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Abstract

The time complexity of wait-free algorithms in “normal” executions, where no failures occur
and processes operate at approximately the same speed, is considered. A lower bound of log n
on the time complexity of any wait-free algorithm that achieves approzimate agreement among
n processes is proved. In contrast, there exists a non-wait-free algorithm that solves this
problem in constant time. This implies an Q(logn) time separation between the wait-free and
non-wait-free computation models. On the positive side, we present an O(logn) time wait-free
approximate agreement algorithm; the complexity of this algorithm is within a small constant
of the lower bound.

Keywords: Asynchronous distributed systems, shared memory, wait-free algorithms, atomic
read /write registers, lower bounds.



1 Introduction

In shared-memory distributed systems, some number n of independent asynchronous processes
communicate by reading and writing to shared memory. In such a computing environment, it is
possible for processes to operate at very different speeds, e.g., because of implementation issues
such as communication and memory latency, priority-based time-sharing of processors, cache
misses and page faults. It is also possible for processes to fail entirely. Wait-free algorithms
have been proposed as a mechanism for computing in the face of variable speeds and failures: a
wait-free algorithm guarantees that each nonfaulty process terminates regardless of the speed
and failure of other processes ([24, 29]).! The design of wait-free algorithms has been a very
active area of research recently (see, e.g., [1, 2, 4, 15, 24, 29, 30, 33, 43, 44, 46, 49]).

Because wait-free algorithms guarantee that fast processes terminate without waiting for
slow processes, wait-free algorithms seem to be generally thought of as fast. However, while
it is obvious from the definition that wait-free algorithms are highly resilient to failures, we
believe that the assumption that such algorithms are fast requires more careful examination.

We study the time complexity of wait-free and non-wait-free algorithms in “normal” exe-
cutions, where no failures occur and processes operate at approximately the same speed. We
select this particular subset of the executions for making the comparison, because it is only
reasonable to compare the behavior of the algorithms in cases where both are required to
terminate. Since wait-free algorithms terminate even when some processes fail, while non-
wait-free algorithms may fail to terminate in this case, the comparison should only be made in
executions in which no process fails, i.e., in failure-free executions. The time measure we use
is the one introduced in [27, 28], and used to evaluate the time complexity of asynchronous
algorithms, in, e.g., [3, 13, 35, 36, 45]. To summarize, we are interested in measuring the time
cost imposed by the wait-free property, as measured in terms of extra computation time in the
most normal (failure-free) case.

In this paper, we address the general question by considering a specific problem—the ap-
proximate agreement problem studied, for example, in [16, 20, 21, 37]; we study this problem
in the context of a particular shared-memory primitive—single-writer multi-reader atomic reg-
isters. In this problem, each process starts with a real-valued input, and (provided it does not
fail) must eventually produce a real-valued output. The outputs must all be within a given
distance ¢ of each other, and must be included within the range of the inputs. This problem,
a weaker variant of the well-studied problem of distributed consensus (e.g., [22, 31]), is closely
related to the important problem of synchronizing local clocks in a distributed system.

Approximate agreement can be achieved very easily if waiting is allowed, by having a
designated process write its input to the shared memory; all other processes wait for this
value to be written and adopt it as their outputs. In terms of the time measure described
above, it is easy to see that the time complexity of this algorithm is constant—independent

!Wait-free is the shared-memory analogue of the non-blocking property for synchronous transaction systems
(cf. [11, 48]).



of n, the range of inputs and ¢. On the other hand, there is a relatively simple wait-free
algorithm for this problem, which we describe in Section 3, and which is based on successive
averaging of intermediate values. The time complexity of this algorithm depends linearly on
n, and logarithmically on the size of the range of input values and on 1/¢. A natural question
to ask is whether the time complexity of this algorithm is optimal for wait-free approximate
agreement algorithms.

Our first major result is an algorithm for the special case where n = 2, whose time com-
plexity is constant, i.e., it does not depend on the range of inputs or on ¢ (Section 5). The
algorithm uses a novel method of overcoming the uncertainty that is inherent in an asyn-
chronous environment, without resorting to synchronization points (cf. [23]) or other waiting
mechanisms (cf. [13]): this method involves ensuring that the two processes base their decisions
on information that is approximately, but not exactly, the same.

Next, using a powerful technique of integrating wait-free (but slow) and non-wait-free (but
fast) algorithms, together with an O(log n) wait-free input collection function, we generalize the
key ideas of the 2-process algorithm to obtain our second major result: a wait-free algorithm
for approximate agreement whose time complexity is O(logn) (Section 6). Thus, the time
complexity of this algorithm does not depend on either the size of the range of input values or
on ¢, but it still depends on n, the number of processes.

At this point, it is natural to ask whether the logarithmic dependence on n is inherent
for wait-free approximate agreement algorithms, or whether, on the other hand, there is a
constant-time wait-free algorithm (independent of n). Our third major result shows that the
logn dependency is inherent: any wait-free algorithm for approximate agreement has time
complexity at least logn (Section 7). This implies an Q(logn) time separation between the
non-wait-free and wait-free computation models.

We note that the constant-time 2-process algorithm behaves rather badly if one of the
processes fails. The work performed in an execution of an algorithm is the total number of
atomic operations performed in that execution by all processes before they decide. We present a
tradeoff between the time complexity of and the work performed by any wait-free approximate
agreement algorithm. We show that for any wait-free approximate agreement algorithm for 2
processes, there exists an execution in which the work exhibits a nontrivial dependency on ¢
and the range of inputs.

In practice, the design of distributed systems is often geared towards optimizing the time
complexity in “normal executions,” i.e., executions where no failures occur and processes run at
approximately the same pace, while building in safety provisions to protect against failures (cf.
[32]). Our results indicate that, in the asynchronous shared-memory setting, there are problems
for which building in such safety provisions must result in performance degradation in the
normal executions. This situation contrasts with that occurring, for example, in synchronous
systems that solve the distributed consensus problem. In that setting, there are early-stopping
algorithms (e.g., [17, 19, 41]) that tolerate failures, yet still terminate in constant time when

2The lower bound is attained in an execution where processes run synchronously and no process fails.



no failures occur. The exact cost imposed by fault-tolerance on normal executions has been
studied, for example, in [10, 19, 41]. For synchronous message-passing systems, it has been
shown that non-blocking protocols take twice as much time, in failure-free executions, as
blocking protocols ([11]).

Recent work has addressed the issue of adapting the usual synchronous shared-memory
PRAM model to better reflect implementation issues, by reducing synchrony ([13, 14, 23, 38,
42]) or by requiring fault-tolerance ([25, 26]). To the best of our knowledge, the impact of
the combination of asynchrony and fault-tolerance (as exemplified by the wait-free model) on
the time complexity of shared-memory algorithms has not previously been studied. In [39],
Martel, Subramonian and Park present efficient fault-tolerant asynchronous PRAM algorithms.
Their algorithms optimize work rather than time and employ randomization. Another major
difference is that they assume that inputs are stored in the shared memory, so that every
process can access the input of every other process.

The rest of the paper is organized as follows. In Section 2 we present formal definitions of the
systems considered in this paper and introduce the time measure. The approximate agreement
problem is defined in Section 3, where we also present a fast non-wait-free algorithm and a
slow wait-free algorithm for reaching approximate agreement. Section 4 introduces a “bias”
function on which the algorithms in the following sections are based. Proofs of the various
properties of this function are, to ease the presentation, deferred to Section 9. A constant time
wait-free algorithm for approximate agreement between two processes is presented and proven
correct in Section 5; key ideas from this algorithm are used in the O(logn) time wait-free
approximate agreement algorithm presented in Section 6. Section 7 contains the logn time
lower bound for wait-free approximate agreement algorithms. Section 8 presents the lower
bound for the tradeoff between the time complexity and the work complexity of a wait-free
algorithm for approximate agreement. We conclude, in Section 10, with a discussion of the
results and directions for future research.

2 Model of Computation and Time Measure

In this section we describe the systems and the time measure we will consider. Our definitions
are standard and are similar to the ones in, e.g., [3, 24, 29, 30, 34, 35].

A system consists of n processes pg, ..., pr_1. Each process is a deterministic state machine,
with a possibly infinite number of states. We associate with each process a set of local states.
Among the states of each process are a subset called the initial states and another subset
called the decision states. Processes communicate by means of a finite number of single-writer
multi-reader atomic registers (also called shared variables). No assumption is made regarding
the size of the registers. Fach process p; has two atomic operations available to it for accessing
a shared register R:

o write(R,v) writes the value v to the shared variable R.



o read(R) reads the shared variable R and returns its value v.

A system configuration consists of the states of the processes and registers. Formally,
a configuration C' is a vector (sg,...,8,-1,01,...) where s; is the local state of process p;
and v; is the value of the shared variable R;. Fach shared variable may attain values from
some domain which includes a special “undefined” value, L. An initial configuration is a
configuration in which every local state is an initial state and all shared variables are set to
L. For a configuration C' = (sqg,...,S,-1,v1,...), state(p;,C') denotes the state of p; in C' and
val(R;,C') denotes the value of register R; in C, i.e., state(p;,C') = s; and val(R;,C) = v;.

We consider an interleaving model of concurrency, where executions are modeled as se-
quences of steps. Fach step is performed by a single process. A process p; performs either a
write( R, v) operation or a read(R) operation (which returns a value v), but not both, performs
some local computation, and changes to its next local state. The next configuration is the
result of these modifications. We assume that each process p; follows a local algorithm A; that
deterministically determines p;’s next step: A; determines a variable R and whether p; is to
read or write R as a function of p;’s local state. If p; is to read R, then A; determines p;’s next
state as a function of p;’s current state and the value v read from R. If p; is to write R, then
A; determines p;’s next state and the value v to be written to R as a function of p;’s current
state. An algorithm is a function A mapping each ¢ to a local algorithm A; for p;.

An event of p; is simply p;’s index ¢. A schedule is a finite or infinite sequence of events.
We denote by A the empty schedule, with no events. We denote the configuration resulting
from the application of a finite schedule ¢ to a configuration C' by C'o. An ezecution fragment
starting from a configuration C' is a finite or infinite alternating sequence of configurations and
events, Cy,71,C4,....Cr_1,%k,..., where C' = Cy and Cp = Cp_q1g, for all £ > 1. We assume
that a finite execution fragment ends with a configuration. The schedule associated with this
execution fragment is i1,. .., i, .... Conversely, the (unique) execution fragment resulting from
applying a schedule o to a configuration C'is denoted by (C,0). An execution is an execution
fragment starting with an initial configuration.

Given an infinite schedule o, a process is faulty in o if it takes a finite number of steps
(i.e., has a finite number of events) in o, and nonfaulty otherwise. An infinite schedule o
is f-admissible if at most f processes are faulty in ¢. In particular, a 0-admissible schedule
is called failure-free. These definitions also apply to execution fragments by means of their
associated schedules.

Let 7 be a fixed input domain and D be a fixed decision domain. Each initial state of p; is
associated with an input value in Z. For each process p; and d € D we define a subset, D; 4,
of the states of p;. We assume that for each p;, the sets D; 4 are pairwise disjoint. We also
assume that decisions are irrevocable, i.e., the algorithm transitions are such that if p; is in a
state of D; 4 it will remain in a state of D; 4. We call the set D; 4 the d-decision states of p;.

A decision problem (or just problem) Il of size n, is a relation between Z™ and D™. An
algorithm f-solves a decision problem Il if in all executions the decisions made can be completed



to a decision vector that is in the relation II to the inputs of the processes. Furthermore, in
any f-admissible execution, every nonfaulty process eventually decides. An algorithm that
(n — 1)-solves a problem II is also called a wait-free algorithm for II. Intuitively, even if all
processes but one fail when a wait-free algorithm is executed, this process eventually decides.

We now define how to measure the time an execution takes.?

We assign times to events in a schedule subject to the following constraints: (a) the time
assigned to the first event of any process is at most 1, (b) the time between two events of the
same process is at most 1, and (¢) times are nondecreasing and, if the execution is infinite,
unbounded. The time of a finite schedule ¢ is the largest real time that can be assigned to the
last event in the schedule; denote this by time(o). The time between two events in a schedule
is the largest amount of real time that can elapse between these two events under any time
assignment to this schedule. We define the time taken by an execution « to be the time taken
by the associated schedule, and denote this time by time(«). (This definition follows [35, 45].)

An equivalent definition (cf. [3]) is obtained by externally partitioning the computation
into minimal rounds: a round is any sequence of events such that every process takes a step at
least once in the sequence. A minimal round is a round such that no proper prefix of it is a
round. Every sequence of events can be uniquely partitioned into minimal rounds.* The time
for an execution is defined to be the number of segments in the unique partition into minimal
rounds. (This is the definition introduced in [27, 28], called the round complezity in [13].)

The running time for p; in an execution of an algorithm A is defined to be the time
associated with the shortest finite prefix of this execution in which p; is in a decision state
(o0, if there is no such prefix). The time complexity of an algorithm A is the supremum of the
running times over all failure-free executions of A and all processes p;.

Note that our definition of running time applies only to failure-free executions. It is possible
to extend this definition in a natural way to executions where some processes fail; e.g., by
explicitly modeling failure events and excluding failed processes from the requirement to take
steps. In this paper, however, we concentrate on the behavior of the algorithm in the “best
case,” where no failures occur, and measure running time only in failure-free executions.

We conclude this section with some useful notation. Let X be a set of real numbers.
Define range(X) to be the interval [min,ecx @, max,cx #] if X is nonempty and ), otherwise.
Define diam(X) to be max,, yex |21 — 2| if X is nonempty and 0, otherwise. Note that if

X is nonempty then diam(X ) is the length of the interval range(X ). If X is nonempty, then

mld(X) — minge x ac—lz—maxmex z

®These definitions can also be formalized in the timed automaton model ([40, 7]).
*Except, possibly, for the last segment.



function wait-approx (z) returns real; function wait-approx (z) returns real;

begin begin
1: Vo 1= a; 1: repeat until V5 # L;
: return z; 2: return Vj;
end; end;
Process pg Process p;, 1 £ 0

Figure 1: Fast non-wait-free n-process approximate agreement.
3 Basic Solutions to the Approximate Agreement Problem

3.1 The Approximate Agreement Problem

We start by defining the approzimate agreement problem and describing non-wait-free and
wait-free algorithms to solve it. In the approximate agreement problem, processes start with
real-valued inputs, zg,...,2,-1, and a constant ¢ > 0 (the same ¢ for all processes); all
nonfaulty processes are required to decide on real-valued outputs g, ..., ¥,_1, such that the
following conditions hold:

Agreement: for any ¢, 7, |y; — y;| < e, and

Validity: for any ¢, y; € range({zo,...,&n-1}).

3.2 Constant Time Waiting Solution

This problem has a simple O(1) time non-wait-free solution, described in Figure 1. Process pg
maintains a single-writer multi-reader atomic register, Vg, to which it writes its input value as
soon as it starts the algorithm. All processes wait until V{ is set to a value that is not L and
decide on this value. In the code, any assignment to a shared variable implies a write, and a
reference to the value of a shared variable implies a read. Upper case variables denote shared
variables, while all lower case variables are local. In this algorithm, the values returned in the
return statements are the decision values. Later in the paper, we will use this algorithm as
a “subroutine” in our main algorithm; then the values returned in the return statements will
not be the final decision values. Similar conventions hold for later algorithms in the paper.

We have:

Theorem 3.1 Procedure wait-approx is a non-wait-free algorithm for the approximate agree-
ment problem whose running time is O(1).



3.3 Inefficient Wait-Free Solution

We next present a wait-free algorithm for approximate agreement. In addition to demonstrating
that a wait-free solution exists for this problem, this algorithm will also be used as a “building
block™ in the construction of a more efficient algorithm, in Section 6.

Let us begin by outlining a simple variant of the algorithm for the case of two processes.
Each of the processes p;, i € {0,1} has a register which it can write and the other can read.
Here and elsewhere, we let 7 denote the index of the other process, i.e., 1 = 1 — . Due to the
asynchrony in the system, it is impossible to have processes agree on one of the input values
(see [18, 22, 34]). Thus, our algorithm has them gradually converge from the input values 2
and z1 to values that are only ¢ apart. A process p; repeatedly does the following: it writes its
value v; (initially the input value z;) into its register, and then reads p;’s register. If p; reads
1 from wv;, it must decide on its own value, since it can never know when p; will write its input
value (if at all, because p; could have failed before writing). If p; reads a non- L value from vy,
it checks whether or not |v; — v;| < e. If it is, p; decides on its own value. If not, p; sets v; to
be ”’"2'—”’ and repeats.

Due to asynchrony, processes do not necessarily converge “directly” to a value. Rather,
the following type of scenario is possible: p;, having previously written vz, reads p;’s current
value v;, and is delayed just before writing ”’"2'—”’ to its register; then p; repeatedly reads and
writes, cutting the interval in half till its value is very close to vg; finally, p; completes the write
of ”’"2'—“’ to its register, so that in fact, p; has moved “too far” towards p;’s old value. This
can repeat itself again and again. However, it can easily be seen that in every such step of
O(1) time (in which both p; and p; perform a read and a write), the diameter of the proposed
values, |v; — v;], is cut by at least a half, and so the values converge in O(log(%=%)) time.”
The algorithm is wait-free, since each process can reach a decision independently of the other

taking steps.

The algorithm for n > 2 processes is of the same flavor, but uses more complicated mech-
anisms to synchronize among processes. It uses ideas similar to those used in the randomized
consensus algorithm of [4]. The computation proceeds in (asynchronous) phases; in each phase,
each process suggests a possible decision value. In a manner similar to that of the two process
scheme above, the range of suggestions shrinks by a constant factor at each phase, until after
O(log( dwm({xo;'"xn_l}) )) phases it becomes small enough to allow processes to decide. Because
there may be more than two processes, a problem may arise in the case of an execution in which
certain slow processes temporarily stop taking steps (i.e., cease advancing in phases), while
others (possibly more than one) continue to advance, and then those slow processes resume
taking steps again. The algorithm must allow the fast processes to coordinate a decision, while
at the same time guaranteeing that the ones that are temporarily slow will converge to the
same decision once they resume activity. The key idea in achieving this task is to allow fast
processes that have converged to approximately the same suggested value, and are ahead of

®Here, and in the rest of the paper, we use a truncated log function whose value is always at least one.



all processes with different suggestions by at least two phases, to decide. As will be shown, it
can be guaranteed that the processes at lower phases will accept this decision value.

The algorithm appears in Figure 2. The inputs to each process p; are real numbers z; and
£.5 For a real number x, define n_(), the e-neighborhood of x, to be [z —&, 2 +¢]. The algorithm
employs a single-writer atomic snapshot object S as a basic memory primitive. Informally, this
is a data structure partitioned into n segments 5;, each of which can be updated (written) by its
“owner” process p;, and all of which can be scanned (read) by any given process in one atomic
operation. Each process p; can thus perform an update operation on .5;, replacing all or part
of the contents of 5; with a new value, or a scan operation on 5, returning an “instantaneous”
view of the contents of all segments of 5. (More precise specifications and implementations of
snapshot objects from single-writer multi-reader atomic registers can be found in [1, 2].)

For each process p;, its segment of S is an array 5;[1..] that in any state contains a finite
sequence of reals — its suggestions at different phases — indexed by phase number. Initially,
each sequence is A, the empty sequence. At each phase, after updating (writing) a suggestion
to its array (Line 2), a process p; reads the arrays of all processes (Line 3), obtaining their
suggestions for all phases”. If p; is at the maximum phase and all the suggestions by other
processes for its phase, or the phase before it, are within ¢ of its latest suggestion, then p;
decides on its latest suggestion (Lines 4-5). Otherwise (Lines 6-8), p; advances to the next
phase taking as its new suggestion the midpoint of all the suggestions at the next phase if
there are any, or of its current phase if there are none.

We now present the correctness proof for this algorithm. Since the only shared data struc-
ture used by the algorithm is the atomic snapshot object 5, an execution of the algorithm can
be viewed as a sequence of primitive atomic operations that are updates and scans of 5. Let
a be any execution, and let » > 1 be a phase number.

For any process j € {0,...,n—1} and any execution «, define S¥[r] to be the value written
by p; to S;[r] in a (L if there is no such value). Note that this value is uniquely defined.
Define S%[r] to be {S7[r] # L :j € {0,...,n — 1}}. The following is immediate:

Lemma 3.2 Let o be an execution and o be a finite prefi of a. Then S*[r] C S°[r], for
every r > 1.

Throughout the proofs in this paper, a subscript ¢ for a procedure denotes invocation by
process p;; similarly, a subscript ¢ for a local variable name denotes the copy of this variable
at process p;. A process p; is said to be in phase r if phase, = r. Denote by scan] the scan
performed by p; at phase r, and by update}(z) the update by p; at phase r. Note that, for
r > 2, the scan performed before writing a suggestion for phase r is denoted scan” 1.

S Although e is described as a parameter, it is assumed that all processes have exactly the same value of .
"Though one can devise algorithms that do not require a process to maintain suggestions for all past phases
(cf. [6]), we have chosen to maintain all suggestions in order to simplify the exposition and proofs.



shared var
S : snapshot object [1..n] of array [1..] of real;

function wait-free-approx(z, ) returns real;
begin
1: phase := 1;
repeat forever

2: update(5;[phase] := z );
3: s := scan(.S);
4: maz-phase := maxg<j<n—11|5;|}; /* phase < max-phase */
5: if phase = maz-phase and phase > 2

and s;[r] € n[z]

for all j and all » > phase — 1 such that s;[r] is defined
then return =z;
6: else r := min{phase + 1, maz-phase};
7 x = mid({s;[r] : |s;] > r}); /* This set is not empty. */
8: phase := phase + 1;
fi;
end repeat

end;

Figure 2: Slow wait-free n-process approximate agreement—Code for process i.



For a finite or infinite execution a and r > 1, denote
mids(a,r) = {mid(Sa/[r]) : o is a prefix of & and §%'[r] is nonempty} |

that is, the set of midpoints of all the sets of suggestions for phase r at earlier points of a.
The next lemma is the key for proving that the algorithm is wait-free. It will be used later,
in Corollary 3.7, to show that the range of suggestions decreases by a constant factor with
each phase. Intuitively, it states that any suggestion for phase r must be in the range of the
midpoints of all the sets of suggestions for phase r — 1 at earlier points in the execution.

Lemma 3.3 For any finite execution o and phase r > 2, range(S[r]) C range(mids(a,r—1)).

Proof: By induction on the length of the execution. The basis holds vacuously.

For the induction step, the interesting case is when « ends with update’(z), for some ¢,
where z = S%[r]. Then scanf_1 appears in a. Let o’ be the shortest prefix of a that includes
scanf_l. Note that o’ is a proper prefix of a.

Let 7’ be the largest phase number read in scanf_l. Since process p; reads its own sequence,
r">r—1. v =r— 1, then the code implies that z is the result of the calculation in Line
7, and hence z is the midpoint of $°[r — 1], which suffices. If # > r then, by the code,
¢ = mid(S¥[r]). By the induction hypothesis on o', range(5°'[r]) C range(mids(a’,r — 1)).
Thus,

¢ = mid(S5°'[r]) € range(S*'[r]) C range(mids(a’,r — 1)) C range(mids(a,r — 1)) ,

as needed. [
Since range(mids(o,r — 1)) C range(S[r — 1]), we have:
Corollary 3.4 For any finite execution a and phase r > 2, range(S°[r]) C range(S[r — 1]).

For the rest of the proof, we fix some infinite execution 8 of the algorithm. The following
lemmas are stated with respect to 3. The following is a corollary of Lemma 3.3.

Corollary 3.5 For any phase r > 2, range(SP[r]) C range(mids(3,r — 1)).

The next lemma states that the diameter of all the possible midpoints of the suggestions
in phase r is at most half the diameter of all the suggestions for phase r.

Lemma 3.6 For any phase r > 1, diam(mids(3,r)) < Ldiam(S°[r]).

10



Proof: If mids(3,r) is empty then diam(mids(3,r)) = 0 and the claim follows immediately,
so assume that mids(3,r) is nonempty. Let o’ and o be two prefixes of § such that 5%[r]
and 5°"[r] are nonempty. It suffices to show that |mid(5°"[r]) — mid(5°[r])] < Ldiam(SP[r]).
Without loss of generality, suppose o is a prefix of o’. By Lemma 3.2, §°"[r] C §°'[r] C
5Pr]. Suppose first that mid(S*[r]) < mid(S*"[r]). Thus, mid(S5*[r]) < mid(S*"[r]) <
max(,5%"[r]) < max(S[r]). Hence

|mid(5°"[r]) — mid(5'[r])] < %dz’am(Sa/[r]) < Sdiam(S°[r])

1
-2
as needed. A symmetric argument applies if mid(.5°"[r]) > mid(5*[r]). |

The following lemma guarantees that suggestions become closer with each phase; it will be
used together with Lemma 3.9 to ensure wait-freedom.

Lemma 3.7 For any phase r > 2, diam(S”[r]) < 2diam(S°[r — 1])

Proof: By Corollary 3.5, range(S°[r]) C range(mids(3,r — 1)). Thus,

diam(SP[r]) diam(mids(3,r — 1))
Ldiam(SP[r — 1]) by Lemma 3.6.

ANIVAN

Lemma 3.8 If some process returns x in phase v and y € S°[r], then y € ne(x).

Proof: Assume p; returns z in phase r. By the code, it must be that r > 2. Assume, by
way of contradiction, that there exists at least one process with a suggestion for phase r that
is not in n.(z). Let p; be such a process with the property that scan;_1 is the earliest among
the scan”~! operations of these processes, and let a be the shortest prefix of 3 that includes
scan;_l. Let y = Sf[r]; by assumption, y € n.[z].

By the way p; was chosen, there is no update,(y'), with y' ¢ n.(z) in a; thus, range(S%[r]) C
ne[z]. Let r’ be the maximum phase number read in scan;_l.

determined in Line 6 of p;’s code for phase r —1 is equal to . Thus in this case, the only values

If ' > 7, then the minimum

considered in determining Sf[r] are values in S[r]. Since range(S®[r]) C n.[z], it follows that
p;’s suggestion for phase r is in n.(z). This is a contradiction, and hence ' < r — 1. Since
process p; reads its own sequence, r’ =7 — 1.

The fact that r’ = r—1 also implies that scan§_1 precedes update’(2). Let o’ be the shortest
prefix of 3 that includes scan!. Since update’(z) precedes scan?’, it follows that scan;_1 precedes

scan’, i.e., a is a prefix of o'

Since process p; returns in phase r, it follows from the code that mnge(Sa/[r —1]) C n.[z].
Since r — 1 is the maximum phase number read in scan;_l, it follows that y = mid(S°[r —1]) €
range(S[r — 1]). However, by Lemma 3.2, 5%[r — 1] C Sa/[r — 1], and thus y € n.(2), a
contradiction. [
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Lemma 3.9 For any phase v > 1, if diam(S°[r]) < e, then every nonfaulty process returns
no later than phase r + 1.

Proof: ;From the code it follows that every nonfaulty process either returns or reaches phase
r+ 1. If diam(SP[r]) < ¢ it follows from Corollary 3.4 that diam(S°[r 4+ 1]) < e.

The proof proceeds by induction on the order in which processes perform scan”t!. For the
base case, let p; be the first process to perform scan”t!. Clearly, p; has phase;, = r +1 =
maz-phase, and by assumption 7 4 1 > 2. Also, diam(S°[r]) and diam(S°[r + 1]) are less than
or equal to e, and thus, p; will pass the test in Line 5 and will return in phase r» + 1. The
induction step is similar, and uses the fact that so far no process has advanced beyond phase
r + 1 to show that any process that reaches phase r 4+ 1 passes the test in Line 5 and returns
in phase r + 1. [

Thus we can prove:

Theorem 3.10 Procedure wait-free-approx is a wail-free algorithm for the approzimate agree-
ment problem whose running time on input (xq,...,&,—1) is at most

diam({zo,...,2n-1})

£

O(n2 log( ) .

Proof: The validity condition clearly holds, since processes decide only on their suggestions
and these are always within the range of the inputs (Corollary 3.4).

To show agreement, assume that r is the minimum phase in which some process returns, and
let p; be a processes that returns z in phase r. By Lemma 3.8, the suggestions of all processes
for phase r are in n.(x). By Corollary 3.4, the same is true for phase r + 1. By Lemma 3.9, all
nonfaulty processes return no later than phase r + 1, and thus, all nonfaulty processes return
either in phase r or in phase r + 1. Since processes return only their suggestions, all returned
values are in n.(x), as needed.

Since the diameter of suggestions decreases by a factor of two with each phase (by Lemma 3.7)
it will eventually be less than or equal to ¢ and, by Lemma 3.9, each nonfaulty process will
eventually decide. This guarantees wait-freedom.

To show the time bound, notice that, by Lemma 3.7, after O(log( dmm({xo;'"xn_l}) )) phases,
the diameter of the set of suggestions will be at most €. By Lemma 3.9, all nonfaulty processes
will return by the next phase. The time it takes a process to execute each phase is bounded
from above by the number of operations it executes. Using the implementation of atomic
snapshots from [1], this is bounded by O(n?). [

Since the input range is not bounded and ¢ may be arbitrarily small, the running time of
the algorithm as a function of n is actually unbounded.
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function bias (v%,0!,c% ¢l ¢) returns real;

begin
1: if v° = v!'= 0 then return 0
else if ¢° < ¢! then return v! + %(hﬂ —min{cle, |ol]})
else return v° + %(hﬂ — min{c%, [v°[})
fi;
end;

Figure 3: The bias function—Code for process p;.

4 The Bias Function

The algorithms in Sections 5 and 6 return a decision value by performing a calculation based
on an input value and a counter for each process. We name the calculated function bias, as the
returned decision value is biased towards (i.e., is closer to) the input value associated with the
process having the largest counter. Before presenting the algorithms, we present the function
and explain its properties. The proofs of these properties are purely arithmetic, involving
no arguments about synchronization between processes, and have therefore been deferred to
Section 9.

In order to understand the nature of the calculation performed by the bias function, we
briefly explain the structure of the algorithms using it. The new algorithms are conceptually
based on the following high-level two-process algorithm. Process p; (similarly pg), knowing
only its own input value v!, will repeatedly take incremental steps of size e, starting at 0 and
ending upon reaching the value v!, unless it reads that the other process pg has also moved.
In the former case it decides on »!, and in the latter case its decision value is a function of
the relative number of incremental steps both processes managed to take before each noticed
the other had moved. However, since in either case process p;’s decision must be guaranteed
to be in range ({v°, v'}), it cannot just be a value in the interval range({0,v'}). This is the
purpose of the function bias. It provides a mapping from the processes’ incremental walks in
the intervals range({0,v°}) and range({0,v'}) respectively, to walks of proportional length
in the allowed range ({v°,v'}). The code of bias appears in Figure 3. The function takes as
inputs two real number values v° and v!, two associated counters, ¢® and ¢! (integers denoting
the number of incremental steps each process pg or p; took), and ¢.

An example of the translation defined by bias is given in Figure 4 for the case 0 < v¥ < v!.
Assume pg traverses a distance of length ¢® - ¢ away from 0 towards v°, and p; a distance
of length ¢! - ¢ away from 0 towards v!. The bias function maps the respective distances of

length ¢ - & and ¢! - ¢ (within the interval [—v", v!]), into distances of proportional length in

the interval [v°, v!]. The starting point 0 in [0, v!], is replaced by the point new-0 in [v°, v1],

which depends only on »° and »!. The returned decision value is then the point associated
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returned value

Figure 4: The bias mapping.

with the larger counter (larger traversed distance).

We now introduce several lemmas that formally outline the properties of the bias function
and on which the correctness proofs of the algorithms in the sequel will be based. The first is a
rather simple statement, namely, that the returned value of any call to bias is in range({v%, v'}).

Lemma 4.1 Let c®, ¢! be nonnegative integers, and v°, v, ¢ be real numbers, with ¢ > 0. Then
bias(v®, v, % ¢l ) € range({v°, v'}).

The next three lemmas deal with with an additional property required of the bias function:
that the values returned by different calls to bias always be approximately the same, even if the
counter parameter values or the real parameter values used in these calls, are slightly different.
The first lemma states that applying bias in a case where counter ¢' is large yields a value close
to v'.

Lemma 4.2 Let c°, ¢! be nonnegative integers, and v°, v, e, m be real numbers, ¢ > 0, m > 0.

(1) Suppose ¢* > ¥ and |v'|/e —m < c'. Then |bias(v?, 0!, % et e) — vl| < me.
(2) Suppose ® > ¢ and [v°|/e — m < c®. Then |bias(v?, 01, % ¢! e) — 00| < me.
The next lemma shows that the results of two calls to bias with approximately the same val-

ues (in a sense made precise by the lemma) for ¢, ¢!, and the same v°
the same.

, vl e, are approximately

Lemma 4.3 Let ¢, cl, ey, cl be nonnegative integers, and v°, v, e, m be real numbers, ¢ > 0
S| S0 0_ .0 11
and m > 0. Suppose min{cg, 5} = min{cy,c;} = 0 and |cg — 3| + |cg — ¢i| < m. Then

|bias(v”, v, ), cp, €) — bias(v”, v!, Y, cf, )| < me .
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The last lemma in this section states that applying bias, this time to real numbers v" and
v! that are approximately (to within &) the same, yet with exactly the same counters ¢?, ¢!

and e, results in values that are approximately the same.

Lemma 4.4 Let c°, ¢! be nonnegative integers, and v3, v}, v, v}, 2,6 be real numbers, with

e>0,6>0. Suppose [v] — | < 6 and |v} — vi| < 8. Then

|bias(v], v5, c°, ¢, e) — bias(vy, v1, %, ¢ty e)| < 66 .

5 Fast Two-Process Approximate Agreement

We now show that, for two processes, there exists a wait-free approximate agreement algorithm
whose time complexity is constant; i.e., it does not depend on the range of input values or ¢.
The n-process algorithm presented in Section 6, when specialized to the case n = 2, also yields
a (somewhat larger) constant time complexity. We present the two-process algorithm because
we believe its simplicity will help the reader develop an intuition for the ideas that will be later
used in the general algorithm.

5.1 Informal Description

The key ideas underlying this algorithm are as follows. A process, p;, running on its own,
can assume that either it is running very fast (and not much time has elapsed), or the other
process, pg, has failed. Thus, p; may take an unlimited number of steps without degrading
the time complexity for failure-free executions, as long as p; does not perform any steps. Of
course, if p; does not take any steps at all, then, in order to guarantee the wait-free property,
p; must eventually decide (unilaterally) on its own value. In this case, in order to guarantee
correctness, it is necessary that if and when p; does appear, it must be able to know, just by
reading p;’s registers, what p; has decided. However, an inherent difficulty of programming
asynchronous systems is that, due to the uncertainty of interleaving, at least one process p;
has an “uncertainty of one step,” namely, it cannot tell whether p; read the value written in
p;’s latest write or the value written in p;’s preceding write. A two-process solution that halves
the distance between the suggested values is thus of no use, since the “uncertainty of one step”
can cause processes to decide on values that are more that ¢ apart. Our solution is to have

i

a process change its suggestions gradually with each step, more precisely, by an amount less
than e, so that the “uncertainty of one step” will result only in ¢ inaccuracy in the decision
value.

5.2 The Algorithm

The code for process p; is given in Figure 5. Each process p;,¢ € {0, 1} maintains a single-
writer multi-reader atomic register with two fields: V;—the input value, a real number, and
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shared var
(V,C): array [0,..,1] of single writer register with
fields V: real and C: integer;

function fast-2-approx (z,¢) returns real;
1: increase-counter(z, E—'),
<?JO, vlv Cov Cl> = <V07 V17 COv Cl>7

if ¢ = L then return v*
0

else return bias (v, v!, % ¢l ¢);

end;

procedure increase-counter (v, maz);
1: (Vi, Cy) = (v,0);
2: while (; = 1L and C; < maxz do C; := C; + 1 od;

end;

Figure 5: Fast wait-free two-process approximate agreement—~Code for process p;.

(;—the counter, an integer. Fach process starts by writing its input and initializing a counter
in the shared memory (Line 1 in increase-counter). It then keeps incrementing this counter until
either it has taken a number of steps proportional to the absolute value of its input, or the
other process has taken a step, whichever happens first (Line 2 of increase-counter). When the
process stops, it collects all the C' and V values and applies the function bias to get a decision
value. As described in the former section, the decision is within the input range and biased
towards the input value of the process with the larger counter. In particular, if a process runs
to completion without observing the other process, it decides on its own input value. In the
following subsection we show that the discrepancy in the reading of the counters among the
two processes is at most 1, and thus, based on the properties of the bias function, the decisions
based on the values of the counters will differ by at most «.

5.3 Correctness Proof

An execution of the algorithm can be viewed as a sequence of primitive atomic operations that
are reads and writes of atomic registers (and may include changing local data). Fix some
execution a of the algorithm. All lemmas in the rest of this section are stated with respect
to . In the rest of this section, a value of L is treated as —1 in arithmetic expressions. The
next lemma shows a crucial property regarding how close the counter values collected by two
processes are.
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Lemma 5.1 Assume py and py return from fast-2-approx. Let i € {0,1}, and let ¢; and ¢; be
the values of C; read by p; and p;, respectively, in Line 2 of fast-2-approx. Then ¢; # L and
¢ —1<¢ <g.

Proof: Since p; returns, it must be that p; writes to C;. Let m; be the last write by p; to C;
in a. Since increase-counter returns after the last write to C; and by definition p; is the only
one to modify (), it follows that ¢; is the value written to C; in 7;. Since p; writes the value
¢; to C, we have that ¢; # L.

Let ¢; be the read by p; of C; in Line 2 of fast-2-approx. Note that ¢; is the value returned
in ¢;. Since the read of C; is atomic, it is clear that ¢; < ¢;. We now show that ¢; — 1 < ¢;.

If ¢; = 0 then since ¢; < ¢;, ¢; € {L,0}; since L is mapped to —1, the claim follows. So
assume ¢; > 0. Let 7/ be the penultimate write by p; to C;, writing ¢; — 1. Let ¢; be the
latest read of C; by p; that precedes 7;; note that 7! precedes ¢;. Since p; performs at least
one additional write after 7/, it must be that the value read in ¢; is L. Let 7; be the write of
0 by p; to (7 in . ;From the code, it follows that m; precedes ¢;. Since the value read in ¢;
is 1, and because C7is written and read atomically, it follows that ¢; precedes m;. {From the
above we thus have that 7/ precedes ¢; which precedes m; which precedes ¢;. Thus the write

7! precedes the read ¢, and it follows that ¢; — 1 < ¢;. [ ]
We can now prove that the algorithm satisfies the agreement property:

Lemma 5.2 For processes pg and pq, if fast-2-approx, returns yo and fast-2-approx; returns
y1 then |yo — 1| < e.

Proof: The proof of this lemma is separated into two cases. In one case, we apply Lemma 4.2.
In the other case, we show that the sum of the differences between the values of ¢® and ¢! used
by po and by p;y is at most 1, and appeal to Lemma 4.3. The details follow.

Denote by m; the first write by p; to C;, writing 0, for ¢ € {0,1}. Since both processes
decide, both mg and 7m; must appear in a. Assume, without loss of generality, that my precedes
71. (The other case is symmetric.) Assume that process pg reads (v),vd, ¢5, ¢}) in Line 2 before
deciding, and that process p; reads (v, v{,c?,cl) in Line 2 before deciding. Note that, since

p; first writes 0 to C; and then reads C, it must be that cj >0, for i€ {0,1}.

Let ¢ be any read of Cy by py, returning some value z. The code of the algorithm implies
that m; precedes ¢. Since my precedes w1, mg precedes ¢. Since reads and writes to Cy are
atomic operations, this implies that » > 0. This implies, in particular, that ¢ > 0, and thus,
fast-2-approx, returns in Line 4. In addition, this also implies that p; will not increase Cy
beyond 0, and thus, since reads and writes to C; are atomic, ¢ = 0 and ¢} € {1,0}. We
separate the rest of the proof into two cases:

Case 1: ¢} = L. In this case, fast-2-approx, returns v = x¢ in Line 3. The code of increase-
counter implies that |zg|/e < ¢J. ;From Lemma 5.1, since ¢§ > 0, it follows that |zo|/e —1 < ¢¥.
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Also, v = zg. Since ¢ > 0 = ¢}, we can apply Lemma 4.2(2) with m = 1 and get that

bias(v, v, e}, ci,e) — vg| < ¢, as needed.

Case 2: ¢} = 0. Then fast-2-approx, returns in Line 4 and v} = v{. We have that min{cJ, c}} =

cs =0 and min{cd, e1} = ¢f = 0. Also, |¢§ — | + |¢} — cb] = |e§ — §] < 1, by Lemma 5.1. The
claim follows by applying Lemma 4.3 with m = 1. [ |
We have:

Theorem 5.3 Procedure fast-2-approx is a wait-free algorithm for the two-process approximate
agreement problem whose time complexity is O(1).

Proof: Agreement follows from Lemma 5.2. It follows from the code and from Lemma 4.1
that the values returned are in the range of the original input values; hence the validity
property is satisfied. Each process p; executes at most O(|x;|/¢) steps before deciding; thus,
the algorithm is wait-free. Since each process executes a constant number (i.e., independent
of ¢ and the range of inputs) of steps after the other process performs its first step, the time
complexity of this algorithm is O(1). |

6 Fast n-Process Approximate Agreement

In this section, we present a fast (O(logn) time) wait-free approximate agreement algorithm
for n processes. The algorithm is based on an alternated-interleaving method of integrating
wait-free (resilient but slow) and non-wait-free (fast but not resilient) algorithms to obtain new
algorithms that are both resilient and fast.

We begin by showing how one can reduce, in constant time, the problem of n-process
approximate agreement with arbitrary input values to a special case of the problem where the
set of input values is included in the union of two small intervals. We do this by performing an
alternated-interleaving of a wait-free and a non-wait-free algorithm. We then show, again based
on an alternated-interleaving of wait-free and non-wait-free algorithms, that n processes with
values in two small intervals can “simulate,” in O(logn) time, two virtual processes running the
fast approximate agreement algorithm of Section 5, thus solving the approximate agreement
problem for n processes each having one of two values. Combining the two algorithms yields
an O(logn) wait-free approximate agreement algorithm.

6.1 Informal Description
The first part of the algorithm—the one that achieves the constant-time reduction to two small

intervals, is encapsulated in procedure n-to-2 (Figure 6). The idea is simple: interleave the
execution of the slow wait-free-approx procedure (of Figure 2) with that of the fast wait-approx
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of Figure 1), stopping when the first of them does. The resulting algorithm is wait-free since
even if n — 1 processes fail, wait-free-approx will terminate. It takes at most O(1) time in the
failure-free execution since wait-approx terminates within O(1) time. However, some processes
(group a) might finish the alternated execution with a value from wait-approx, while others
(group b) finish with a value from wait-free-approx. Thus, this strategy does not solve the
approximate agreement problem, but guarantees that the returned values are included in the
union of two small intervals. More specifically, the procedure n-to-2 returns an output value
v; and a group ¢g; € {a,b} to which p; is said to belong. It is guaranteed that output values for
processes in the same group ¢; € {a,b} are at most /12 apart.

The second part of the algorithm solves n-process approximate agreement in O(logn) time,
assuming that processes are partitioned into two groups with approximately the same initial
value in each group. The solution is based on having the processes in group a (resp. b) jointly
simulate a virtual process pg (resp. p1) that executes the function fast-2-approx of Figure 5.

The following straightforward simulation is expressed by Lines 1-2 of the procedure increase-
counter in Figure 6. The counter Cy of fast-2-approx is replaced by a joint counter, which is
defined to be the sum of local counters C;, for all ¢ in group a. Fach step of the simulated
counter Cy is implemented by O(n) steps of the joint counter for a. Each step of this joint
counter is, in turn, implemented by a single step of one of the individual counters in group a.
Similarly, the processes in group b simulate counter ' of fast-2-approx. In Line 2 of increase-
counter, in order to decide on the values of the joint counters of @ and b, a process reads the
values of all local counters. If the counter simulated by p;’s group is not large enough and the
counter simulated by the other group is L, then p; advances the counter simulated by its group
(by incrementing its local counter C;), and repeats. Otherwise, p; exits increase-counter.

One can see that, in an execution where processes operate synchronously, each iteration of
the while loop in Line 2 of increase-counter has O(n) time complexity since reading all memory
locations to calculate the simulated counter takes O(n) steps. However, one can improve the
time complexity based on the following observation. If p; ever detects that all processes have
set their counters in Line 1 of increase-counter, then it knows that one of the following holds:
either some process from the other group has set its local counter (and hence that group’s
simulated counter), to a value other than L, or the other group is empty. In the former case,
the loop predicate in Line 2 must be false, while in the latter case, the final value for the
other group’s counter will be L. In either case, p; can stop executing increase-counter, and be
guaranteed to correctly simulate the behavior of the two-process algorithm. In order to detect
in less than O(n) time that all processes have set their counters, we use an O(log n) non-wait-
free synch procedure, described in Section 6.3.2, whose termination ensures this condition. To
achieve the better time, the algorithm alternates synch with the (wait-free) loop in Line 2 of
increase-counter.

The delicate synchronization provided by synch and its effect on the rest of the algorithm
guarantee that after some process exits increase-counter, individual counter values increase at
most by 3. Thus, after exiting increase-counter, a process can perform an O(logn) wait-free
fast-collect, described in Section 6.3, in order to collect all the values needed to decide on the

19



returned value in Lines 3-4. The above property ensures that the simulated counter values
used by different processes do not differ much.

6.2 The Algorithm

The code for the algorithm is presented in Figure 6. Alternated procedures are enclosed
within begin-alternate and end-alternate brackets. This construct means that the algo-
rithm alternates strictly between executing single steps of the two alternated procedures, and
terminates the first time one of the procedures terminates.® When an alternation is used in
an assignment statement, the value assigned is the value returned by the procedure that ter-
minates first. The algorithm uses the bias procedure of Figure 3. In addition to the shared
data structures used by wait-free-approx and wait-approx, process p;,7 € {0,...,n — 1}, has
a single-writer multi-reader atomic register with the following fields: V;—the value returned
in p;’s first phase; G;—denoting the group to which p; belongs: C;—p;’s contribution to its
group’s counter; T;—p;’s boolean synch termination flag.

In the code for process ¢ we abuse notation and denote by V9, where ¢ is a group’s name,
the “group’s value” calculated as follows: if g = g; then it is V;, and if ¢ # ¢; then it is an
arbitrary V; such that p; is in group g if it is non-empty, and L, otherwise. The value v is
calculated in a similar manner from the corresponding local copies. (Recall our convention
that lower case letters stand for local variables and upper case letters for shared variables.)
When g is a group name, g denotes the other group’s name, e.g., if ¢ = a then g = b. The
notation C9, for g € {a,b}, stands for the sum of those C; such that G; = g and C; # L, if
there is any such C;, and L1, otherwise. The value ¢? is calculated in a similar manner from
the corresponding local copies.

6.3 Fast Information Collection and Synchronization

We now present the procedures for information collection and synchronization and prove their
properties.

6.3.1 Fast Information Collection
We start with a wait-free algorithm for input collection—returning the current values in the
entries of an array R. The time complexity of the algorithm is O(logn).

This problem is interesting on its own as it underlies any problem of computing a function,
e.g., max or sum, on a set of initial values that reside in the shared memory.” Once a process

8We remark that this is just a coding convenience, used to simplify the control structure of the algorithm.
It is implemented locally at one process and does not cause spawning of new processes.

®Note that these problems are very different from the decision problems considered until now in this paper,
where inputs are local to the processes and do not reside in the shared memory.
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type
group = {a,b};
shared var
(V.G,C): array [1..n] of single writer register with
fields V: real, G: group, and C: integer;

function fast-n-approx (z,¢) returns real;
begin
(v,9) := n-to-2(z,¢);
increase-counter(v, g ﬂ)
1Ir ef6n /0
(¥,d,¢) := fast-collect (V,G,C');

if ¢ = L then return v?9

=W N = O

else return bias(v®,v°,c% " ¢ /6n);
end;

function n-to-2 (z,¢) returns (real, group);

begin
(v, ¢) := begin-alternate
1: (wait-free-approx(z,¢/12), a)
and
2: (wait-approx(z ), b);
end-alternate;
3: return (v, ¢g)
end;

procedure increase-counter (v, g, maz);

begin
1: (Vi,G;,Cy) == (v,9,0);
begin-alternate
2: while C9 = 1 and CY < maz do C; := C; + 1 od;
and
3: synch (C');
end-alternate;
4: T; = true;
end;

Figure 6: Fast wait-free n-process approximate agreement—Code for process p;.
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type
string = array [1..n] of register values;
shared var

R : array [1..n] single writer register;

function fast-collect (R) returns string;

begin
1: [:=1;
2: while [ < n do /* ¢ knows fewer than n values. */
3: R; := concatenate (R;, Ry mod n); /* Read what p(;4;) knows. */
4: l:=|Ry;

od;

5: return truncate( R;, n);

end;

Figure 7: Fast wait-free information collection—Code for process p;.

collects all the values, computing the function can be done locally in constant time. Since
Q(logn) is a lower bound on the time for the information collection problem (see, e.g., [12]),
this implies that for problems whose output depends on all the initial values in memory, and
only on them, there exists an optimally fast wait-free solution.

Our algorithm, presented in Figure 7, is a wait-free variation of the pointer-jumping tech-
nique used in PRAM algorithms (e.g., [50]). Think of the registers R;, i € {1..n}, as being
arranged in a circle (hence indices are modulo n). To achieve logarithmic time complexity, a
process writes in the register R; not only its value, but also all other values it has learned about.
Proceeding in a cyclic fashion, p; first reads R;11. If R; 11 has already collected, say, 3 values
Rit1...Ri14, then p; next reads R;y5. It continues in this fashion until it has transitively
collected values from all n registers.

We use the following functions in the algorithm. For sequences R, R’ and a nonnega-
tive integer n, we define concatenate (R, R') as returning the concatenation of R’ to R, and
truncate( R, n) as returning the first n elements of R if |R| > n, and R, otherwise. The initial
value L is treated like any other value and may be returned by the algorithm for entries that
have not yet been set.

Fix some execution a of the fast-n-approx algorithm. We clearly have:

Lemma 6.1 Assume fast-collect; is invoked by p; in «, and let o' be the shortest prefiz of «
that includes some invocation of fast-collect. Then fast-collect; returns a vector containing, for
each p;, a value that appears in R; at some point at or after o’. Moreover, fast-collect; returns
within at most 2n steps by p;.
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Proof: Each iteration of the while loop in procedure fast-collect takes at most two steps,
and the loop is executed at most n times. [ |

The next lemma is the crux of the time analysis for this algorithm.

For the rest of this subsection, let ¢ be the time of the last event in the shortest finite prefix
of a that includes an invocation of fast-collect by every p;, ¢ € {0,...,n — 1}, if such a prefix
exists, oo otherwise.

Lemma 6.2 Assumet < co. Foreveryi € {0,...,n—1} and every integer v, 0 < r < [log n],
|R;| > min{2",n} at time t + 3r.

Proof: The proof is by induction on r. The base case, » = 0, is trivial.

For the induction step, assume that » > 1. If at time ¢ + 37, |R;| > n, the claim follows.
So suppose, |R;| < n at time ¢ 4+ 3r. Then also |R;| < n at time ¢ + 3(r — 1). Then by the
induction hypothesis, |R;| > 27! at time ¢ + 3(r — 1).

By the code, there must be some time ¢/, where t + 3(r — 1) < ¢/ <t +3(r — 1)+ 2, at
which p; reads some R;. Fix j to be the index of the first such read that occurs. By the
induction hypothesis, |R;| > min{2"~!, n} at time ¢ + 3(r — 1). Since p; reads R; by time
t+3(r— 1)+ 2, the code implies that p; subsequently writes R; by time ¢ 4+ 3r. It follows that
|R;| > 2771 + min{2""! n} > min{2", n} at time ¢ + 3r. ]

In particular, at time ¢ 4 3[logn]|, we have |R;| > n for every i. Thus, fast-collect; returns

by time ¢ + 3[logn]. We have:

Lemma 6.3 Let o be a finite prefiz of a. Assume that in o, fast-collect; is invoked by p;, for
every i € {0,....,n—1}. Then for every i € {0,...,n— 1}, fast-collect; returns within at most
O(logn) time after time(a’).

6.3.2 Fast Synchronization

The synchronization procedure, synch, is used to guarantee that at least one of two events
has occurred: (a) all processes have started executing increase-counter, or (b) some process has
completed executing increase-counter. It uses a similar transitive information collection strategy
to that used by fast-collect, but it is not wait-free. In case the processes run synchronously, it
is guaranteed to terminate within time O(logn).

The code appears in Figure 8. In the code, each process p; uses a flag 7; to indicate that
it has completed executing increase-counter. If a process, while executing synch, ever finds any
other process’ flag equal to true, it terminates execution of synch.
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shared var
R : array [1..n] of single writer register;

procedure synch(R);

begin
1: repeat until R; # L; /* ¢ has written. */
2: [:=1;
3: while [ < n and Ty modn = L do /* pi1imodn has not yet terminated. */
4: repeat until R;1;modn # L; /* Pitimodn has written. */
5: R; := concatenate (R, R(i11)modn);
6: l:=|Ry;

od;
end;

Figure 8: Fast non-wait-free synchronization—Code for process p;.

In the absence of such early termination, a process executing synch attempts to determine
that all processes have written their fields of the shared array R. It does so using the transitive
collection strategy represented in Lines 5-6. The waiting loop in Line 4 ensures that (in the
absence of early termination) the process does not terminate until all processes have written
their fields of the array K. That is, when a process terminates, it must be that either all R; are
non-_L or some 1; = true. The fact that the information collection is done transitively implies
a logarithmic upper bound in case all processes run synchronously.

For the rest of this subsection, fix some execution a of fast-n-approx.

The first lemma gives the correctness claim. Its proof is straightforward.

Lemma 6.4 Let o be a finite prefic of a. Assume that in o', synch; returns, for some p;.
Then at the end of o' either all R entries are # L or T; = true for some j.

The next lemma gives a linear upper bound on the time required by synch.

Lemma 6.5 Let o' be a finite prefiz of a and let i € {0,...,n —1}. Assume that in o' all R
entries are set to values # L, and that synch, is invoked by p;. Then synch; returns within at
most 6n steps by p; after the end of .

Proof: Each iteration of the while loop in procedure synch takes at most six steps. (There
are three operations, and because of alternation they might require six steps.) The claim
follows, since the loop will be executed at most n times. [ |
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The following lemma gives the O(logn) time bound.

Lemma 6.6 Let o’ be a finite prefiv of a. Assume that in o' all R entries are set to values
# L, and synch; is invoked by p;, for every i € {0,...,n— 1}. Then every process terminates
synch within at most O(logn) time after the end of .

Proof: Let ¢ be the time of the last event of a’. We prove that for every process p; and for
every integer r, 0 < r < [logn|, by time ¢ + 107, either p; sets T; = true or |R;| > min{2",n}.
The claim follows by taking r = [logn]: by time ¢ 4+ 10[logn], either p; sets T; = true or
|R;| > n. If p; sets T; = true, then p; has already terminated synch,. On the other hand, if
|R;| > n, then p; returns from synch; within O(1) time.

The proof is by induction on r. The base case, r = 0, is trivial.

For the induction step, assume that 1 < r < [logn]. If p; sets T; = true by time t 4+ 107,
then the claim is immediate, so assume that T; is not true by time ¢ + 107. In particular, T is
not true by time ¢+ 10(r — 1). Hence, by the induction hypothesis, | R;| > min{2"~! n} = 277!
by time ¢ + 10(r — 1).

By the code, there must be some time ¢', where ¢t + 10(r — 1) < ¢ <t +10(r — 1) + 6, at
which p; reads some 7. (This bound takes into account the fact that the synch procedure is
executed in strict alternation with another task.) Fix j to be the index of the first such read
that occurs. If 7; = true by time ¢ + 10(r — 1), then when p; reads T} the value is true and p;
sets T; = true by at most 2 time units later, i.e., by time ¢t + 10(r — 1)+ 8 < ¢+ 10r. This is a
contradiction, so it must be that T; # true by time ¢ + 10(r — 1). By the induction hypothesis
for r — 1, |R;| > 2"~! by time ¢ + 10(r — 1). Since p; reads T} by time ¢ + 10(r — 1) + 6, the
code implies that p; reads R; and then writes R; by time ¢ 4 107. Then the length of R; at
time ¢t + 107 is at least 2771 + 2771 = 27, as needed. [

6.4 Correctness Proof

We remind the reader that an execution of the algorithm is viewed as a sequence of primitive
atomic operations that are reads and writes of atomic registers. We now fix some execution «
of fast-n-approx.

As in the proof of the two-process algorithm (Section 5), the crucial point in the proof of
the algorithm is showing that, in Lines 3-4 of fast-n-approx, processes use “close” values for ¢*
and ¢®. We show that the value of an arbitrary counter when some process invokes fast-collect
is at most 3 less than the maximum value that this counter ever attains. This is formalized
and proved in the next lemma: (As before, we identify L with —1 in arithmetic expressions.)

Lemma 6.7 Assume that p; invokes fast_collect; in a. Fix some process p;; let k be the value
of C; returned by fast-collect;. Let k' be the mazimum value attained for C; in o. Then

EF—-3<k<K.
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Proof: The inequality & < k' follows immediately from the the fact that reads and writes
of the shared register are atomic. To prove the other inequality, let p;; be the first process
to execute the write operation in Line 4 of increase-counter. Such a process exists because p;
performs this write operation before invoking fast-collect;. Let o’ be a shortest prefix of « that
includes p;s’s write to Tj. Let k” be the value of C; at the end of a’. Since any invocation
of fast-collect follows this last write operation in Line 4, Lemma 6.1 and the fact that reads
and writes to C; are atomic imply that &” < k. Thus, it suffices to show that £’ —3 < k”.
There are two cases according to the way p; exits the alternate construct in Lines 2-3 of
increase-counter:

Case 1: p;s exits the while loop. It must be that one of the halting conditions of the while
loop is false for p;. If p;y and p; are in the same group, i.e., gy = g;, then p; will perform at
most one iteration of the while loop after o before p; also sees the corresponding condition to
be false. If p;; and p; are not in the same group, i.e., gy # g;, then p; will perform at most one
iteration of the while loop after o’ before p; sees the first condition to be false (by observing

Cy # L1). The claim follows.

Case 2: p; returns from synch,,. By definition, for all [ € {0,...,n — 1}, T; = L when py
terminates synch;,. It follows from Lemma 6.4 that, for all [ € {0,...,n— 1}, the value of C; at
the end of o’ is # L. By Lemma 6.5, p; will exit synch;(C') after performing at most 67 of its
own steps after /. It follows from the definition of alternate that p; will perform at most 3n
steps in the while loop in Line 2 of increase-counter, before synch,;(C') terminates. However,
each iteration of the while loop takes at least n steps (since n registers have to be read).
Thus, p; will perform at most three additional iterations of the while loop, before synch,(C')
terminates. The claim follows. [

This implies that, for each local counter, the values read by two different processes differ
at most by 3. Hence, the values used by different processes for the joint counters ¢* and ¢
differ at most by 3n. Formally, we have:

Lemma 6.8 Suppose i,j € {0,...,n — 1} and g € {a,b}. Assume the values returned by
fast-collect; and fast-collect; are ¢ and ¢!, respectively. Then |c] — ¢?| < 3n.

We can now prove that the algorithm satisfies the agreement property:
Lemma 6.9 If fast-approx; returns y; and fast-approx; returns y;, then |y; — y;| < e.

Proof: The general outline of the proof parallels that of Lemma 5.2; however, some of the
details are different. First, the discrepancy between processes’ view of the joint counters might
be 3n; to compensate for that, we use bias with ¢/6n. In addition, we must allow for the
possibility of using different values from the same group (by applying Lemma 4.4). The details
follow.
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We start with the proof for the case where p; and p; are not in the same group; without
loss of generality, assume ¢g; = a and g; = b.

Asgsume that the values computed by p; based on fast-collect; to be used in Lines 3-4 of

b b

fast-n-approx are (v{,v},c?,c?); similarly, assume that the values computed by p; based on
b

fast-collect; to be used in Lines 3-4 of fast-n-approx are <v],v],c], ]> Note that since p; is in
group a, ¢! > 0 and v{" # L; similarly, since p; is in group b, c? > 0 and and v;? # L.

For any process py, denote by 7y the write by process py in Line 1 of increase-counter (if it
appears in «). Since p; and p; decide, m; and 7; must appear in a. Let p; be such that ;s
is the first write of Line 1 of increase-counter in a. Assume, without loss of generality, that
pir is in group a. Intuitively, we assume that the first process to start the second phase of the
algorithm belongs to p;’s group, a

The code of the algorithm implies that, for any p; in group b, 7; precedes any calculation
of C'* by pjr. Since 7y precedes ;s it follows that p;; will always calculate C'* # L. Thus,
¢ > 0 and hence fast-n-approx; returns in Line 4 and v} # L. Also, the above implies that ok
never increases beyond 0. Thus, c? =0and ci? € {L,0}. We separate the rest of the proof into
two cases:

Case 1: ¢? = 1. Then fast-n-approx; returns v in Line 3. LFrom the code it follows that
¢ > |of|6n/e. By Lemma 6.8, ¢f > [vf|6n/e — 3n. Since ¢} > 0 = c , applying Lemma 4.2 (2)
Wlth m = 3n we get that

|bias(vf, v?, ¢4, ¢, e /6n) — vi| < /2 . (1)

IR ]7 €

Also, Theorem 3.1 implies that [vf — vf| < ¢/12. Applying Lemma 4.4 with § = ¢/12,
0_ 1_ b .0 1 b 0 o1 b

' =cf, ¢ =cj, vg = 0], v5 = 0], vf =0, vp = v), we get that
|b|as(v],v?,c], ],5/6n)—b|as(v“vf, 5, ],5/6n)|<65/12_5/2 (2)

;From (1) and (2) it follows that

|bias(v],v?,c], ],5/671) ol <e,

as needed.

Case 2: ¢? = 0. Thus, fast- n approx; returns in Line 4 and v? # L. We have that min{c?, c?} =

=0 and min{c?, ]} = c = 0. Also, [¢f — ¢?| + |t — cb| = [ef — ¢?| < 3n by Lemma 6.8.
Applymg Lemma 4.3 with m = 3n we get

|bias(v?, v2, ¢, b, e /6n) — bias(v?, v2, ¢%, %, e /6n)| < 3n-e/6n=¢/2 . (3)

72V Cir Gy 79U, C55Ch

Also, Theorems 3.1 and 3.10 imply that |vf — v}| < /12 and |vb — v?| < ¢/12. By applying
Lemma 4.4 with § = ¢/12 we get

|bias(vf, v}, ¢, ¢?, e /6n) — bias(v?, v?, e, et e /6n)| < 6c/12 =¢/2 . (4)

27272727 ]7]72727
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;From (3) and (4) it follows that

|bias(v?, v?, ¢, %, e/6m) — bias(v?, v%, %, b, e /6n)| < € |

09V Gy g 79U, C55Ch
as needed.

We now consider the case where p; and p; are in the same group; without loss of generality,
assume g; = g; = a. Let py be such that 7 is the first write of Line 1 of increase-counter in

a. (As before, m is the write by process py in Line 1 of increase-counter.) Assume first that
pi, p; belong to the group that wrote first, i.e., g# = ¢; = g;. In this case, ¢? c € {L,0} (by
arguments similar to those above). We separate the rest of the proof into three cases:

Case 1: ¢? = L. Then fast-n-approx; returns v¢ in Line 3. If c? = 1 then fast-n-approx; returns
v? in Line 3, and the claim follows since Theorem 3.1 implies that |v} —vf| < e/12. Otherwise,
b = 0. ;From the code it follows that ¢} > |v}[6n/e. By Lemma 6.8, ¢ > [v|6n/c — 3n.
Smce ¢t >0= c , applying Lemma 4.2 (2) with m = 3n we get that

|bias(vd, w2, 2, cb, e /6n) — vf| < /2 . (5)

27 ]7 ]7 ]7

Also, Theorem 3.1 imply that [vf — vf| < ¢/12. Applying Lemma 4.4 with § = ¢/12, A=

cl—cb vg—v vé—vb v?—v v%:v],wegetthat
b b

|bias(v], v}, ], ],5/671) — bias(v], v/, cf, ],5/6n)| <6e/12=¢/2. (6)

;From (5) and (6) it follows that
|bias(v],v?,c], ],5/671) vl <e,

as needed.
Case 2: c? = 1 is symmetric to Case 1.
Case 3: cb = c] = 0. Thus, fast-n-approx; and fast-n- approx return in Line 4 and vl, ] b4 L.

We have that min{c?, ¢’} = ¢? = 0 and min{c?, ]} = c = 0. Also, [¢f — | + |2 — cb|
|ef — ¢?| < 3n by Lemma 6.8. Applymg Lemma 4.3 with m = 3n we get

|bias(v?, v2, ¢, b, e /6n) — bias(v?, v2, ¢%, %, e /6n)| < 3n-e/6n=¢/2 . (7)

72V Cir Gy 79U, C55Ch

Also, Theorems 3.1 and 3.10 imply that |vf — v}| < /12 and |vb — v?| < ¢/12. By applying
Lemma 4.4 with § = ¢/12 we get
|bias(v?, v?, . cb, e /6m) — blas(v],v?, cd cbe/bn)| < 6e/12=¢/2 . (8)

;From (7) and (8) it follows that

|bias(v?, v?, ¢, %, e/6m) — bias(v?, v%, %, b, e /6n)| < € |

09V Gy g 79U, C55Ch
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as needed.

Assume now that p; and p; are not in the group that wrote first, ie., gy # g;. By
arguments similar to those above, ¢ = ¢} =0, ci? > 0 and c? > 0. Thus, fast-n-approx; returns
in Line 4 and v? b# 1. We have that min{c?, ¢’} = ¢ = 0 and min{c?,c?} = ¢j = 0. Also,

|ef — et + |2 — il = |2 — c?| < 3n by Lemma 6.8. Applying Lemma 4.3 with m = 3n we get

|bias(v;,v?,c?,c?,5/6n) — bias(v;,v?,c?,c?,g/Gnﬂ <3n-efbn=c¢/2. (9)
Also, Theorems 3.1 and 3.10 imply that |vf — vf| < /12 and |v? — v?| < ¢/12. By applying

Lemma 4.4 with § = ¢/12 we get

|bias(vf, v}, ¢, ¢?, e /6n) — bias(v?, v?, e, et e /6n)| < 6c/12 =¢/2 . (10)

T Y Y ey VAR R B

;From (9) and (10) it follows that

|bias(vf, v}, 2, c?, e /6n) — bias(v?, v?, ¢, b, e /6n)| < ¢

19 Yo B Yoo R RS R E]

as needed. []
We have:

Theorem 6.10 Procedure fast-n-approx is a wait-free algorithm for the n-process approximate
agreement problem whose time complexity is O(logn).

Proof: Agreement follows from Lemma 6.9. Validity follows immediately since the values
returned by wait-free-approx and wait-approx are in the range of the original inputs, and the
bias function preserves this property (by Lemma 4.1).

The algorithm is wait-free because the first alternative of each alternation construct and
fast-collect are wait-free.

Within O(1) time all processes finish n-to-2. Thus, within O(1) time all processes start
procedure increase-counter, write to C; and invoke synch. By Lemma 6.6, within O(logn) time
each process terminates synch. Thus, within O(logn) time all processes exit increase-counter
and invoke fast-collect. By Lemma 6.3, all processes return from fast-collect within O(logn)
time. Hence, the total time complexity is O(logn). [

7 A logn Time Lower Bound

In this section, we show that the log n dependency exhibited by the algorithm of Theorem 6.10 is
inherent: the time complexity of any wait-free algorithm for n-process approximate agreement
is at least log n. Together with Theorem 3.1, this result shows that there are problems for which
wait-free algorithms take more time (by an Q(logn) factor) than non-wait-free algorithms.
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In the rest of this section, we assume that each process has only one register to which it
can write. Since the size of registers is not restricted and since only one process may write to
each register, there is no loss of generality in this assumption. Let R; be the register to which

p; writes. For a configuration C' and a process p;, let st(p;,C') be the pair consisting of the
local state of p; and the value of R; in C, i.e., st(p;, C) = (state(p;, C'), val(R;,C)).

The synchronized schedule is the schedule in which processes take steps in round-robin
order starting with pg, essentially operating synchronously. The sequence of r rounds in the
round-robin order is denoted o,. For any configuration C, the corresponding synchronized
execution from C is uniquely determined by the algorithm. Note that this is a failure-free
execution.

We now define the set of processes that could have influenced p;’s state at time r in the
synchronized execution from a configuration C'. Let €' be a configuration; by induction on
r > 0, define the set INF(p;,r,C), for every ¢ € {0,...,n — 1}, using the following rules:

1. r=0: INF(p;,r,C) = {p;}, for every i € {0,...,n — 1}.

2. r > 1:if p;’s rth step in (C, 0,) is a read of R;, then INF(p;,r,C)= INF(p;,r—1,C)U
INF(p;,r—1,C). If p;’s rth step is a write (to R;) then INF(p;,r,C')= INF(p;,r—1,C).

Lemma 7.1 |INF(p;,r,C)| < 2" for every configuration C, r > 0 and ¢ € {0,...,n — 1}.
Proof: By induction on r. [ |

The next lemma formalizes the intuition that INF includes all the processes that can
influence p’s state up to time r.

Lemma 7.2 Let 'y and Cy be two configurations, let p; be any process and let v > 0. If
st(pr,C1) = st(pg, Ca) for all pr € INF(p;,r,C1), then st(p;,Cro,) = st(p;, Ce0.).

Proof: The proofis by induction on r. For the base case, r = 0, we have INF(p;,0,C1) = {p;}
and og = A. Then the claim follows immediately from the assumption.

To prove the induction step, assume r > 1 and the claim holds for r — 1, and suppose that
st(p,C1) = st(pg, C2) for all pp € INF(p;,r,C1). Since, by definition, INF(p;,r —1,Cq) C
INF(p;,r,Cy), it follows that st(pg,C1) = st(pg,Ca) for all p € INF(p;, 7 — 1,C1). Then by
the induction hypothesis, st(p;, C1o,-1) = st(p;, C20,-1). We consider two cases:

If p;’s rth step in (Cq,0,) is a write then the fact that st(p;,Cio.—1) = st(p;, Co0r-1)
implies that st(p;, Ci0,) = st(p;, C20,), as needed.

On the other hand, suppose that p;’s rth step in (Cy,0,) is a read, say from R;. By
definition, INF(p;,r —1,C1) C INF(p;,r,C4), and hence, st(py,Cy) = st(pg,C2) for all py €
INF(p;,r —1,C1). Then by the induction hypothesis, st(p;, Cio,-1) = st(p;,C20,_1). Since
also st(p;, Cro,-1) = st(p;, Ceo.—1), it follows that st(p;, C10,) = st(p;, C20,), as needed. m
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We can now prove:

Theorem 7.3 Any wait-free algorithm for the n-process approximate agreement problem has
time complexity at least logn.

Proof: Assume that A is a wait-free approximate agreement algorithm. We prove a slightly
stronger claim: there exists a failure-free execution a in which no process decides before time
log n. Suppose, by way of contradiction, that in all failure-free executions some process decides
before time log n.

Fix some ¢ < 1. Let o be the infinite synchronized schedule. Consider the execution (Cy, o)
of A from the initial configuration Cy where processes start with inputs (0,...,0). Let ¢ be
the time associated with the first decision event in (Cp, o), and let p; be the process associated
with this event; by assumption, ¢t < logn. By the validity property, p; must decide on 0 since
all processes start with 0.

By Lemma 7.1, we have that |[INF(p;,t,Co)| < 2! < n. Thus, there exists some process,
say p;, that is not in INF(p;,t,Co).

Intuitively, to complete the proof, we create an alternative execution in which p; “starts
early” with input 1, runs on its own and thus must eventually decide 1. We then let the rest of
the processes execute as if they are in the synchronized execution from Cy and use Lemma 7.2
to show that process p; still decides on 0, which is a contradiction to the agreement property,
since ¢ < 1.

More precisely, apply 7, an infinite schedule consisting of steps of p; only, to the initial
configuration Cy, where processes start with inputs (1,...,1). The resulting execution (Cy,7)
is (n — 1)-admissible, and thus, since A (n — 1)-solves the approximate agreement problem,
and since p; is nonfaulty in 7, there exists a finite prefix 7/ of 7 in which p; decides. By
validity, p; decides on 1. Now apply 7’ to the initial configuration Cy where all processes
but p; start with input 0, and p; starts with input 1. By induction on the prefixes of 7/,
it follows that st(p;, C17') = st(pj, C21’). Thus p; decides on 1 in Cy7’. Since p; can write
only to R;, it follows that for all processes py # p;, st(px,C17") = st(px,Co). By Lemma 7.2,
state(p;, C17'0y) = state(p;, Cooy). Thus, p; decides on 0 in Cy7'0¢, and p; decides 1, which is
a contradiction to agreement, since ¢ < 1. [ |

8 A Tradeoff Between Work and Time

We now consider the performance of wait-free algorithms when failures occur. A drawback
of the fast algorithms we have presented in this paper is that if a failure does occur, then
the remaining processes will have to take many steps before halting. We show that this
phenomenon is unavoidable. Roughly speaking, we prove that if an algorithm terminates
in a small number of steps in executions where failures do occur, then it is slow in normal
executions. In the rest of this section we restrict our attention to the two-process case.
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Let the work performed by an algorithm be defined as the maximum, over all executions, of
the total number of operations performed by all processes before deciding. To bound the work
from below we show a stronger bound: we prove a lower bound on the number of operations
a single process performs before deciding when running on its own. Clearly, this also gives a
lower bound on the work.

Let £ > 1 be an integer. An algorithm is k-bounded if from any reachable configuration, a
process that executes k consecutive steps on its own must decide. Fix a k-bounded wait-free
algorithm A for approximate agreement; all definitions and lemmas in the rest of this section
are with respect to A. For each process p; and each configuration ' reachable in an execution
of A, define pref;(C'), the preference of p; in C, to be the value on which p; decides in the
execution fragment starting from C in which it runs alone until it decides.

A finite schedule is a block if it consists of a positive number of events by pg followed by
one event by py, or vice versa.

Lemma 8.1 Let ¢ be a finite schedule, and let Cy be an initial configuration. Let C' = Cyo.
Then there exists a finite block schedule o' such that

[prefolCo') = pref (€' > rlprefo(C) = pref ()]

Proof: The proof considers the tree of all block schedules applied to C'. A case analysis,
according to the types of steps taken, similar to the one in [34], is used to show that it cannot
be that all the pairs of preferences associated with leaves of this tree are close together. The
details follow.

Let 7o = 0%, i.e., the schedule consisting of k events of pg. Similarly, let 7, = 1%, Let
(C,10) = C,Cq,...,Ck, and (C,mq) = C,CY,...,C). Forany [, 1 <1 <k, define D; = (1,
i.e., the configuration that results from applying an event of py to ;. Similarly, for any [,
1 <1 < k, define D} = (0. Define v = prefo(D)), v = pref(D)), ul = prefo(D}) and
uy = prefy(Dj).

Since A is k-bounded, it must be that py decides in C'rg; by definition, it must decide
on prefy(C). Similarly, py decides on pref,(C) in C1y. Note that prefo(C) = prefo(Cy) =
prefo(Crl) = Uga and pref1(C) = pref1(C}) = pref1(C}0) = U]f

We show that for all I, 1 < [ < k, either v} = vé"’l or v} = v{"’l. There are four cases,
depending on the type of operation taken in pg’s step from Cj to (41 and in pq’s step from
C to Dy

1. po writes and p; writes: commutativity implies that v = vé"’l.

2. po reads and p; reads: commutativity implies that v} = vé"’l.

I+1
0

3. po writes and pq reads: v(l) = v, , since the state of pg is the same in ;0 and Dj44.
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4. po reads and py writes: v{ = vi"’l, since the state of p; is the same in D; and Dj44.

By symmetric arguments we can show that for all [, 1 <[ < k, either u) = ué"’l or uf = ull‘H.

In a similar manner we show that either v = u} or v} = u}, by case analysis, depending on

the type of operation taken in pg’s step from C' to C; and in py’s step from C to Cf:

1. po writes and p; writes: commutativity implies that v} = u} and v = u}.

2. po reads and p; reads: commutativity implies that v} = u} and v{ = u}.

3. po writes and p; reads: vy = u}, since the state of pg is the same in Dy and Dj.

4. po reads and p; writes: vf = ui, since the state of p; is the same in Dy and D].
Suppose, for instance, that v{ = ul. (The argument is analogous if v§ = uj.) It is possible to
show (e.g., by induction) that [vf — v} < S5, [v) — ot|, and that |uf — ul| < 25, |ub — ul).
Therefore, [vf —u¥| < S5, |vb —ol| + 35, |ul —u}|. By simple calculations, this implies that
either there exists some [ such that |v) — v{| > Z&|vf — uf|, or there exists some [ such that,
lub — ul| > 3z|v& — uf|. Recall that pref,(C) = v}, and pref,(C) = uf. Therefore, either there
exists some [ such that [0} — v}| > & |prefo(C) — pref,(C)], or there exists some [ such that,
lul — ul| > % prefo(C) — pref1(C)]. In the first case, the claim follows by taking ¢’ = 0'1, in
the second case, the claim follows by taking ¢’ = 1'0.

These facts can be used to show (e.g., by induction) that |vf — »9] < S8, v} — vl|, and
that |uf — u8| < S°F_, |ul — u}|. By simple calculations, this implies that either there exists
some [ such that |vh—vl| > 2-|vf —u}|, or there exists some [ such that, [uf—ui| > & |vf —uf].
Recall that prefo(C') = vk, and pref,(C) = uf. Therefore,]]] either there exists some [ such that
[oh —vl| > Z|prefo(C) — pref,(C')|, or there exists some [ such that, |u) —u}| > & |prefo(C) -
pref1(C)]. In the first case, the claim follows by taking ¢’ = 0'1, in the second case, the claim
follows by taking o/ = 1'0. ]

Note that the validity condition implies that if p;’s input in an initial configuration C'is w;
then pref,(C) = v;. Starting with this fact and applying Lemma 8.1 iteratively, we can bound
the rate at which a k-bounded algorithm converges. We get:

Theorem 8.2 Let A be a k-bounded wait-free algorithm for approzimate agreement between
two processes, and let xog and xq be arbitrary real numbers, xg # x1. Then there exists an
execution of A where processes start with inputs (xg,x1), in which the time complexity is
Q(log,, 2zl

Proof: Let C be an initial configuration in which the two processes have inputs z¢ and zq,
respectively. We construct, inductively, a schedule g; such that o; is a sequence of [ blocks and

for ) = Coy,
l
prefol ) = pref (€01 = (57 ) Iprefo €)= pref (€
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This is done by repeatedly applying Lemma 8.1. We have that time(o;) = [, since o; consists
of [ blocks. The validity condition implies that pref;(C') = ;. Thus, |prefo(C) — pref{(C)| =
|zg — 21]. The claim follows by noticing that it cannot be that both py and p; have decided in
a configuration D if |pref,(D) — pref{(D)| > «. |

Remark 8.1 The case analysis in the proof of Lemma 8.1 can be extended to handle multi-
writer multi-reader registers; thus, the above tradeoff applies also to algorithms that use multi-
writer multi-reader atomic registers.

9 Properties of the Bias Function

In this section the interested reader may find the long postponed proofs of Lemma 4.1 through 4.4.
We begin with the rather straightforward proof of Lemma 4.1.

Lemma 4.1 Let % ¢! be nonnegative integers, and v°, v', e be real numbers, with ¢ > 0. Then

bias(v°, v, % ¢l ¢) € range({v°, v'}).

Proof: Let y = bias(v®, v, %, ¢! 5) The claim is trivial if y is calculated in Line 1. If y

is calculated in Line 2, then y = v + |U%|_T_rvl|(|v | — min{cle, [v!]}). If the min is attained
in the second term, then y = v! and the claim follows. So assume cle < |v1| S0 y =l +
ﬁtﬁﬂv | — cle). Assume v! > oY (A symmetric argument applies when v! < v°.) Then

0¥ — vl <0, 50 y <ol Since|%(|v | —cle)| < ol — 2P, it follows that y > o°.

The case where y is calculated in Line 3 is symmetric. [ |
The following is the proof of Lemma 4.2.

Lemma 4.2 Let c°, ¢! be nonnegative integers, and v°, v, e, m be real numbers, ¢ > 0, m > 0.
(1) Suppose ¢* > ¥ and |v'|/e —m < c'. Then |bias(v?, 01, % el e) — vl| < me.
(2) Suppose ¢® > ¢! and |v°|/e — m < . Then |bias(v?, vl, % ¢l e) — v°] < me.

Proof: We present the proof only for (2); the proof for (1) follows from symmetric arguments.

Let y = bias(v?, v!, %, ¢l ). If y is calculated in Line 1 of the bias code, then y = 0 and v* = 0

and the claim follows. Hence, since ¢ > ¢! it follows that y is calculated in Line 3 of bias, i.e.,

?Jl—?JO

WUM — min{c’, [0v°]}) .

y=v"+
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If the min attains its value in the second term then y = v°, and the claim follows. Otherwise,
% < |0°[; thus,

vl — 0
|y—?]0| = ||U0|+|?}1|(|v0| CO€)|
v — 00 0 0
_ |v0|+|vl|||v | — "¢l
< PO = e = 00 = P < me

by the hypothesis of the lemma.

Next is the proof of Lemma 4.3.

Lemma 4.3 Let ¢, cl, ey, cl be nonnegative integers, and v°, v, e, m be real numbers, ¢ > 0

and m > 0. Suppose min{c), ¢}l = min{c{,cl} = 0 and |c§ — {| + | — ci| < m. Then
0> €0 1) €1 0~ 0~ 6
bias(v®, v!, 8, cf, &) — bias(v®, !, ¢V, ef, e)| < me .

1 0101)‘

Proof: Let yg = bias(v®, v, ¢5, ¢}, ¢), and y; = bias(v?, vt, ¥ el ¢

If v° = ! = 0 then both yo and 3; are calculated in Line 1 of bias, i.e., yo = y; = 0 and
the claim follows.

Now assume yq is calculated in Line 2 of bias, while y; is calculated in Line 3 of bias

(the reverse case is symmetric). Thus, ¢J < ¢}, while ¢} < ¢§. Thus, by assumption, ¢§ =
et = 0. Since [¢) — §| + |ef — cl| < m, it follows that |[?] + |c¢f| = ¥ + ¢} < m. Thus,

min{cy, [v°|/e} + min{c},|vt|/e} < m. So, min{c{e, |00} + min{cle, |v!]} < me. We have

1 v — 2! 1 . 1 1 0 vl — 2" 0 s (0 0
Yo=v + mﬂv | = min{cge, [v']}) and y =v" + mﬂv | = min{cie, [07[}) .
Thus,
0 1 1 0
1 v = 1 o1 1 0 v v 0 -0 0
— = _— — € - - — — €
o=l = o' (et = minfefe [0}) = of = G (] - minfefe, 1)
0 — pl 0 — pl . .
= "= g (P 0D = gy (minfee, [0} -+ min{efz, o1
|00 — ol . .
= m|mm{cé€a|vl|}+mm{cgéa|UO|}|
< |minfebe, [o![} + min{efe, [o°]}] = min{cle, |o'[} + min{efe, [oO]} < me .
as needed.
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Now assume that both yo and y; are calculated in Line 2 of bias (the case where both are
calculated in Line 3 of bias is symmetric), i.e.,

?JO—?Jl

[0°] + [ot]

0_ 1
1 v =

(|v1| — min{c(l)g, |v1|}) and 9y = v + - min{c%g, |v1|}) .

1
Yo=1v + |v0|—|—|v1|(|v |

If for yo the min is attained in the second term, then cie > |v!], and yo = vl;since [¢f—cl| < m
it follows that ¢f > |v!|/e —m. Because y; is calculated in Line 2, ¢§ < ¢} and the claim follows
from Lemma 4.2 (1). A similar argument applies if for y; the min is attained in the second

term. So assume that for both yo and y; the min is attained in the first term. Thus,

0 1 0 1

v v — v
o —ml = o'+ g (o] = che) — v = ([0 - ele)|
|[09] + [0 0 |[09] + [0 !

0 — pl
= |m(c%5—055)|

|U - v | 1
= |?]0| + |?J1||( CO€)|
< (ele — ege)| = elef — ¢ < me

as needed. []

In the proof of the next lemma we use the following two facts:

Claim 9.1 [fz,y,2',y" are real numbers, such that |z| + |y| 7£ 0 and |2'| + |y'| # 0, and for

o lzl(y==) _ |2'I(v’
some 8, |v — 2’| < 8§ and |y — y'| < 6, then |7 I |_|_|y| |x,|_|_|y| |<36
We prove this claim by first showing that |x($y_|__yx) — xlg(gy_l_y | < 36, using calculus, then

handling the absolute values by case analysis.

Claim 9.2 If z,y,2',y" are real numbers, such that || —|— ly| # 0 and |x’| +1y'| # 0, and for

) (y'—z
some 6, |z —a'| < 6 and |y - y'| < 8, then |55k - B < s

We prove this claim by straightforward calculations and a case analysis. Finally, we can
prove Lemma 4.4.

Lemma 4.4 Let ¥, c! be nonnegative integers, and vy, vi, vy, vi,e,6 be real numbers, with

e>0,6>0. Suppose |[v) —v?¥| < 6§ and |v} — vi| < 6. Then

|bias(v], v5, ¢, ct,e) — bias(v), v, %, c',e)| < 66 .
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Proof: Let yo = bias(v],vd,c% ¢l e), and y; = bias(v?, v, ¢ ¢l e). If v = v} = 0 then
Yo = 0. Thus, [0?] < é and |v}| < 8. So from Lemma 4.1 it follows that |y;| < ¢ and the claim

follows. The case v{ = v{ = 0 follows from symmetric arguments. So assume at least one of

v, v} is nonzero and similarly for at least one of v¥, v{.

Assume that ¢® < ¢!, i.e., yo and y; are calculated in Line 2. (The other case, where ¢! < ¢?
and yo and y; are calculated in Line 3, is symmetric.) Then

0_ .1 0_ .1
1 Yo — Yo 1 v — vy

Yo = vg + Tor o ([vol = min{ele, [ogl}) and yi = vi + —g—1(Joi| — min{cle, [o][}) .
oI+ T T+ T

First, assume the min for yo is attained in the second term; then yo = vi. In this case, if

the min for y; is also attained in the second term, then y; = v{, and the claim follows. On

the other hand, suppose the min for y; is attained in the first term. Since the min for yg is

attained in the second term, cte > |v}| > |vi| — 6. Applying Lemma 4.2 (1) with m = é/¢, we

get that |y; — vi| < 6. Since |v} — v{| < 6, we have |yo — 11| < 26.

Now assume that in both cases the min is attained in the first term. In particular, cte < |v{]|
and e < |vd|. We have,

v) — v} v — ol
o — w1l = oo+ 5o (lvel = ¢'e) = vl = gt ([of] = ')
o |05l + vg 0 ! [0P] + o] !
00 — v 00 — pl
< Jug —vi| + Ii(lv | —cle) = 5 gy (lvi] = cle)l
R I A I R o]+ [of

0 — pl 00 — pl

< 5+|M(|vél—01€)—17(lvll cle)|
vgl + [vg] tl+ o1l
< 6+||Ué|(7]8_7fé) B |?]1|(?J? U%)| | ?]8 ?Jé cle ?J?— ?J% et |
- 05| + [vg] 02| + Jof] 9l + o]~ TR+ 1od]
0 _ pl 0_ .1
< 464 e 00 Uol - %1 v11| , by Claim 9.1,
[ool + [vol |07 + 1]
26

< 464 cle— 5 by Claim 9.2,

min([vd] + [vg], [vf] + [o])

26 26
< 46—|—c€—1§46—|—015T§66.
n(lvgls lvf]) cle

10 Discussion and Further Research

We have presented a relatively fast, O(logn) time, wait-free algorithm for n-process approxi-
mate agreement. This shows that wait-free algorithms for approximate agreement can be fast,
but not as fast as the best non-wait-free algorithms for this problem: we have shown that logn
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is a lower bound on the time complexity of any wait-free approximate agreement algorithm,
while there exists an O(1) time non-wait-free algorithm.

Using the emulators of [5], our algorithms can be translated into algorithms that work
in message-passing systems. The algorithms have the same time complexity (in complete
networks) and are resilient to the failure of a majority of the processes.

There are many ways in which our work can be extended. An interesting direction is to
consider the impact on our results of using other shared memory primitives. For example,
if powerful Read-Modify- Write registers are used, then a constant time wait-free approximate
agreement algorithm can be devised. What happens if multi-writer multi-reader registers are
used? The existence of faster wait-free algorithms using these primitives will imply a lower
bound on the time complexity (in normal executions) of any implementation of multi-writer
registers from single-writer registers.

Another avenue of research is to see whether the techniques presented in this paper, both
for algorithms and lower bounds, can be applied to other problems. We believe, for example,
that the O(1) time algorithm for two-process approximate agreement can be generalized to any
decision problem of size 2, using the characterization result of [9]. It is interesting to explore
whether similar results can be proved for problems that require repeated coordination (e.g.,
l-exclusion).

Finally, there remains the fundamental unanswered question raised by this work: Can wait-
free (highly resilient) computation be performed at the price of no more than a logarithmic
slowdown? Even more strongly, are there O(logn) time wait-free algorithms for all problems
that have wait-free solutions?

Since the preliminary presentation of our work, first steps have been made towards an-
swering this question in the context of randomized computation [47]. Based on the alternated-
interleaving method presented in Section 6.2, Saks, Shavit and Woll [47] are able to show
that any decision problem that has a wait-free or expected wait-free!® solution algorithm, has
an expected wait-free algorithm with the same worst case time complexity, that takes only
O(log n) expected time!l in fault-free executions. However, the above question itself is still far
from being answered.
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19 An expected wait-free algorithm is a randomized algorithm that is only expected, rather than gnaranteed,
to terminate within a finite number of steps.
"This is optimal by a straightforward extension of our lower bound to the case of randomized computation

(see [47]).
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