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Abstract

The time complexity of wait�free algorithms in �normal� executions� where no failures occur
and processes operate at approximately the same speed� is considered� A lower bound of log n
on the time complexity of any wait�free algorithm that achieves approximate agreement among
n processes is proved� In contrast� there exists a non�wait�free algorithm that solves this
problem in constant time� This implies an ��logn	 time separation between the wait�free and
non�wait�free computation models� On the positive side� we present an O�logn	 time wait�free
approximate agreement algorithm
 the complexity of this algorithm is within a small constant
of the lower bound�

Keywords� Asynchronous distributed systems� shared memory� wait�free algorithms� atomic
read�write registers� lower bounds�



� Introduction

In shared�memory distributed systems� some number n of independent asynchronous processes
communicate by reading and writing to shared memory� In such a computing environment� it is
possible for processes to operate at very di�erent speeds� e�g�� because of implementation issues
such as communication and memory latency� priority�based time�sharing of processors� cache
misses and page faults� It is also possible for processes to fail entirely� Wait�free algorithms
have been proposed as a mechanism for computing in the face of variable speeds and failures
 a
wait�free algorithm guarantees that each nonfaulty process terminates regardless of the speed
and failure of other processes ����� ���	�� The design of wait�free algorithms has been a very
active area of research recently �see� e�g�� ��� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ���	�

Because wait�free algorithms guarantee that fast processes terminate without waiting for
slow processes� wait�free algorithms seem to be generally thought of as fast� However� while
it is obvious from the de�nition that wait�free algorithms are highly resilient to failures� we
believe that the assumption that such algorithms are fast requires more careful examination�

We study the time complexity of wait�free and non�wait�free algorithms in �normal� exe�
cutions� where no failures occur and processes operate at approximately the same speed� We
select this particular subset of the executions for making the comparison� because it is only
reasonable to compare the behavior of the algorithms in cases where both are required to
terminate� Since wait�free algorithms terminate even when some processes fail� while non�
wait�free algorithms may fail to terminate in this case� the comparison should only be made in
executions in which no process fails� i�e�� in failure�free executions� The time measure we use
is the one introduced in ���� ���� and used to evaluate the time complexity of asynchronous
algorithms� in� e�g�� ��� ��� ��� ��� ���� To summarize� we are interested in measuring the time
cost imposed by the wait�free property� as measured in terms of extra computation time in the
most normal �failure�free	 case�

In this paper� we address the general question by considering a speci�c problem�the ap�
proximate agreement problem studied� for example� in ���� ��� ��� ���
 we study this problem
in the context of a particular shared�memory primitive�single�writer multi�reader atomic reg�
isters� In this problem� each process starts with a real�valued input� and �provided it does not
fail	 must eventually produce a real�valued output� The outputs must all be within a given
distance � of each other� and must be included within the range of the inputs� This problem�
a weaker variant of the well�studied problem of distributed consensus �e�g�� ���� ���	� is closely
related to the important problem of synchronizing local clocks in a distributed system�

Approximate agreement can be achieved very easily if waiting is allowed� by having a
designated process write its input to the shared memory
 all other processes wait for this
value to be written and adopt it as their outputs� In terms of the time measure described
above� it is easy to see that the time complexity of this algorithm is constant�independent

�Wait�free is the shared�memory analogue of the non�blocking property for synchronous transaction systems
�cf� ���� �
���
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of n� the range of inputs and �� On the other hand� there is a relatively simple wait�free
algorithm for this problem� which we describe in Section �� and which is based on successive
averaging of intermediate values� The time complexity of this algorithm depends linearly on
n� and logarithmically on the size of the range of input values and on ���� A natural question
to ask is whether the time complexity of this algorithm is optimal for wait�free approximate
agreement algorithms�

Our �rst major result is an algorithm for the special case where n � �� whose time com�
plexity is constant� i�e�� it does not depend on the range of inputs or on � �Section �	� The
algorithm uses a novel method of overcoming the uncertainty that is inherent in an asyn�
chronous environment� without resorting to synchronization points �cf� ����	 or other waiting
mechanisms �cf� ����	
 this method involves ensuring that the two processes base their decisions
on information that is approximately� but not exactly� the same�

Next� using a powerful technique of integrating wait�free �but slow	 and non�wait�free �but
fast	 algorithms� together with anO�logn	 wait�free input collection function� we generalize the
key ideas of the ��process algorithm to obtain our second major result
 a wait�free algorithm
for approximate agreement whose time complexity is O�logn	 �Section �	� Thus� the time
complexity of this algorithm does not depend on either the size of the range of input values or
on �� but it still depends on n� the number of processes�

At this point� it is natural to ask whether the logarithmic dependence on n is inherent
for wait�free approximate agreement algorithms� or whether� on the other hand� there is a
constant�time wait�free algorithm �independent of n	� Our third major result shows that the
logn dependency is inherent
 any wait�free algorithm for approximate agreement has time
complexity at least logn �Section �	�� This implies an ��logn	 time separation between the
non�wait�free and wait�free computation models�

We note that the constant�time ��process algorithm behaves rather badly if one of the
processes fails� The work performed in an execution of an algorithm is the total number of
atomic operations performed in that execution by all processes before they decide� We present a
tradeo� between the time complexity of and the work performed by any wait�free approximate
agreement algorithm� We show that for any wait�free approximate agreement algorithm for �
processes� there exists an execution in which the work exhibits a nontrivial dependency on �

and the range of inputs�

In practice� the design of distributed systems is often geared towards optimizing the time
complexity in �normal executions�� i�e�� executions where no failures occur and processes run at
approximately the same pace� while building in safety provisions to protect against failures �cf�
����	� Our results indicate that� in the asynchronous shared�memory setting� there are problems
for which building in such safety provisions must result in performance degradation in the
normal executions� This situation contrasts with that occurring� for example� in synchronous
systems that solve the distributed consensus problem� In that setting� there are early�stopping
algorithms �e�g�� ���� ��� ���	 that tolerate failures� yet still terminate in constant time when

�The lower bound is attained in an execution where processes run synchronously and no process fails�
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no failures occur� The exact cost imposed by fault�tolerance on normal executions has been
studied� for example� in ���� ��� ���� For synchronous message�passing systems� it has been
shown that non�blocking protocols take twice as much time� in failure�free executions� as
blocking protocols �����	�

Recent work has addressed the issue of adapting the usual synchronous shared�memory
PRAM model to better re�ect implementation issues� by reducing synchrony ����� ��� ��� ���
���	 or by requiring fault�tolerance ����� ���	� To the best of our knowledge� the impact of
the combination of asynchrony and fault�tolerance �as exempli�ed by the wait�free model	 on
the time complexity of shared�memory algorithms has not previously been studied� In �����
Martel� Subramonian and Park present e�cient fault�tolerant asynchronous PRAM algorithms�
Their algorithms optimize work rather than time and employ randomization� Another major
di�erence is that they assume that inputs are stored in the shared memory� so that every
process can access the input of every other process�

The rest of the paper is organized as follows� In Section � we present formal de�nitions of the
systems considered in this paper and introduce the time measure� The approximate agreement
problem is de�ned in Section �� where we also present a fast non�wait�free algorithm and a
slow wait�free algorithm for reaching approximate agreement� Section � introduces a �bias�
function on which the algorithms in the following sections are based� Proofs of the various
properties of this function are� to ease the presentation� deferred to Section �� A constant time
wait�free algorithm for approximate agreement between two processes is presented and proven
correct in Section �
 key ideas from this algorithm are used in the O�logn	 time wait�free
approximate agreement algorithm presented in Section �� Section � contains the log n time
lower bound for wait�free approximate agreement algorithms� Section � presents the lower
bound for the tradeo� between the time complexity and the work complexity of a wait�free
algorithm for approximate agreement� We conclude� in Section ��� with a discussion of the
results and directions for future research�

� Model of Computation and Time Measure

In this section we describe the systems and the time measure we will consider� Our de�nitions
are standard and are similar to the ones in� e�g�� ��� ��� ��� ��� ��� ����

A system consists of n processes p�� � � � � pn��� Each process is a deterministic state machine�
with a possibly in�nite number of states� We associate with each process a set of local states �
Among the states of each process are a subset called the initial states and another subset
called the decision states� Processes communicate by means of a �nite number of single�writer
multi�reader atomic registers �also called shared variables	� No assumption is made regarding
the size of the registers� Each process pi has two atomic operations available to it for accessing
a shared register R


� write�R� v	 writes the value v to the shared variable R�
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� read�R	 reads the shared variable R and returns its value v�

A system con�guration consists of the states of the processes and registers� Formally�
a con�guration C is a vector hs�� � � � � sn��� v�� � � �i where si is the local state of process pi
and vj is the value of the shared variable Rj � Each shared variable may attain values from
some domain which includes a special �unde�ned� value� �� An initial con�guration is a
con�guration in which every local state is an initial state and all shared variables are set to
�� For a con�guration C � hs�� � � � � sn��� v�� � � �i� state�pi� C	 denotes the state of pi in C and
val�Rj � C	 denotes the value of register Rj in C� i�e�� state�pi� C	 � si and val�Rj� C	 � vj �

We consider an interleaving model of concurrency� where executions are modeled as se�
quences of steps� Each step is performed by a single process� A process pi performs either a
write�R� v	 operation or a read�R	 operation �which returns a value v	� but not both� performs
some local computation� and changes to its next local state� The next con�guration is the
result of these modi�cations� We assume that each process pi follows a local algorithm Ai that
deterministically determines pi�s next step
 Ai determines a variable R and whether pi is to
read or write R as a function of pi�s local state� If pi is to read R� then Ai determines pi�s next
state as a function of pi�s current state and the value v read from R� If pi is to write R� then
Ai determines pi�s next state and the value v to be written to R as a function of pi�s current
state� An algorithm is a function A mapping each i to a local algorithm Ai for pi�

An event of pi is simply pi�s index i� A schedule is a �nite or in�nite sequence of events�
We denote by � the empty schedule� with no events� We denote the con�guration resulting
from the application of a �nite schedule � to a con�guration C by C�� An execution fragment
starting from a con�guration C is a �nite or in�nite alternating sequence of con�gurations and
events� C�� i�� C�� � � � � Ck��� ik� � � �� where C � C� and Ck � Ck��ik� for all k � �� We assume
that a �nite execution fragment ends with a con�guration� The schedule associated with this
execution fragment is i�� � � � � ik� � � �� Conversely� the �unique	 execution fragment resulting from
applying a schedule � to a con�guration C is denoted by �C� �	� An execution is an execution
fragment starting with an initial con�guration�

Given an in�nite schedule �� a process is faulty in � if it takes a �nite number of steps
�i�e�� has a �nite number of events	 in �� and nonfaulty otherwise� An in�nite schedule �

is f �admissible if at most f processes are faulty in �� In particular� a ��admissible schedule
is called failure�free� These de�nitions also apply to execution fragments by means of their
associated schedules�

Let I be a �xed input domain and D be a �xed decision domain� Each initial state of pi is
associated with an input value in I� For each process pi and d � D we de�ne a subset� Di�d�
of the states of pi� We assume that for each pi� the sets Di�d are pairwise disjoint� We also
assume that decisions are irrevocable� i�e�� the algorithm transitions are such that if pi is in a
state of Di�d it will remain in a state of Di�d� We call the set Di�d the d�decision states of pi�

A decision problem �or just problem	  of size n� is a relation between In and Dn� An
algorithm f �solves a decision problem  if in all executions the decisions made can be completed
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to a decision vector that is in the relation  to the inputs of the processes� Furthermore� in
any f �admissible execution� every nonfaulty process eventually decides� An algorithm that
�n � �	�solves a problem  is also called a wait�free algorithm for  � Intuitively� even if all
processes but one fail when a wait�free algorithm is executed� this process eventually decides�

We now de�ne how to measure the time an execution takes��

We assign times to events in a schedule subject to the following constraints
 �a� the time
assigned to the �rst event of any process is at most �� �b� the time between two events of the
same process is at most �� and �c� times are nondecreasing and� if the execution is in�nite�
unbounded� The time of a �nite schedule � is the largest real time that can be assigned to the
last event in the schedule
 denote this by time��	� The time between two events in a schedule
is the largest amount of real time that can elapse between these two events under any time
assignment to this schedule� We de�ne the time taken by an execution � to be the time taken
by the associated schedule� and denote this time by time��	� �This de�nition follows ���� ����	

An equivalent de�nition �cf� ���	 is obtained by externally partitioning the computation
into minimal rounds
 a round is any sequence of events such that every process takes a step at
least once in the sequence� A minimal round is a round such that no proper pre�x of it is a
round� Every sequence of events can be uniquely partitioned into minimal rounds�� The time
for an execution is de�ned to be the number of segments in the unique partition into minimal
rounds� �This is the de�nition introduced in ���� ���� called the round complexity in �����	

The running time for pi in an execution of an algorithm A is de�ned to be the time
associated with the shortest �nite pre�x of this execution in which pi is in a decision state
��� if there is no such pre�x	� The time complexity of an algorithm A is the supremum of the
running times over all failure�free executions of A and all processes pi�

Note that our de�nition of running time applies only to failure�free executions� It is possible
to extend this de�nition in a natural way to executions where some processes fail
 e�g�� by
explicitly modeling failure events and excluding failed processes from the requirement to take
steps� In this paper� however� we concentrate on the behavior of the algorithm in the �best
case�� where no failures occur� and measure running time only in failure�free executions�

We conclude this section with some useful notation� Let X be a set of real numbers�
De�ne range�X	 to be the interval �minx�X x�maxx�X x� if X is nonempty and �� otherwise�
De�ne diam�X	 to be maxx��x��X jx� � x�j if X is nonempty and �� otherwise� Note that if
X is nonempty then diam�X	 is the length of the interval range�X	� If X is nonempty� then
mid�X	 � minx�X x�maxx�X x

� �

�These de�nitions can also be formalized in the timed automaton model ����� ����
�Except� possibly� for the last segment�
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function wait�approx �x	 returns real 

begin

�
 V� 
� x

�
 return x


end

Process p�

function wait�approx �x	 returns real 

begin

�
 repeat until V� �� �

�
 return V�


end

Process pi� i �� �

Figure �
 Fast non�wait�free n�process approximate agreement�

� Basic Solutions to the Approximate Agreement Problem

��� The Approximate Agreement Problem

We start by de�ning the approximate agreement problem and describing non�wait�free and
wait�free algorithms to solve it� In the approximate agreement problem� processes start with
real�valued inputs� x�� � � � � xn��� and a constant � 	 � �the same � for all processes	
 all
nonfaulty processes are required to decide on real�valued outputs y�� � � � � yn��� such that the
following conditions hold


Agreement� for any i� j� jyi � yj j 	 �� and

Validity� for any i� yi � range�fx�� � � � � xn��g	�

��� Constant Time Waiting Solution

This problem has a simple O��	 time non�wait�free solution� described in Figure �� Process p�
maintains a single�writer multi�reader atomic register� V�� to which it writes its input value as
soon as it starts the algorithm� All processes wait until V� is set to a value that is not � and
decide on this value� In the code� any assignment to a shared variable implies a write� and a
reference to the value of a shared variable implies a read� Upper case variables denote shared
variables� while all lower case variables are local� In this algorithm� the values returned in the
return statements are the decision values� Later in the paper� we will use this algorithm as
a �subroutine� in our main algorithm
 then the values returned in the return statements will
not be the �nal decision values� Similar conventions hold for later algorithms in the paper�
We have


Theorem ��� Procedure wait�approx is a non�wait�free algorithm for the approximate agree�
ment problem whose running time is O��	�
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��� Ine�cient Wait�Free Solution

We next present a wait�free algorithm for approximate agreement� In addition to demonstrating
that a wait�free solution exists for this problem� this algorithm will also be used as a �building
block� in the construction of a more e�cient algorithm� in Section ��

Let us begin by outlining a simple variant of the algorithm for the case of two processes�
Each of the processes pi� i � f�� �g has a register which it can write and the other can read�
Here and elsewhere� we let !
 denote the index of the other process� i�e�� !
 � �� i� Due to the
asynchrony in the system� it is impossible to have processes agree on one of the input values
�see ���� ��� ���	� Thus� our algorithm has them gradually converge from the input values x�
and x� to values that are only � apart� A process pi repeatedly does the following
 it writes its
value vi �initially the input value xi	 into its register� and then reads p���s register� If pi reads
� from v��� it must decide on its own value� since it can never know when p�� will write its input
value �if at all� because p�� could have failed before writing	� If pi reads a non�� value from v���
it checks whether or not jv�� � vij 	 �� If it is� pi decides on its own value� If not� pi sets vi to
be vi�v��

� and repeats�

Due to asynchrony� processes do not necessarily converge �directly� to a value� Rather�
the following type of scenario is possible
 p��� having previously written v��� reads pi�s current
value vi� and is delayed just before writing

vi�v��
� to its register
 then pi repeatedly reads and

writes� cutting the interval in half till its value is very close to v��
 �nally� p�� completes the write
of vi�v��

� to its register� so that in fact� pi has moved �too far� towards p���s old value� This
can repeat itself again and again� However� it can easily be seen that in every such step of
O��	 time �in which both pi and p�� perform a read and a write	� the diameter of the proposed
values� jvi � v��j� is cut by at least a half� and so the values converge in O�log�xi�x��

� 		 time��

The algorithm is wait�free� since each process can reach a decision independently of the other
taking steps�

The algorithm for n 	 � processes is of the same �avor� but uses more complicated mech�
anisms to synchronize among processes� It uses ideas similar to those used in the randomized
consensus algorithm of ���� The computation proceeds in �asynchronous	 phases
 in each phase�
each process suggests a possible decision value� In a manner similar to that of the two process
scheme above� the range of suggestions shrinks by a constant factor at each phase� until after
O�log�diam	fx������xn��g


� 		 phases it becomes small enough to allow processes to decide� Because
there may be more than two processes� a problem may arise in the case of an execution in which
certain slow processes temporarily stop taking steps �i�e�� cease advancing in phases	� while
others �possibly more than one	 continue to advance� and then those slow processes resume
taking steps again� The algorithm must allow the fast processes to coordinate a decision� while
at the same time guaranteeing that the ones that are temporarily slow will converge to the
same decision once they resume activity� The key idea in achieving this task is to allow fast
processes that have converged to approximately the same suggested value� and are ahead of

�Here� and in the rest of the paper� we use a truncated log function whose value is always at least one�
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all processes with di�erent suggestions by at least two phases� to decide� As will be shown� it
can be guaranteed that the processes at lower phases will accept this decision value�

The algorithm appears in Figure �� The inputs to each process pi are real numbers xi and
��� For a real number x� de�ne n��x	� the ��neighborhood of x� to be �x��� x"��� The algorithm
employs a single�writer atomic snapshot object S as a basic memory primitive� Informally� this
is a data structure partitioned into n segments Si� each of which can be updated �written	 by its
�owner� process pi� and all of which can be scanned �read	 by any given process in one atomic
operation� Each process pi can thus perform an update operation on Si� replacing all or part
of the contents of Si with a new value� or a scan operation on S� returning an �instantaneous�
view of the contents of all segments of S� �More precise speci�cations and implementations of
snapshot objects from single�writer multi�reader atomic registers can be found in ��� ���	

For each process pi� its segment of S is an array Si����� that in any state contains a �nite
sequence of reals # its suggestions at di�erent phases # indexed by phase number� Initially�
each sequence is �� the empty sequence� At each phase� after updating �writing	 a suggestion
to its array �Line �	� a process pi reads the arrays of all processes �Line �	� obtaining their
suggestions for all phases�� If pi is at the maximum phase and all the suggestions by other
processes for its phase� or the phase before it� are within � of its latest suggestion� then pi
decides on its latest suggestion �Lines ���	� Otherwise �Lines ���	� pi advances to the next
phase taking as its new suggestion the midpoint of all the suggestions at the next phase if
there are any� or of its current phase if there are none�

We now present the correctness proof for this algorithm� Since the only shared data struc�
ture used by the algorithm is the atomic snapshot object S� an execution of the algorithm can
be viewed as a sequence of primitive atomic operations that are updates and scans of S� Let
� be any execution� and let r � � be a phase number�

For any process j � f�� � � � � n��g and any execution �� de�ne S�
j �r� to be the value written

by pj to Sj �r� in � �� if there is no such value	� Note that this value is uniquely de�ned�
De�ne S��r� to be fS�

j �r� �� � 
 j � f�� � � � � n� �gg� The following is immediate


Lemma ��� Let � be an execution and �� be a �nite pre�x of �� Then S�� �r� 
 S��r�� for
every r � ��

Throughout the proofs in this paper� a subscript i for a procedure denotes invocation by
process pi
 similarly� a subscript i for a local variable name denotes the copy of this variable
at process pi� A process pi is said to be in phase r if phase i � r� Denote by scanri the scan
performed by pi at phase r� and by updateri �x	 the update by pi at phase r� Note that� for
r � �� the scan performed before writing a suggestion for phase r is denoted scanr���

�Although � is described as a parameter� it is assumed that all processes have exactly the same value of ��
	Though one can devise algorithms that do not require a process to maintain suggestions for all past phases

�cf� �
��� we have chosen to maintain all suggestions in order to simplify the exposition and proofs�
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shared var

S 
 snapshot object ����n� of array ����� of real 


function wait�free�approx�x� �	 returns real 

begin

�
 phase 
� �

repeat forever

�
 update�Si �phase� 
� x 	

�
 s 
� scan�S	

�
 max�phase 
� max��j�n��fjsjjg
 �$ phase 	 max�phase $�
�
 if phase � max�phase and phase � �

and sj �r� � n��x�
for all j and all r � phase � � such that sj �r� is de�ned

then return x

�
 else r 
� minfphase " ��max�phaseg

�
 x 
� mid�fsj �r� 
 jsj j � rg	
 �$ This set is not empty� $�
�
 phase 
� phase " �


�

end repeat

end


Figure �
 Slow wait�free n�process approximate agreement�Code for process i�

�



For a �nite or in�nite execution � and r � �� denote

mids��� r	 � fmid�S���r�	 
 �� is a pre�x of � and S���r� is nonemptyg �

that is� the set of midpoints of all the sets of suggestions for phase r at earlier points of ��
The next lemma is the key for proving that the algorithm is wait�free� It will be used later�
in Corollary ���� to show that the range of suggestions decreases by a constant factor with
each phase� Intuitively� it states that any suggestion for phase r must be in the range of the
midpoints of all the sets of suggestions for phase r � � at earlier points in the execution�

Lemma ��� For any �nite execution � and phase r � �� range�S��r�	 
 range�mids��� r��		�

Proof� By induction on the length of the execution� The basis holds vacuously�

For the induction step� the interesting case is when � ends with updateri �x	� for some i�
where x � S�

i �r�� Then scanr��i appears in �� Let �� be the shortest pre�x of � that includes
scanr��i � Note that �� is a proper pre�x of ��

Let r� be the largest phase number read in scanr��i � Since process pi reads its own sequence�
r� � r � �� If r� � r � �� then the code implies that x is the result of the calculation in Line
�� and hence x is the midpoint of S���r � ��� which su�ces� If r� � r then� by the code�
x � mid�S�� �r�	� By the induction hypothesis on ��� range�S���r�	 
 range�mids���� r � �		�
Thus�

x � mid�S���r�	 � range�S���r�	 
 range�mids���� r � �		 
 range�mids��� r� �		 �

as needed�

Since range�mids��� r� �		 
 range�S��r� ��	� we have


Corollary ��� For any �nite execution � and phase r � �� range�S��r�	 
 range�S��r� ��	�

For the rest of the proof� we �x some in�nite execution � of the algorithm� The following
lemmas are stated with respect to �� The following is a corollary of Lemma ����

Corollary ��	 For any phase r � �� range�S��r�	 
 range�mids��� r� �		�

The next lemma states that the diameter of all the possible midpoints of the suggestions
in phase r is at most half the diameter of all the suggestions for phase r�

Lemma ��
 For any phase r � �� diam�mids��� r		 	 �
�diam�S

��r�	�

��



Proof� If mids��� r	 is empty then diam�mids��� r		 � � and the claim follows immediately�
so assume that mids��� r	 is nonempty� Let �� and ��� be two pre�xes of � such that S���r�
and S��� �r� are nonempty� It su�ces to show that jmid�S����r�	�mid�S���r�	j 	 �

�diam�S
��r�	�

Without loss of generality� suppose ��� is a pre�x of ��� By Lemma ���� S��� �r� 
 S�� �r� 

S��r�� Suppose �rst that mid�S���r�	 	 mid�S��� �r�	� Thus� mid�S���r�	 	 mid�S��� �r�	 	
max�S����r�	 	 max�S���r�	� Hence

jmid�S����r�	�mid�S���r�	j 	
�

�
diam�S���r�	 	

�

�
diam�S��r�	 �

as needed� A symmetric argument applies if mid�S����r�	 	 mid�S�� �r�	�

The following lemma guarantees that suggestions become closer with each phase
 it will be
used together with Lemma ��� to ensure wait�freedom�

Lemma ��� For any phase r � �� diam�S��r�	 	 �
�diam�S

��r � ��	

Proof� By Corollary ���� range�S��r�	 
 range�mids��� r� �		� Thus�

diam�S��r�	 	 diam�mids��� r� �		
	 �

�diam�S
��r � ��	 by Lemma ����

Lemma ��� If some process returns x in phase r and y � S��r�� then y � n��x	�

Proof� Assume pi returns x in phase r� By the code� it must be that r � �� Assume� by
way of contradiction� that there exists at least one process with a suggestion for phase r that
is not in n��x	� Let pj be such a process with the property that scan

r��
j is the earliest among

the scanr�� operations of these processes� and let � be the shortest pre�x of � that includes
scanr��j � Let y � S�

j �r�
 by assumption� y �� n��x��

By the way pj was chosen� there is no update
r
j��y

�	� with y� �� n��x	 in �
 thus� range�S��r�	 


n��x�� Let r� be the maximum phase number read in scanr��j � If r� � r� then the minimum
determined in Line � of pj �s code for phase r�� is equal to r� Thus in this case� the only values

considered in determining S�
j �r� are values in S��r�� Since range�S��r�	 
 n��x�� it follows that

pj �s suggestion for phase r is in n��x	� This is a contradiction� and hence r
� 	 r � �� Since

process pj reads its own sequence� r� � r � ��

The fact that r� � r�� also implies that scanr��j precedes updateri �x	� Let �
� be the shortest

pre�x of � that includes scanri � Since update
r
i �x	 precedes scan

r
i � it follows that scan

r��
j precedes

scanri � i�e�� � is a pre�x of �
��

Since process pi returns in phase r� it follows from the code that range�S���r� ��	 
 n��x��
Since r�� is the maximum phase number read in scanr��j � it follows that y � mid�S��r���	 �

range�S��r � ��	� However� by Lemma ���� S��r � �� 
 S���r � ��� and thus y � n��x	� a
contradiction�

��



Lemma ��
 For any phase r � �� if diam�S��r�	 	 �� then every nonfaulty process returns
no later than phase r " ��

Proof� %From the code it follows that every nonfaulty process either returns or reaches phase
r " �� If diam�S��r�	 	 � it follows from Corollary ��� that diam�S��r " ��	 	 ��

The proof proceeds by induction on the order in which processes perform scanr��� For the
base case� let pi be the �rst process to perform scanr��� Clearly� pi has phasei � r " � �
max�phase� and by assumption r"� � �� Also� diam�S��r�	 and diam�S��r" ��	 are less than
or equal to �� and thus� pi will pass the test in Line � and will return in phase r " �� The
induction step is similar� and uses the fact that so far no process has advanced beyond phase
r " � to show that any process that reaches phase r " � passes the test in Line � and returns
in phase r" ��

Thus we can prove


Theorem ���� Procedure wait�free�approx is a wait�free algorithm for the approximate agree�
ment problem whose running time on input hx�� � � � � xn��i is at most

O�n� log�
diam�fx�� � � � � xn��g	

�
		 �

Proof� The validity condition clearly holds� since processes decide only on their suggestions
and these are always within the range of the inputs �Corollary ���	�

To show agreement� assume that r is the minimum phase in which some process returns� and
let pi be a processes that returns x in phase r� By Lemma ���� the suggestions of all processes
for phase r are in n��x	� By Corollary ���� the same is true for phase r"�� By Lemma ���� all
nonfaulty processes return no later than phase r " �� and thus� all nonfaulty processes return
either in phase r or in phase r " �� Since processes return only their suggestions� all returned
values are in n��x	� as needed�

Since the diameter of suggestions decreases by a factor of two with each phase �by Lemma ���	
it will eventually be less than or equal to � and� by Lemma ���� each nonfaulty process will
eventually decide� This guarantees wait�freedom�

To show the time bound� notice that� by Lemma ���� after O�log�diam	fx������xn��g

� 		 phases�

the diameter of the set of suggestions will be at most �� By Lemma ���� all nonfaulty processes
will return by the next phase� The time it takes a process to execute each phase is bounded
from above by the number of operations it executes� Using the implementation of atomic
snapshots from ���� this is bounded by O�n�	�

Since the input range is not bounded and � may be arbitrarily small� the running time of
the algorithm as a function of n is actually unbounded�

��



function bias �v��v��c��c���	 returns real 

begin

�
 if v� � v�� � then return �

�
 else if c� � c� then return v� " v��v�

jv�j�jv�j�jv
�j �minfc��� jv�jg	

�
 else return v� " v��v�

jv�j�jv�j
�jv�j �minfc��� jv�jg	

�

end


Figure �
 The bias function�Code for process pi�

� The Bias Function

The algorithms in Sections � and � return a decision value by performing a calculation based
on an input value and a counter for each process� We name the calculated function bias� as the
returned decision value is biased towards �i�e�� is closer to	 the input value associated with the
process having the largest counter� Before presenting the algorithms� we present the function
and explain its properties� The proofs of these properties are purely arithmetic� involving
no arguments about synchronization between processes� and have therefore been deferred to
Section ��

In order to understand the nature of the calculation performed by the bias function� we
brie�y explain the structure of the algorithms using it� The new algorithms are conceptually
based on the following high�level two�process algorithm� Process p� �similarly p�	� knowing
only its own input value v�� will repeatedly take incremental steps of size �� starting at � and
ending upon reaching the value v�� unless it reads that the other process p� has also moved�
In the former case it decides on v�� and in the latter case its decision value is a function of
the relative number of incremental steps both processes managed to take before each noticed
the other had moved� However� since in either case process p��s decision must be guaranteed
to be in range �fv�� v�g	� it cannot just be a value in the interval range �f�� v�g	� This is the
purpose of the function bias� It provides a mapping from the processes� incremental walks in
the intervals range �f�� v�g	 and range �f�� v�g	 respectively� to walks of proportional length
in the allowed range �fv�� v�g	� The code of bias appears in Figure �� The function takes as
inputs two real number values v� and v�� two associated counters� c� and c� �integers denoting
the number of incremental steps each process p� or p� took	� and ��

An example of the translation de�ned by bias is given in Figure � for the case � � v� � v��
Assume p� traverses a distance of length c� � � away from � towards v�� and p� a distance
of length c� � � away from � towards v�� The bias function maps the respective distances of
length c� � � and c� � � �within the interval ��v�� v��	� into distances of proportional length in
the interval �v�� v��� The starting point � in ��v�� v��� is replaced by the point new�� in �v�� v���
which depends only on v� and v�� The returned decision value is then the point associated

��
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�

Figure �
 The bias mapping�

with the larger counter �larger traversed distance	�

We now introduce several lemmas that formally outline the properties of the bias function
and on which the correctness proofs of the algorithms in the sequel will be based� The �rst is a
rather simple statement� namely� that the returned value of any call to bias is in range�fv�� v�g	�

Lemma ��� Let c�� c� be nonnegative integers� and v�� v�� � be real numbers� with � 	 �� Then
bias�v�� v�� c�� c�� �	 � range�fv�� v�g	�

The next three lemmas deal with with an additional property required of the bias function

that the values returned by di�erent calls to bias always be approximately the same� even if the
counter parameter values or the real parameter values used in these calls� are slightly di�erent�
The �rst lemma states that applying bias in a case where counter ci is large yields a value close
to vi�

Lemma ��� Let c�� c� be nonnegative integers� and v�� v�� ��m be real numbers� � 	 �� m � ��

�	� Suppose c� 	 c� and jv�j���m 	 c�� Then jbias�v�� v�� c�� c�� �	� v�j 	 m��

�
� Suppose c� � c� and jv�j���m 	 c�� Then jbias�v�� v�� c�� c�� �	� v�j 	 m��

The next lemma shows that the results of two calls to bias with approximately the same val�
ues �in a sense made precise by the lemma	 for c�� c�� and the same v�� v�� �� are approximately
the same�

Lemma ��� Let c��� c
�
�� c

�
�� c

�
� be nonnegative integers� and v�� v�� ��m be real numbers� � 	 �

and m � �� Suppose minfc��� c
�
�g � minfc

�
�� c

�
�g � � and jc�� � c��j" jc�� � c��j 	 m� Then

jbias�v�� v�� c��� c
�
�� �	� bias�v�� v�� c��� c

�
�� �	j 	 m� �

��



The last lemma in this section states that applying bias� this time to real numbers v� and
v� that are approximately �to within 
	 the same� yet with exactly the same counters c�� c�

and �� results in values that are approximately the same�

Lemma ��� Let c�� c� be nonnegative integers� and v��� v
�
�� v

�
�� v

�
�� �� 
 be real numbers� with

� 	 �� 
 � �� Suppose jv�� � v�� j 	 
 and jv�� � v�� j 	 
� Then

jbias�v��� v
�
�� c

�� c�� �	� bias�v��� v
�
�� c

�� c�� �	j 	 �
 �

� Fast Two�Process Approximate Agreement

We now show that� for two processes� there exists a wait�free approximate agreement algorithm
whose time complexity is constant
 i�e�� it does not depend on the range of input values or ��
The n�process algorithm presented in Section �� when specialized to the case n � �� also yields
a �somewhat larger	 constant time complexity� We present the two�process algorithm because
we believe its simplicity will help the reader develop an intuition for the ideas that will be later
used in the general algorithm�

��� Informal Description

The key ideas underlying this algorithm are as follows� A process� pi� running on its own�
can assume that either it is running very fast �and not much time has elapsed	� or the other
process� p��� has failed� Thus� pi may take an unlimited number of steps without degrading
the time complexity for failure�free executions� as long as p�� does not perform any steps� Of
course� if p�� does not take any steps at all� then� in order to guarantee the wait�free property�
pi must eventually decide �unilaterally	 on its own value� In this case� in order to guarantee
correctness� it is necessary that if and when p�� does appear� it must be able to know� just by
reading pi�s registers� what pi has decided� However� an inherent di�culty of programming
asynchronous systems is that� due to the uncertainty of interleaving� at least one process pi
has an �uncertainty of one step�� namely� it cannot tell whether p�� read the value written in
pi�s latest write or the value written in pi�s preceding write� A two�process solution that halves
the distance between the suggested values is thus of no use� since the �uncertainty of one step�
can cause processes to decide on values that are more that � apart� Our solution is to have
a process change its suggestions gradually with each step� more precisely� by an amount less
than �� so that the �uncertainty of one step� will result only in � inaccuracy in the decision
value�

��� The Algorithm

The code for process pi is given in Figure �� Each process pi� i � f�� �g maintains a single�
writer multi�reader atomic register with two �elds
 Vi�the input value� a real number� and

��



shared var

hV� Ci
 array �������� of single writer register with
�elds V� real and C� integer 


function fast���approx �x� �	 returns real 


�
 increase�counter�x� jxj� 	

�
 hv�� v�� c�� c�i 
� hV�� V�� C�� C�i

�
 if c�� � � then return vi

�
 else return bias �v�� v�� c�� c�� �	

end


procedure increase�counter �v�max	

�
 hVi� Cii 
� hv� �i

�
 while C�� � � and Ci � max do Ci 
� Ci " � od


end


Figure �
 Fast wait�free two�process approximate agreement�Code for process pi�

Ci�the counter� an integer� Each process starts by writing its input and initializing a counter
in the shared memory �Line � in increase�counter	� It then keeps incrementing this counter until
either it has taken a number of steps proportional to the absolute value of its input� or the
other process has taken a step� whichever happens �rst �Line � of increase�counter	� When the
process stops� it collects all the C and V values and applies the function bias to get a decision
value� As described in the former section� the decision is within the input range and biased
towards the input value of the process with the larger counter� In particular� if a process runs
to completion without observing the other process� it decides on its own input value� In the
following subsection we show that the discrepancy in the reading of the counters among the
two processes is at most �� and thus� based on the properties of the bias function� the decisions
based on the values of the counters will di�er by at most ��

��� Correctness Proof

An execution of the algorithm can be viewed as a sequence of primitive atomic operations that
are reads and writes of atomic registers �and may include changing local data	� Fix some
execution � of the algorithm� All lemmas in the rest of this section are stated with respect
to �� In the rest of this section� a value of � is treated as �� in arithmetic expressions� The
next lemma shows a crucial property regarding how close the counter values collected by two
processes are�

��



Lemma 	�� Assume p� and p� return from fast���approx� Let i � f�� �g� and let ci and c�� be
the values of Ci read by pi and p��� respectively� in Line 
 of fast���approx� Then ci �� � and
ci � � 	 c�� 	 ci�

Proof� Since pi returns� it must be that pi writes to Ci� Let �i be the last write by pi to Ci

in �� Since increase�counter returns after the last write to Ci and by de�nition pi is the only
one to modify Ci� it follows that ci is the value written to Ci in �i� Since pi writes the value
ci to Ci� we have that ci �� ��

Let ��� be the read by p�� of Ci in Line � of fast���approx� Note that c�� is the value returned
in ���� Since the read of Ci is atomic� it is clear that c�� 	 ci� We now show that ci � � 	 c���

If ci � � then since c�� 	 ci� c�� � f�� �g
 since � is mapped to ��� the claim follows� So
assume ci 	 �� Let ��i be the penultimate write by pi to Ci� writing ci � �� Let �i be the
latest read of C�� by pi that precedes �i
 note that �

�
i precedes �i� Since pi performs at least

one additional write after ��i� it must be that the value read in �i is �� Let ��� be the write of
� by p�� to C�� in �� %From the code� it follows that ��� precedes ���� Since the value read in �i

is �� and because C�� is written and read atomically� it follows that �i precedes ���� %From the
above we thus have that ��i precedes �i which precedes ��� which precedes ���� Thus the write
��i precedes the read ���� and it follows that ci � � 	 c���

We can now prove that the algorithm satis�es the agreement property


Lemma 	�� For processes p� and p�� if fast���approx� returns y� and fast���approx� returns
y� then jy� � y�j 	 ��

Proof� The proof of this lemma is separated into two cases� In one case� we apply Lemma ����
In the other case� we show that the sum of the di�erences between the values of c� and c� used
by p� and by p� is at most �� and appeal to Lemma ���� The details follow�

Denote by �i the �rst write by pi to Ci� writing �� for i � f�� �g� Since both processes
decide� both �� and �� must appear in �� Assume� without loss of generality� that �� precedes
��� �The other case is symmetric�	 Assume that process p� reads hv��� v

�
�� c

�
�� c

�
�i in Line � before

deciding� and that process p� reads hv
�
�� v

�
�� c

�
�� c

�
�i in Line � before deciding� Note that� since

pi �rst writes � to Ci and then reads Ci� it must be that cii � �� for i � f�� �g�

Let � be any read of C� by p�� returning some value z� The code of the algorithm implies
that �� precedes �� Since �� precedes ��� �� precedes �� Since reads and writes to C� are
atomic operations� this implies that z � �� This implies� in particular� that c�� � �� and thus�
fast���approx� returns in Line �� In addition� this also implies that p� will not increase C�

beyond �� and thus� since reads and writes to C� are atomic� c
�
� � � and c�� � f�� �g� We

separate the rest of the proof into two cases


Case �� c�� � �� In this case� fast���approx� returns v
�
� � x� in Line �� The code of increase�

counter implies that jx�j�� 	 c��� %From Lemma ���� since c
�
� � �� it follows that jx�j���� 	 c���

��



Also� v�� � x�� Since c�� � � � c��� we can apply Lemma �����	 with m � � and get that
jbias�v��� v

�
�� c

�
�� c

�
�� �	� v��j 	 �� as needed�

Case �� c�� � �� Then fast���approx� returns in Line � and v
�
� � v��� We have that minfc

�
�� c

�
�g �

c�� � � and minfc
�
�� c

�
�g � c�� � �� Also� jc

�
�� c��j" jc��� c��j � jc��� c��j 	 �� by Lemma ���� The

claim follows by applying Lemma ��� with m � ��

We have


Theorem 	�� Procedure fast���approx is a wait�free algorithm for the two�process approximate
agreement problem whose time complexity is O��	�

Proof� Agreement follows from Lemma ���� It follows from the code and from Lemma ���
that the values returned are in the range of the original input values
 hence the validity
property is satis�ed� Each process pi executes at most O�jxij��	 steps before deciding
 thus�
the algorithm is wait�free� Since each process executes a constant number �i�e�� independent
of � and the range of inputs	 of steps after the other process performs its �rst step� the time
complexity of this algorithm is O��	�

� Fast n�Process Approximate Agreement

In this section� we present a fast �O�logn	 time	 wait�free approximate agreement algorithm
for n processes� The algorithm is based on an alternated�interleaving method of integrating
wait�free �resilient but slow	 and non�wait�free �fast but not resilient	 algorithms to obtain new
algorithms that are both resilient and fast�

We begin by showing how one can reduce� in constant time� the problem of n�process
approximate agreement with arbitrary input values to a special case of the problem where the
set of input values is included in the union of two small intervals� We do this by performing an
alternated�interleaving of a wait�free and a non�wait�free algorithm� We then show� again based
on an alternated�interleaving of wait�free and non�wait�free algorithms� that n processes with
values in two small intervals can �simulate�� in O�logn	 time� two virtual processes running the
fast approximate agreement algorithm of Section �� thus solving the approximate agreement
problem for n processes each having one of two values� Combining the two algorithms yields
an O�logn	 wait�free approximate agreement algorithm�

��� Informal Description

The �rst part of the algorithm�the one that achieves the constant�time reduction to two small
intervals� is encapsulated in procedure n�to�� �Figure �	� The idea is simple
 interleave the
execution of the slow wait�free�approx procedure �of Figure �	 with that of the fast wait�approx

��



of Figure �	� stopping when the �rst of them does� The resulting algorithm is wait�free since
even if n � � processes fail� wait�free�approx will terminate� It takes at most O��	 time in the
failure�free execution since wait�approx terminates within O��	 time� However� some processes
�group a	 might �nish the alternated execution with a value from wait�approx� while others
�group b	 �nish with a value from wait�free�approx� Thus� this strategy does not solve the
approximate agreement problem� but guarantees that the returned values are included in the
union of two small intervals� More speci�cally� the procedure n�to�� returns an output value
vi and a group gi � fa� bg to which pi is said to belong� It is guaranteed that output values for
processes in the same group gi � fa� bg are at most ���� apart�

The second part of the algorithm solves n�process approximate agreement in O�logn	 time�
assuming that processes are partitioned into two groups with approximately the same initial
value in each group� The solution is based on having the processes in group a �resp� b	 jointly
simulate a virtual process p� �resp� p�	 that executes the function fast���approx of Figure ��

The following straightforward simulation is expressed by Lines ��� of the procedure increase�
counter in Figure �� The counter C� of fast���approx is replaced by a joint counter� which is
de�ned to be the sum of local counters Ci� for all i in group a� Each step of the simulated
counter C� is implemented by O�n	 steps of the joint counter for a� Each step of this joint
counter is� in turn� implemented by a single step of one of the individual counters in group a�
Similarly� the processes in group b simulate counter C� of fast���approx� In Line � of increase�
counter� in order to decide on the values of the joint counters of a and b� a process reads the
values of all local counters� If the counter simulated by pi�s group is not large enough and the
counter simulated by the other group is �� then pi advances the counter simulated by its group
�by incrementing its local counter Ci	� and repeats� Otherwise� pi exits increase�counter�

One can see that� in an execution where processes operate synchronously� each iteration of
the while loop in Line � of increase�counter has O�n	 time complexity since reading all memory
locations to calculate the simulated counter takes O�n	 steps� However� one can improve the
time complexity based on the following observation� If pi ever detects that all processes have
set their counters in Line � of increase�counter� then it knows that one of the following holds

either some process from the other group has set its local counter �and hence that group�s
simulated counter	� to a value other than �� or the other group is empty� In the former case�
the loop predicate in Line � must be false� while in the latter case� the �nal value for the
other group�s counter will be �� In either case� pi can stop executing increase�counter� and be
guaranteed to correctly simulate the behavior of the two�process algorithm� In order to detect
in less than O�n	 time that all processes have set their counters� we use an O�logn	 non�wait�
free synch procedure� described in Section ������ whose termination ensures this condition� To
achieve the better time� the algorithm alternates synch with the �wait�free	 loop in Line � of
increase�counter�

The delicate synchronization provided by synch and its e�ect on the rest of the algorithm
guarantee that after some process exits increase�counter� individual counter values increase at
most by �� Thus� after exiting increase�counter� a process can perform an O�logn	 wait�free
fast�collect� described in Section ���� in order to collect all the values needed to decide on the

��



returned value in Lines ���� The above property ensures that the simulated counter values
used by di�erent processes do not di�er much�

��� The Algorithm

The code for the algorithm is presented in Figure �� Alternated procedures are enclosed
within begin�alternate and end�alternate brackets� This construct means that the algo�
rithm alternates strictly between executing single steps of the two alternated procedures� and
terminates the �rst time one of the procedures terminates�
 When an alternation is used in
an assignment statement� the value assigned is the value returned by the procedure that ter�
minates �rst� The algorithm uses the bias procedure of Figure �� In addition to the shared
data structures used by wait�free�approx and wait�approx� process pi� i � f�� � � � � n � �g� has
a single�writer multi�reader atomic register with the following �elds
 Vi�the value returned
in pi�s �rst phase
 Gi�denoting the group to which pi belongs
 Ci�pi�s contribution to its
group�s counter
 Ti�pi�s boolean synch termination �ag�

In the code for process i we abuse notation and denote by V g� where g is a group�s name�
the �group�s value� calculated as follows
 if g � gi then it is Vi� and if g �� gi then it is an
arbitrary Vj such that pj is in group g if it is non�empty� and �� otherwise� The value vg is
calculated in a similar manner from the corresponding local copies� �Recall our convention
that lower case letters stand for local variables and upper case letters for shared variables�	
When g is a group name� !g denotes the other group�s name� e�g�� if g � a then !g � b� The
notation Cg� for g � fa� bg� stands for the sum of those Ci such that Gi � g and Ci �� �� if
there is any such Ci� and �� otherwise� The value cg is calculated in a similar manner from
the corresponding local copies�

��� Fast Information Collection and Synchronization

We now present the procedures for information collection and synchronization and prove their
properties�


���� Fast Information Collection

We start with a wait�free algorithm for input collection�returning the current values in the
entries of an array R� The time complexity of the algorithm is O�logn	�

This problem is interesting on its own as it underlies any problem of computing a function�
e�g�� max or sum� on a set of initial values that reside in the shared memory�� Once a process


We remark that this is just a coding convenience� used to simplify the control structure of the algorithm�
It is implemented locally at one process and does not cause spawning of new processes�

�Note that these problems are very di�erent from the decision problems considered until now in this paper�
where inputs are local to the processes and do not reside in the shared memory�

��



type

group � fa� bg

shared var

hV�G�Ci
 array ����n� of single writer register with
�elds V� real�G� group� and C� integer 


function fast�n�approx �x� �	 returns real 

begin

�
 hv� gi 
� n�to�� �x� �	


�
 increase�counter�v� g� jvj
���n	


�
 h�v��g��ci 
� fast�collect �V �G�C	

�
 if c�g � � then return vg

�
 else return bias�va�vb�ca�cb����n	

end


function n�to�� �x� �	 returns hreal� groupi

begin

hv� gi 
� begin�alternate

�
 hwait�free�approx �x� ����	� ai
and

�
 hwait�approx �x	� bi

end�alternate


�
 return hv� gi
end


procedure increase�counter �v� g�max	

begin

�
 hVi� Gi� Cii 
� hv� g� �i

begin�alternate

�
 while C�g � � and Cg � max do Ci 
� Ci " � od

and

�
 synch �C	

end�alternate


�
 Ti 
� true

end


Figure �
 Fast wait�free n�process approximate agreement�Code for process pi�
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type

string � array ����n� of register values 

shared var

R 
 array ����n� single writer register 


function fast�collect �R	 returns string 

begin

�
 l 
� �

�
 while l � n do �$ i knows fewer than n values� $�
�
 Ri 
� concatenate �Ri� R	i�l
mod n	
 �$ Read what p	i�l
 knows� $�
�
 l 
� jRij


od

�
 return truncate�Ri� n	


end


Figure �
 Fast wait�free information collection�Code for process pi�

collects all the values� computing the function can be done locally in constant time� Since
��logn	 is a lower bound on the time for the information collection problem �see� e�g�� ����	�
this implies that for problems whose output depends on all the initial values in memory� and
only on them� there exists an optimally fast wait�free solution�

Our algorithm� presented in Figure �� is a wait�free variation of the pointer�jumping tech�
nique used in PRAM algorithms �e�g�� ����	� Think of the registers Ri� i � f���ng� as being
arranged in a circle �hence indices are modulo n	� To achieve logarithmic time complexity� a
process writes in the register Ri not only its value� but also all other values it has learned about�
Proceeding in a cyclic fashion� pi �rst reads Ri��� If Ri�� has already collected� say� � values
Ri�� � � �Ri��� then pi next reads Ri��� It continues in this fashion until it has transitively
collected values from all n registers�

We use the following functions in the algorithm� For sequences R�R� and a nonnega�
tive integer n� we de�ne concatenate �R�R�	 as returning the concatenation of R� to R� and
truncate�R� n	 as returning the �rst n elements of R if jRj 	 n� and R� otherwise� The initial
value � is treated like any other value and may be returned by the algorithm for entries that
have not yet been set�

Fix some execution � of the fast�n�approx algorithm� We clearly have


Lemma 
�� Assume fast�collecti is invoked by pi in �� and let �� be the shortest pre�x of �
that includes some invocation of fast�collect� Then fast�collecti returns a vector containing� for
each pj� a value that appears in Rj at some point at or after ��� Moreover� fast�collecti returns
within at most �n steps by pi�

��



Proof� Each iteration of the while loop in procedure fast�collect takes at most two steps�
and the loop is executed at most n times�

The next lemma is the crux of the time analysis for this algorithm�

For the rest of this subsection� let t be the time of the last event in the shortest �nite pre�x
of � that includes an invocation of fast�collect by every pi� i � f�� � � � � n� �g� if such a pre�x
exists� � otherwise�

Lemma 
�� Assume t � �� For every i � f�� � � � � n��g and every integer r� � 	 r 	 dlog ne�
jRij � minf�r� ng at time t " �r�

Proof� The proof is by induction on r� The base case� r � �� is trivial�

For the induction step� assume that r � �� If at time t " �r� jRij � n� the claim follows�
So suppose� jRij � n at time t " �r� Then also jRij � n at time t " ��r � �	� Then by the
induction hypothesis� jRij � �r�� at time t " ��r� �	�

By the code� there must be some time t�� where t " ��r � �	 � t� 	 t " ��r � �	 " �� at
which pi reads some Rj � Fix j to be the index of the �rst such read that occurs� By the
induction hypothesis� jRjj � minf�r��� ng at time t " ��r � �	� Since pi reads Rj by time
t"��r� �	" �� the code implies that pi subsequently writes Ri by time t"�r� It follows that
jRij � �

r�� " minf�r��� ng � minf�r� ng at time t" �r�

In particular� at time t" �dlogne� we have jRij � n for every i� Thus� fast�collecti returns
by time t" �dlogne� We have


Lemma 
�� Let �� be a �nite pre�x of �� Assume that in ��� fast�collecti is invoked by pi� for
every i � f�� � � � � n� �g� Then for every i � f�� � � � � n� �g� fast�collecti returns within at most
O�logn	 time after time���	�


���� Fast Synchronization

The synchronization procedure� synch� is used to guarantee that at least one of two events
has occurred
 �a	 all processes have started executing increase�counter� or �b	 some process has
completed executing increase�counter� It uses a similar transitive information collection strategy
to that used by fast�collect� but it is not wait�free� In case the processes run synchronously� it
is guaranteed to terminate within time O�logn	�

The code appears in Figure �� In the code� each process pj uses a �ag Tj to indicate that
it has completed executing increase�counter� If a process� while executing synch� ever �nds any
other process� �ag equal to true� it terminates execution of synch�

��



shared var

R 
 array ����n� of single writer register 


procedure synch�R	

begin

�
 repeat until Ri �� �
 �$ i has written� $�
�
 l 
� �

�
 while l � n and Ti�lmodn � � do �$ pi�lmodn has not yet terminated� $�
�
 repeat until Ri�lmodn �� �
 �$ pi�lmod n has written� $�
�
 Ri 
� concatenate �Ri� R	i�l
 modn	

�
 l 
� jRij


od

end


Figure �
 Fast non�wait�free synchronization�Code for process pi�

In the absence of such early termination� a process executing synch attempts to determine
that all processes have written their �elds of the shared array R� It does so using the transitive
collection strategy represented in Lines ���� The waiting loop in Line � ensures that �in the
absence of early termination	 the process does not terminate until all processes have written
their �elds of the array R� That is� when a process terminates� it must be that either all Rj are
non�� or some Tj � true� The fact that the information collection is done transitively implies
a logarithmic upper bound in case all processes run synchronously�

For the rest of this subsection� �x some execution � of fast�n�approx�

The �rst lemma gives the correctness claim� Its proof is straightforward�

Lemma 
�� Let �� be a �nite pre�x of �� Assume that in ��� synchi returns� for some pi�
Then at the end of �� either all R entries are �� � or Tj � true for some j�

The next lemma gives a linear upper bound on the time required by synch�

Lemma 
�	 Let �� be a �nite pre�x of � and let i � f�� � � � � n� �g� Assume that in �� all R
entries are set to values �� �� and that synchi is invoked by pi� Then synchi returns within at
most �n steps by pi after the end of ���

Proof� Each iteration of the while loop in procedure synch takes at most six steps� �There
are three operations� and because of alternation they might require six steps�	 The claim
follows� since the loop will be executed at most n times�

��



The following lemma gives the O�logn	 time bound�

Lemma 
�
 Let �� be a �nite pre�x of �� Assume that in �� all R entries are set to values
�� �� and synchi is invoked by pi� for every i � f�� � � � � n� �g� Then every process terminates
synch within at most O�logn	 time after the end of ���

Proof� Let t be the time of the last event of ��� We prove that for every process pi and for
every integer r� � 	 r 	 dlog ne� by time t" ��r� either pi sets Ti � true or jRij � minf�r� ng�
The claim follows by taking r � dlog ne
 by time t " ��dlogne� either pi sets Ti � true or
jRij � n� If pi sets Ti � true � then pi has already terminated synchi� On the other hand� if
jRij � n� then pi returns from synchi within O��	 time�

The proof is by induction on r� The base case� r � �� is trivial�

For the induction step� assume that � 	 r 	 dlog ne� If pi sets Ti � true by time t " ��r�
then the claim is immediate� so assume that Ti is not true by time t" ��r� In particular� Ti is
not true by time t"���r��	� Hence� by the induction hypothesis� jRij � minf�

r��� ng � �r��

by time t" ���r� �	�

By the code� there must be some time t�� where t " ���r � �	 � t� 	 t " ���r� �	 " �� at
which pi reads some Tj � �This bound takes into account the fact that the synch procedure is
executed in strict alternation with another task�	 Fix j to be the index of the �rst such read
that occurs� If Tj � true by time t" ���r� �	� then when pi reads Tj the value is true and pi
sets Ti � true by at most � time units later� i�e�� by time t" ���r� �	" � 	 t" ��r� This is a
contradiction� so it must be that Tj �� true by time t"���r� �	� By the induction hypothesis
for r � �� jRjj � �r�� by time t " ���r� �	� Since pi reads Tj by time t " ���r � �	 " �� the
code implies that pi reads Rj and then writes Ri by time t " ��r� Then the length of Ri at
time t" ��r is at least �r�� " �r�� � �r� as needed�

��	 Correctness Proof

We remind the reader that an execution of the algorithm is viewed as a sequence of primitive
atomic operations that are reads and writes of atomic registers� We now �x some execution �
of fast�n�approx�

As in the proof of the two�process algorithm �Section �	� the crucial point in the proof of
the algorithm is showing that� in Lines ��� of fast�n�approx� processes use �close� values for ca

and cb� We show that the value of an arbitrary counter when some process invokes fast�collect
is at most � less than the maximum value that this counter ever attains� This is formalized
and proved in the next lemma
 �As before� we identify � with �� in arithmetic expressions�	

Lemma 
�� Assume that pi invokes fast collecti in �� Fix some process pj� let k be the value
of Cj returned by fast�collecti� Let k� be the maximum value attained for Cj in �� Then
k� � � 	 k 	 k��

��



Proof� The inequality k 	 k� follows immediately from the the fact that reads and writes
of the shared register are atomic� To prove the other inequality� let pi� be the �rst process
to execute the write operation in Line � of increase�counter� Such a process exists because pi
performs this write operation before invoking fast�collecti� Let �

� be a shortest pre�x of � that
includes pi� �s write to Ti� � Let k

�� be the value of Cj at the end of ��� Since any invocation
of fast�collect follows this last write operation in Line �� Lemma ��� and the fact that reads
and writes to Cj are atomic imply that k�� 	 k� Thus� it su�ces to show that k� � � 	 k���
There are two cases according to the way pi� exits the alternate construct in Lines ��� of
increase�counter


Case �� pi� exits the while loop� It must be that one of the halting conditions of the while
loop is false for pi� � If pi� and pj are in the same group� i�e�� gi� � gj � then pj will perform at
most one iteration of the while loop after �� before pj also sees the corresponding condition to
be false� If pi� and pj are not in the same group� i�e�� gi� �� gj � then pj will perform at most one
iteration of the while loop after �� before pj sees the �rst condition to be false �by observing
Ci� �� �	� The claim follows�

Case �� pi� returns from synchi� � By de�nition� for all l � f�� � � � � n � �g� Tl � � when pi�

terminates synchi� � It follows from Lemma ��� that� for all l � f�� � � � � n��g� the value of Cl at
the end of �� is �� �� By Lemma ���� pj will exit synchj�C	 after performing at most �n of its
own steps after ��� It follows from the de�nition of alternate that pj will perform at most �n
steps in the while loop in Line � of increase�counter� before synchj�C	 terminates� However�
each iteration of the while loop takes at least n steps �since n registers have to be read	�
Thus� pj will perform at most three additional iterations of the while loop� before synchj�C	
terminates� The claim follows�

This implies that� for each local counter� the values read by two di�erent processes di�er
at most by �� Hence� the values used by di�erent processes for the joint counters ca and cb

di�er at most by �n� Formally� we have


Lemma 
�� Suppose i� j � f�� � � � � n � �g and g � fa� bg� Assume the values returned by
fast�collecti and fast�collectj are cgi and cgj � respectively� Then jcgi � cgj j 	 �n�

We can now prove that the algorithm satis�es the agreement property


Lemma 
�
 If fast�approxi returns yi and fast�approxj returns yj � then jyi � yj j 	 ��

Proof� The general outline of the proof parallels that of Lemma ���
 however� some of the
details are di�erent� First� the discrepancy between processes� view of the joint counters might
be �n
 to compensate for that� we use bias with ���n� In addition� we must allow for the
possibility of using di�erent values from the same group �by applying Lemma ���	� The details
follow�

��



We start with the proof for the case where pi and pj are not in the same group
 without
loss of generality� assume gi � a and gj � b�

Assume that the values computed by pi based on fast�collecti to be used in Lines ��� of
fast�n�approx are hvai � v

b
i � c

a
i � c

b
ii
 similarly� assume that the values computed by pj based on

fast�collectj to be used in Lines ��� of fast�n�approx are hvaj � v
b
j � c

a
j � c

b
ji� Note that since pi is in

group a� cai � � and vai �� �
 similarly� since pj is in group b� cbj � � and and vbj �� ��

For any process pk � denote by �k the write by process pk in Line � of increase�counter �if it
appears in �	� Since pi and pj decide� �i and �j must appear in �� Let pi� be such that �i�

is the �rst write of Line � of increase�counter in �� Assume� without loss of generality� that
pi� is in group a� Intuitively� we assume that the �rst process to start the second phase of the
algorithm belongs to pi�s group� a�

The code of the algorithm implies that� for any pj� in group b� �j� precedes any calculation
of Ca by pj� � Since �i� precedes �j� it follows that pj� will always calculate Ca �� �� Thus�
caj � � and hence fast�n�approxj returns in Line � and v

a
j �� �� Also� the above implies that Cb

never increases beyond �� Thus� cbj � � and cbi � f�� �g� We separate the rest of the proof into
two cases


Case �� cbi � �� Then fast�n�approxi returns v
a
i in Line �� %From the code it follows that

cai � jvai j�n��� By Lemma ���� c
a
j � jvai j�n��� �n� Since c

a
j � � � cbj � applying Lemma ��� ��	

with m � �n we get that

jbias�vai � v
b
j � c

a
j � c

b
j� ���n	� vai j 	 ��� � ��	

Also� Theorem ��� implies that jvai � vaj j 	 ����� Applying Lemma ��� with 
 � �����

c� � caj � c
� � cbj � v

�
� � vaj � v

�
� � vbj � v

�
� � vai � v

�
� � vbj � we get that

jbias�vaj � v
b
j � c

a
j � c

b
j � ���n	� bias�vai � v

b
j � c

a
j � c

b
j � ���n	j 	 ����� � ��� � ��	

%From ��	 and ��	 it follows that

jbias�vaj � v
b
j � c

a
j � c

b
j� ���n	� vai j 	 � �

as needed�

Case �� cbi � �� Thus� fast�n�approxi returns in Line � and v
b
i �� �� We have that minfcai � c

b
ig �

cbi � � and minfcaj � c
b
jg � cbj � �� Also� jcai � caj j " jcbi � cbj j � jcai � caj j 	 �n by Lemma ����

Applying Lemma ��� with m � �n we get

jbias�vaj � v
b
j � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
j � c

b
j� ���n	j 	 �n � ���n � ��� � ��	

Also� Theorems ��� and ���� imply that jvai � vaj j 	 ���� and jvbi � vbj j 	 ����� By applying
Lemma ��� with 
 � ���� we get

jbias�vai � v
b
i � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
i � c

b
i � ���n	j 	 ����� � ��� � ��	

��



%From ��	 and ��	 it follows that

jbias�vai � v
b
i � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
j � c

b
j� ���n	j 	 � �

as needed�

We now consider the case where pi and pj are in the same group
 without loss of generality�
assume gi � gj � a� Let pi� be such that �i� is the �rst write of Line � of increase�counter in
�� �As before� �k is the write by process pk in Line � of increase�counter�	 Assume �rst that
pi� pj belong to the group that wrote �rst� i�e�� gi� � gi � gj � In this case� c

b
i � c

b
j � f�� �g �by

arguments similar to those above	� We separate the rest of the proof into three cases


Case �� cbi � �� Then fast�n�approxi returns v
a
i in Line �� If c

b
j � � then fast�n�approxi returns

vaj in Line �� and the claim follows since Theorem ��� implies that jvai �vaj j 	 ����� Otherwise�

cbj � �� %From the code it follows that cai � jvai j�n��� By Lemma ���� c
a
j � jvai j�n�� � �n�

Since caj � � � cbj � applying Lemma ��� ��	 with m � �n we get that

jbias�vai � v
b
j � c

a
j � c

b
j� ���n	� vai j 	 ��� � ��	

Also� Theorem ��� imply that jvai � vaj j 	 ����� Applying Lemma ��� with 
 � ����� c� � caj �

c� � cbj � v
�
� � vaj � v

�
� � vbj � v

�
� � vai � v

�
� � vbj � we get that

jbias�vaj � v
b
j � c

a
j � c

b
j � ���n	� bias�vai � v

b
j � c

a
j � c

b
j � ���n	j 	 ����� � ��� � ��	

%From ��	 and ��	 it follows that

jbias�vaj � v
b
j � c

a
j � c

b
j� ���n	� vai j 	 � �

as needed�

Case �� cbj � � is symmetric to Case ��

Case �� cbi � cbj � �� Thus� fast�n�approxi and fast�n�approxj return in Line � and vbi � v
b
j �� ��

We have that minfcai � c
b
ig � cbi � � and minfcaj � c

b
jg � cbj � �� Also� jcai � caj j " jcbi � cbj j �

jcai � caj j 	 �n by Lemma ���� Applying Lemma ��� with m � �n we get

jbias�vaj � v
b
j � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
j � c

b
j� ���n	j 	 �n � ���n � ��� � ��	

Also� Theorems ��� and ���� imply that jvai � vaj j 	 ���� and jvbi � vbj j 	 ����� By applying
Lemma ��� with 
 � ���� we get

jbias�vai � v
b
i � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
i � c

b
i � ���n	j 	 ����� � ��� � ��	

%From ��	 and ��	 it follows that

jbias�vai � v
b
i � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
j � c

b
j� ���n	j 	 � �

��



as needed�

Assume now that pi and pj are not in the group that wrote �rst� i�e�� gi� �� gi� By
arguments similar to those above� cai � caj � �� c

b
i � � and cbj � �� Thus� fast�n�approxi returns

in Line � and vbi �� �� We have that minfcai � c
b
ig � cai � � and minfcaj � c

b
jg � caj � �� Also�

jcai � caj j" jcbi � cbj j � jcbi � cbj j 	 �n by Lemma ���� Applying Lemma ��� with m � �n we get

jbias�vaj � v
b
j � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
j � c

b
j� ���n	j 	 �n � ���n � ��� � ��	

Also� Theorems ��� and ���� imply that jvai � vaj j 	 ���� and jvbi � vbj j 	 ����� By applying
Lemma ��� with 
 � ���� we get

jbias�vai � v
b
i � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
i � c

b
i � ���n	j 	 ����� � ��� � ���	

%From ��	 and ���	 it follows that

jbias�vai � v
b
i � c

a
i � c

b
i � ���n	� bias�vaj � v

b
j � c

a
j � c

b
j� ���n	j 	 � �

as needed�

We have


Theorem 
��� Procedure fast�n�approx is a wait�free algorithm for the n�process approximate
agreement problem whose time complexity is O�logn	�

Proof� Agreement follows from Lemma ���� Validity follows immediately since the values
returned by wait�free�approx and wait�approx are in the range of the original inputs� and the
bias function preserves this property �by Lemma ���	�

The algorithm is wait�free because the �rst alternative of each alternation construct and
fast�collect are wait�free�

Within O��	 time all processes �nish n�to��� Thus� within O��	 time all processes start
procedure increase�counter� write to Ci and invoke synch� By Lemma ���� within O�logn	 time
each process terminates synch� Thus� within O�logn	 time all processes exit increase�counter

and invoke fast�collect� By Lemma ���� all processes return from fast�collect within O�logn	
time� Hence� the total time complexity is O�logn	�

� A logn Time Lower Bound

In this section� we show that the logn dependency exhibited by the algorithm of Theorem ���� is
inherent
 the time complexity of any wait�free algorithm for n�process approximate agreement
is at least log n� Together with Theorem ���� this result shows that there are problems for which
wait�free algorithms take more time �by an ��logn	 factor	 than non�wait�free algorithms�

��



In the rest of this section� we assume that each process has only one register to which it
can write� Since the size of registers is not restricted and since only one process may write to
each register� there is no loss of generality in this assumption� Let Ri be the register to which
pi writes� For a con�guration C and a process pi� let st�pi� C	 be the pair consisting of the
local state of pi and the value of Ri in C� i�e�� st�pi� C	 � hstate�pi� C	� val�Ri� C	i�

The synchronized schedule is the schedule in which processes take steps in round�robin
order starting with p�� essentially operating synchronously� The sequence of r rounds in the
round�robin order is denoted �r� For any con�guration C� the corresponding synchronized
execution from C is uniquely determined by the algorithm� Note that this is a failure�free
execution�

We now de�ne the set of processes that could have in�uenced pi�s state at time r in the
synchronized execution from a con�guration C� Let C be a con�guration
 by induction on
r � �� de�ne the set INF�pi� r� C	� for every i � f�� � � � � n� �g� using the following rules


�� r � �
 INF�pi� r� C	 � fpig� for every i � f�� � � � � n� �g�

�� r � �
 if pi�s rth step in �C� �r	 is a read of Rj � then INF�pi� r� C	 � INF�pi� r� �� C	�
INF�pj� r��� C	� If pi�s rth step is a write �to Ri	 then INF�pi� r� C	 � INF�pi� r��� C	�

Lemma ��� jINF�pi� r� C	j 	 �
r for every con�guration C� r � � and i � f�� � � � � n� �g�

Proof� By induction on r�

The next lemma formalizes the intuition that INF includes all the processes that can
in�uence p�s state up to time r�

Lemma ��� Let C� and C� be two con�gurations� let pi be any process and let r � �� If
st�pk � C�	 � st�pk � C�	 for all pk � INF�pi� r� C�	� then st�pi� C��r	 � st�pi� C��r	�

Proof� The proof is by induction on r� For the base case� r � �� we have INF�pi� �� C�	 � fpig
and �� � �� Then the claim follows immediately from the assumption�

To prove the induction step� assume r � � and the claim holds for r� �� and suppose that
st�pk � C�	 � st�pk� C�	 for all pk � INF �pi� r� C�	� Since� by de�nition� INF�pi� r � �� C�	 

INF�pi� r� C�	� it follows that st�pk� C�	 � st�pk� C�	 for all pk � INF�pi� r � �� C�	� Then by
the induction hypothesis� st�pi� C��r��	 � st�pi� C��r��	� We consider two cases


If pi�s rth step in �C�� �r	 is a write then the fact that st�pi� C��r��	 � st�pi� C��r��	
implies that st�pi� C��r	 � st�pi� C��r	� as needed�

On the other hand� suppose that pi�s rth step in �C�� �r	 is a read� say from Rj � By
de�nition� INF�pj� r � �� C�	 
 INF�pi� r� C�	� and hence� st�pk � C�	 � st�pk � C�	 for all pk �
INF�pj � r � �� C�	� Then by the induction hypothesis� st�pj � C��r��	 � st�pj � C��r��	� Since
also st�pi� C��r��	 � st�pi� C��r��	� it follows that st�pi� C��r	 � st�pi� C��r	� as needed�

��



We can now prove


Theorem ��� Any wait�free algorithm for the n�process approximate agreement problem has
time complexity at least logn�

Proof� Assume that A is a wait�free approximate agreement algorithm� We prove a slightly
stronger claim
 there exists a failure�free execution � in which no process decides before time
logn� Suppose� by way of contradiction� that in all failure�free executions some process decides
before time logn�

Fix some � � �� Let � be the in�nite synchronized schedule� Consider the execution �C�� �	
of A from the initial con�guration C� where processes start with inputs h�� � � � � �i� Let t be
the time associated with the �rst decision event in �C�� �	� and let pi be the process associated
with this event
 by assumption� t � logn� By the validity property� pi must decide on � since
all processes start with ��

By Lemma ���� we have that jINF�pi� t� C�	j 	 �t � n� Thus� there exists some process�
say pj � that is not in INF �pi� t� C�	�

Intuitively� to complete the proof� we create an alternative execution in which pj �starts
early� with input �� runs on its own and thus must eventually decide �� We then let the rest of
the processes execute as if they are in the synchronized execution from C� and use Lemma ���
to show that process pi still decides on �� which is a contradiction to the agreement property�
since � � ��

More precisely� apply � � an in�nite schedule consisting of steps of pj only� to the initial
con�guration C�� where processes start with inputs h�� � � � � �i� The resulting execution �C�� �	
is �n � �	�admissible� and thus� since A �n � �	�solves the approximate agreement problem�
and since pj is nonfaulty in � � there exists a �nite pre�x � � of � in which pj decides� By
validity� pj decides on �� Now apply � � to the initial con�guration C� where all processes
but pj start with input �� and pj starts with input �� By induction on the pre�xes of � ��
it follows that st�pj � C��

�	 � st�pj � C��
�	� Thus pj decides on � in C��

�� Since pj can write
only to Rj� it follows that for all processes pk �� pj � st�pk � C��

�	 � st�pk � C�	� By Lemma ����
state�pi� C��

��t	 � state�pi� C��t	� Thus� pi decides on � in C��
��t� and pj decides �� which is

a contradiction to agreement� since � � ��

	 A Tradeo
 Between Work and Time

We now consider the performance of wait�free algorithms when failures occur� A drawback
of the fast algorithms we have presented in this paper is that if a failure does occur� then
the remaining processes will have to take many steps before halting� We show that this
phenomenon is unavoidable� Roughly speaking� we prove that if an algorithm terminates
in a small number of steps in executions where failures do occur� then it is slow in normal
executions� In the rest of this section we restrict our attention to the two�process case�

��



Let the work performed by an algorithm be de�ned as the maximum� over all executions� of
the total number of operations performed by all processes before deciding� To bound the work
from below we show a stronger bound
 we prove a lower bound on the number of operations
a single process performs before deciding when running on its own� Clearly� this also gives a
lower bound on the work�

Let k � � be an integer� An algorithm is k�bounded if from any reachable con�guration� a
process that executes k consecutive steps on its own must decide� Fix a k�bounded wait�free
algorithm A for approximate agreement
 all de�nitions and lemmas in the rest of this section
are with respect to A� For each process pi and each con�guration C reachable in an execution
of A� de�ne pref i�C	� the preference of pi in C� to be the value on which pi decides in the
execution fragment starting from C in which it runs alone until it decides�

A �nite schedule is a block if it consists of a positive number of events by p� followed by
one event by p�� or vice versa�

Lemma ��� Let � be a �nite schedule� and let C� be an initial con�guration� Let C � C���
Then there exists a �nite block schedule �� such that

jpref ��C�
�	� pref ��C�

�	j �
�

�k
jpref ��C	� pref ��C	j �

Proof� The proof considers the tree of all block schedules applied to C� A case analysis�
according to the types of steps taken� similar to the one in ����� is used to show that it cannot
be that all the pairs of preferences associated with leaves of this tree are close together� The
details follow�

Let �� � �k� i�e�� the schedule consisting of k events of p�� Similarly� let �� � �k� Let
�C� ��	 � C�C�� � � � � Ck� and �C� ��	 � C�C �

�� � � � � C
�
k� For any l� � 	 l 	 k� de�ne Dl � Cl��

i�e�� the con�guration that results from applying an event of p� to Cl� Similarly� for any l�
� 	 l 	 k� de�ne D�

l � C �
l�� De�ne vl� � pref ��Dl	� v

l
� � pref ��Dl	� u

l
� � pref ��D

�
l	 and

ul� � pref ��D
�
l	�

Since A is k�bounded� it must be that p� decides in C��
 by de�nition� it must decide
on pref ��C	� Similarly� p� decides on pref ��C	 in C��� Note that pref ��C	 � pref ��Ck	 �
pref ��Ck�	 � vk� � and pref ��C	 � pref ��C

�
k	 � pref ��C

�
k�	 � uk��

We show that for all l� � 	 l � k� either vl� � vl��� or vl� � vl��� � There are four cases�
depending on the type of operation taken in p��s step from Cl to Cl�� and in p��s step from
Cl to Dl


�� p� writes and p� writes
 commutativity implies that v
l
� � vl��� �

�� p� reads and p� reads
 commutativity implies that vl� � vl��� �

�� p� writes and p� reads
 vl� � vl��� � since the state of p� is the same in Dl� and Dl���

��



�� p� reads and p� writes
 v
l
� � vl��� � since the state of p� is the same in Dl and Dl���

By symmetric arguments we can show that for all l� � 	 l � k� either ul� � ul��� or ul� � ul��� �
In a similar manner we show that either v�� � u�� or v

�
� � u��� by case analysis� depending on

the type of operation taken in p��s step from C to C� and in p��s step from C to C�
�


�� p� writes and p� writes
 commutativity implies that v�� � u�� and v�� � u���

�� p� reads and p� reads
 commutativity implies that v�� � u�� and v�� � u���

�� p� writes and p� reads
 v
�
� � u��� since the state of p� is the same in D� and D�

��

�� p� reads and p� writes
 v
�
� � u��� since the state of p� is the same in D� and D�

��

Suppose� for instance� that v�� � u��� �The argument is analogous if v
�
� � u���	 It is possible to

show �e�g�� by induction	 that jvk� � v�� j 	
Pk

l�� jv
l
� � vl�j� and that ju

k
� � u��j 	

Pk
l�� ju

l
� � ul�j�

Therefore� jvk� �uk�j 	
Pk

l�� jv
l
�� vl�j"

Pk
l�� ju

l
��ul�j� By simple calculations� this implies that

either there exists some l such that jvl� � vl�j �
�
�k jv

k
� � uk�j� or there exists some l such that�

jul��ul�j �
�
�k jv

k
� �uk�j� Recall that pref ��C	 � vk� � and pref ��C	 � uk�� Therefore� either there

exists some l such that jvl� � vl�j �
�
�k jpref ��C	� pref ��C	j� or there exists some l such that�

jul� � ul�j �
�
�k jpref ��C	� pref ��C	j� In the �rst case� the claim follows by taking �� � �l�� in

the second case� the claim follows by taking �� � �l��

These facts can be used to show �e�g�� by induction	 that jvk� � v��j 	
Pk

l�� jv
l
� � vl�j� and

that juk� � u��j 	
Pk

l�� ju
l
� � ul�j� By simple calculations� this implies that either there exists

some l such that jvl��vl�j �
�
�k jv

k
��uk� j� or there exists some l such that� ju

l
��ul�j �

�
�k jv

k
��uk� j�

Recall that pref ��C	 � vk� � and pref ��C	 � uk�� Therefore���� either there exists some l such that
jvl��vl�j �

�
�k jpref ��C	�pref ��C	j� or there exists some l such that� ju

l
��ul�j �

�
�k jpref ��C	�

pref ��C	j� In the �rst case� the claim follows by taking �� � �l�� in the second case� the claim
follows by taking �� � �l��

Note that the validity condition implies that if pi�s input in an initial con�guration C is vi
then pref i�C	 � vi� Starting with this fact and applying Lemma ��� iteratively� we can bound
the rate at which a k�bounded algorithm converges� We get


Theorem ��� Let A be a k�bounded wait�free algorithm for approximate agreement between
two processes� and let x� and x� be arbitrary real numbers� x� �� x�� Then there exists an
execution of A where processes start with inputs hx�� x�i� in which the time complexity is

��log�k
jx��x�j

� 	�

Proof� Let C be an initial con�guration in which the two processes have inputs x� and x��
respectively� We construct� inductively� a schedule �l such that �l is a sequence of l blocks and
for Cl � C�l�

jpref ��Cl	� pref ��Cl	j �

�
�

�k

�l

jpref ��C	� pref ��C	j �

��



This is done by repeatedly applying Lemma ���� We have that time��l	 � l� since �l consists
of l blocks� The validity condition implies that pref i�C	 � xi� Thus� jpref ��C	� pref ��C	j �
jx�� x�j� The claim follows by noticing that it cannot be that both p� and p� have decided in
a con�guration D if jpref ��D	� pref ��D	j 	 ��

Remark ��� The case analysis in the proof of Lemma ��� can be extended to handle multi�
writer multi�reader registers
 thus� the above tradeo� applies also to algorithms that use multi�
writer multi�reader atomic registers�

� Properties of the Bias Function

In this section the interested reader may �nd the long postponed proofs of Lemma ��� through ����
We begin with the rather straightforward proof of Lemma ����

Lemma ��� Let c�� c� be nonnegative integers� and v�� v�� � be real numbers� with � 	 �� Then
bias�v�� v�� c�� c�� �	 � range�fv�� v�g	�

Proof� Let y � bias�v�� v�� c�� c�� �	� The claim is trivial if y is calculated in Line �� If y

is calculated in Line �� then y � v� " v��v�

jv�j�jv�j�jv
�j � minfc��� jv�jg	� If the min is attained

in the second term� then y � v� and the claim follows� So assume c�� 	 jv�j� so y � v� "
v��v�

jv�j�jv�j�jv
�j � c��	� Assume v� � v�� �A symmetric argument applies when v� � v��	 Then

v� � v� 	 �� so y 	 v�� Since j v��v�

jv� j�jv�j�jv
�j � c��	j 	 v� � v�� it follows that y � v��

The case where y is calculated in Line � is symmetric�

The following is the proof of Lemma ����

Lemma ��� Let c�� c� be nonnegative integers� and v�� v�� ��m be real numbers� � 	 �� m � ��

�	� Suppose c� 	 c� and jv�j���m 	 c�� Then jbias�v�� v�� c�� c�� �	� v�j 	 m��

�
� Suppose c� � c� and jv�j���m 	 c�� Then jbias�v�� v�� c�� c�� �	� v�j 	 m��

Proof� We present the proof only for ��	
 the proof for ��	 follows from symmetric arguments�
Let y � bias�v�� v�� c�� c�� �	� If y is calculated in Line � of the bias code� then y � � and v� � �
and the claim follows� Hence� since c� � c� it follows that y is calculated in Line � of bias� i�e��

y � v� "
v� � v�

jv�j" jv�j
�jv�j �minfc��� jv�jg	 �

��



If the min attains its value in the second term then y � v�� and the claim follows� Otherwise�
c�� 	 jv�j
 thus�

jy � v�j � j
v� � v�

jv�j" jv�j
�jv�j � c��	j

�
jv� � v�j

jv�j" jv�j
jjv�j � c��j

	 jjv�j � c��j � jv�j � c�� 	 m� �

by the hypothesis of the lemma�

Next is the proof of Lemma ����

Lemma ��� Let c��� c
�
�� c

�
�� c

�
� be nonnegative integers� and v�� v�� ��m be real numbers� � 	 �

and m � �� Suppose minfc��� c
�
�g � minfc

�
�� c

�
�g � � and jc�� � c��j" jc�� � c��j 	 m� Then

jbias�v�� v�� c��� c
�
�� �	� bias�v�� v�� c��� c

�
�� �	j 	 m� �

Proof� Let y� � bias�v�� v�� c��� c
�
�� �	� and y� � bias�v�� v�� c��� c

�
�� �	�

If v� � v� � � then both y� and y� are calculated in Line � of bias� i�e�� y� � y� � � and
the claim follows�

Now assume y� is calculated in Line � of bias� while y� is calculated in Line � of bias

�the reverse case is symmetric	� Thus� c�� � c��� while c�� 	 c��� Thus� by assumption� c
�
� �

c�� � �� Since jc�� � c��j " jc�� � c��j 	 m� it follows that jc��j " jc��j � c�� " c�� 	 m� Thus�
minfc��� jv

�j��g" minfc��� jv
�j��g 	 m� So� minfc���� jv

�jg" minfc���� jv
�jg 	 m�� We have

y� � v� "
v� � v�

jv�j" jv�j
�jv�j �minfc���� jv

�jg	 and y� � v� "
v� � v�

jv�j" jv�j
�jv�j �minfc���� jv

�jg	 �

Thus�

jy� � y�j � jv� "
v� � v�

jv�j" jv�j
�jv�j �minfc���� jv

�jg	� v� �
v� � v�

jv�j" jv�j
�jv�j �minfc���� jv

�jg	j

� jv� � v� "
v� � v�

jv�j" jv�j
�jv�j" jv�j	�

v� � v�

jv�j" jv�j
�minfc���� jv

�jg"minfc���� jv
�jg	j

�
jv� � v�j

jv�j" jv�j
jminfc���� jv

�jg"minfc���� jv
�jgj

	 jminfc���� jv
�jg" minfc���� jv

�jgj � minfc���� jv
�jg" minfc���� jv

�jg 	 m� �

as needed�

��



Now assume that both y� and y� are calculated in Line � of bias �the case where both are
calculated in Line � of bias is symmetric	� i�e��

y� � v� "
v� � v�

jv�j" jv�j
�jv�j �minfc���� jv

�jg	 and y� � v� "
v� � v�

jv�j" jv�j
�jv�j �minfc���� jv

�jg	 �

If for y� the min is attained in the second term� then c
�
�� � jv�j� and y� � v�
 since jc���c��j 	 m

it follows that c�� � jv�j���m� Because y� is calculated in Line �� c
�
� � c�� and the claim follows

from Lemma ��� ��	� A similar argument applies if for y� the min is attained in the second
term� So assume that for both y� and y� the min is attained in the �rst term� Thus�

jy� � y�j � jv� "
v� � v�

jv�j" jv�j
�jv�j � c���	� v� �

v� � v�

jv�j" jv�j
�jv�j � c���	j

� j
v� � v�

jv�j" jv�j
�c���� c���	j

�
jv� � v�j

jv�j" jv�j
j�c���� c���	j

	 j�c���� c���	j � �jc�� � c��j 	 m� �

as needed�

In the proof of the next lemma we use the following two facts


Claim 
�� If x� y� x�� y� are real numbers� such that jxj " jyj �� � and jx�j " jy�j �� �� and for

some 
� jx� x�j 	 
 and jy � y�j 	 
� then j jxj	y�x

jxj�jyj � jx�j	y��x�


jx�j�jy�j j 	 �
�

We prove this claim by �rst showing that jx	y�x

x�y � x�	y��x�


x��y� j 	 �
� using calculus� then
handling the absolute values by case analysis�

Claim 
�� If x� y� x�� y� are real numbers� such that jxj " jyj �� � and jx�j " jy�j �� �� and for

some 
� jx� x�j 	 
 and jy � y�j 	 
� then j 	y�x

jxj�jyj �

	y��x�

jx�j�jy�j j 	

�	
min	jxj�jyj�jx�j�jy� j
 �

We prove this claim by straightforward calculations and a case analysis� Finally� we can
prove Lemma ����

Lemma ��� Let c�� c� be nonnegative integers� and v��� v
�
�� v

�
�� v

�
�� �� 
 be real numbers� with

� 	 �� 
 � �� Suppose jv�� � v��j 	 
 and jv�� � v��j 	 
� Then

jbias�v��� v
�
�� c

�� c�� �	� bias�v��� v
�
�� c

�� c�� �	j 	 �
 �

��



Proof� Let y� � bias�v��� v
�
�� c

�� c�� �	� and y� � bias�v��� v
�
�� c

�� c�� �	� If v�� � v�� � � then
y� � �� Thus� jv

�
�j 	 
 and jv��j 	 
� So from Lemma ��� it follows that jy�j 	 
 and the claim

follows� The case v�� � v�� � � follows from symmetric arguments� So assume at least one of
v��� v

�
� is nonzero and similarly for at least one of v

�
�� v

�
��

Assume that c� � c�� i�e�� y� and y� are calculated in Line �� �The other case� where c� 	 c�

and y� and y� are calculated in Line �� is symmetric�	 Then

y� � v�� "
v�� � v��
jv��j" jv��j

�jv��j �minfc
��� jv��jg	 and y� � v�� "

v�� � v��
jv��j" jv��j

�jv��j �minfc
��� jv��jg	 �

First� assume the min for y� is attained in the second term
 then y� � v�� � In this case� if
the min for y� is also attained in the second term� then y� � v��� and the claim follows� On
the other hand� suppose the min for y� is attained in the �rst term� Since the min for y� is
attained in the second term� c�� � jv��j � jv��j � 
� Applying Lemma ��� ��	 with m � 
��� we
get that jy� � v�� j 	 
� Since jv�� � v��j 	 
� we have jy� � y�j 	 �
�

Now assume that in both cases the min is attained in the �rst term� In particular� c�� 	 jv��j
and c�� 	 jv��j� We have�

jy� � y�j � jv�� "
v�� � v��
jv��j" jv��j

�jv��j � c��	� v�� �
v�� � v��
jv��j" jv��j

�jv��j � c��	j

	 jv�� � v�� j" j
v�� � v��
jv��j" jv��j

�jv��j � c��	�
v�� � v��
jv��j" jv��j

�jv��j � c��	j

	 
 " j
v�� � v��
jv��j" jv��j

�jv��j � c��	�
v�� � v��
jv��j" jv��j

�jv��j � c��	j

	 
 " j
jv��j�v

�
� � v��	

jv��j" jv��j
�
jv��j�v

�
� � v��	

jv��j" jv��j
j" j
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�� Discussion and Further Research

We have presented a relatively fast� O�logn	 time� wait�free algorithm for n�process approxi�
mate agreement� This shows that wait�free algorithms for approximate agreement can be fast�
but not as fast as the best non�wait�free algorithms for this problem
 we have shown that log n

��



is a lower bound on the time complexity of any wait�free approximate agreement algorithm�
while there exists an O��	 time non�wait�free algorithm�

Using the emulators of ���� our algorithms can be translated into algorithms that work
in message�passing systems� The algorithms have the same time complexity �in complete
networks	 and are resilient to the failure of a majority of the processes�

There are many ways in which our work can be extended� An interesting direction is to
consider the impact on our results of using other shared memory primitives� For example�
if powerful Read�Modify�Write registers are used� then a constant time wait�free approximate
agreement algorithm can be devised� What happens if multi�writer multi�reader registers are
used& The existence of faster wait�free algorithms using these primitives will imply a lower
bound on the time complexity �in normal executions	 of any implementation of multi�writer
registers from single�writer registers�

Another avenue of research is to see whether the techniques presented in this paper� both
for algorithms and lower bounds� can be applied to other problems� We believe� for example�
that the O��	 time algorithm for two�process approximate agreement can be generalized to any
decision problem of size �� using the characterization result of ���� It is interesting to explore
whether similar results can be proved for problems that require repeated coordination �e�g��
��exclusion	�

Finally� there remains the fundamental unanswered question raised by this work
 Can wait�
free �highly resilient	 computation be performed at the price of no more than a logarithmic
slowdown& Even more strongly� are there O�logn	 time wait�free algorithms for all problems
that have wait�free solutions&

Since the preliminary presentation of our work� �rst steps have been made towards an�
swering this question in the context of randomized computation ����� Based on the alternated�
interleaving method presented in Section ���� Saks� Shavit and Woll ���� are able to show
that any decision problem that has a wait�free or expected wait�free�� solution algorithm� has
an expected wait�free algorithm with the same worst case time complexity� that takes only
O�logn	 expected time�� in fault�free executions� However� the above question itself is still far
from being answered�
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��An expected wait�free algorithm is a randomized algorithm that is only expected� rather than guaranteed�
to terminate within a �nite number of steps�

��This is optimal by a straightforward extension of our lower bound to the case of randomized computation
�see ������
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