ¢ in this last pass through the loop, and let 7; be the value of Test; in the final
state of «. (Computed by j in its last pass, in «, through the waiting room loop
before entering the critical section.) Since j passed the test and ¢ did not, it follows
that there is a process k in 7; that is not in 7.

Following arguments similar to the proof of Lemma 77, we claim that if k is in
Test;, v must have the value true continuously between the last execution of line
4 by ¢ (which read zj, = true) and the last read of j in line 6 by ¢ (which also read
zp = true). Suppose this is not the case. Then as Figure 4 illustrates, a Labely
occurs strictly after the last Label;, and by part ?7 of Proposition 72, L;[i] < L;[k]
after the subsequent Scan;’s, contradicting the fact that & is in 7;.

Now we consider the relative order of events at Process ¢ and j. (See Figure 5.)
By assumption, ¢ last left the doorway before j last entered it. Hence, the last
execution of line 4 by 7 precedes the last execution of line 1 by j. Moreover, by the
construction of o, j enters the critical section before the last read of zj in line 6
by i. Therefore, the last read by j of x; also takes place in the interval between
the last execution of line 4 by i and the last read of z; in line 6 by ¢. Hence, this
read by j of zj returns true, and k& is in the set S; in the final state of o, and
in S; in the final state of a’. Since k is not in 7}, it must be that L;[j] < L;[k].
Then by part ?? of Proposition ??, L;[i{] < L;[k], which would exclude k from T;,
a contradiction. [

(If the Scan and Label procedures are guaranteed to terminate in a bounded
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Process ¢ Process k
2. Label;

/* read for S; */ 4. mp = true

11. =z := false

12. Labelg

1. zp := true

/* read for T; */ 6. mp = true
/* Li[i] < Li[k] */ 7. Scan;

Fig. 4. Sequence relating processes ¢ and k, used in proof of Lemma 4.4.

Process ¢ Process j
1. x; = true
Label;
/* zp = true between here... ¥/ 4. zp = true
1. my := true
2. Label;
4. wp = true [* Read for S;. */
6. xp = true [* Read for T;. */
T.oscan, /% LK < Ly{] %/
10. Begincritical sectiony
/* ...and here. (Read for T;.) */ 6. zp = true
/* Li[k] < Li[d] */ 7.  Scan;

Fig. 5. Sequence relating processes ¢ and j, used in proof of Lemma 4.4.

number of steps, as in UCTSS and the cited bounded implementations, the con-
struction of o/ in Lemma ?? requires extending « by only a bounded number of
steps of 7. Hence, the algorithm actually satisfies the stronger, bounded first-in,
first-enabled condition defined in Section ?7.)

5. OPEN PROBLEMS

Other generalizations of the mutual exclusion problem that allow several processes
to execute separate critical sections concurrently are the Dining and Drinking
Philosophers problems [?, 7, ?]. These problems involve multiple resources, each of
which must be accessed in mutual exclusion. Thus, no two processes that share a
common resource (represented by an edge in a process graph) enter the correspond-
ing critical section at the same time. Each process must accumulate a sufficient set
of resources in order to make progress. Given a primitive for accessing any single
resource in mutual exclusion, the task is to coordinate processes so that the system
does not deadlock, and each process eventually acquires all necessary resources.
Since these problems are built on mutual exclusion primitives (as opposed to ¢-
exclusion), they typically cannot withstand even a single process fault. It would
be interesting to explore a generalization which combines multiple resources each
accessed in f-exclusion.

Our formulation of the first-in, first-enabled condition may seem unsatisfactory,
in that it conditions the early process’s enabling on the later process’s actual entry
into the critical section, rather than its enabling. The following stronger definition
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might seem more natural:

DEerFINITION 5.1. First-In, First-Enabled: If i last left the doorway before j last
entered it, ¢ and j are in the waiting room and j ts enabled, then i is enabled.

Using the unbounded concurrent timestamp implementation UCTSS, our algorithm
satisfies this property. However, we do not know of proof rules which allow this
property to be demonstrated for arbitrary (specifically, bounded) implementations
of the timestamp system. For example, a process i may become enabled passively
when some other process j takes a step inside of the implementation of a Label; or
Scan; procedure. In the corresponding run of UCT'SS, ¢+ may not yet be enabled,
or may already be enabled—the safety and liveness properties we assume do not
relate the points at which processes are enabled.

Being enabled is a kind of branching property—whether it is true in a state
depends on the possible futures of that state. Implementation relations based on
language inclusion, such as we use to specify concurrent timestamp systems, do not
preserve such properties. (The implementation may restrict nondeterminism, for
example, so that processes are enabled in an implementation, but not in the corre-
sponding state of the specification.) We need a specification theory that strengthens
the implementation relation to include constraints on enabling, while maintaining
an appropriate degree of abstraction (from particular implementations).

Self-stabilizing algorithms have the interesting property of converging to correct
global states, no matter how they are initialized [?]. It would also be interesting
to investigate self-stabilizing solutions to the f-exclusion problem, and indeed, self-
stabilizing variants of concurrent timestamp systems.
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