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Abstract

The need to allow threads to abort an attempt to ac-
quire a lock (sometimes called a timeout) is an interest-
ing new requirement driven by state-of-the-art database
applications with soft real-time constraints. This paper
presents a new composite abortable lock (CAL), a com-
bination of abortable queue-based (QL) and test-and-
set based backoff (BL) lock mechanisms, which provides
non-blocking aborts while ensuring low space require-
ments without need for a memory reclamation scheme.
The key observation motivating our approach is that
the fast lock hand-off achieved by QLs only requires the
first few threads to be queued (not all waiting threads),
and that the remaining threads can run as in a BL.
We developed an algorithm that uses only a short fixed
size structure for queueing, allowing most threads to
back-off. This reduces worst-case space overhead dra-
matically, and improves performance by eliminating the
need for expensive and complicated memory manage-
ment mechanisms.

Experimental results show that our new CAL algo-
rithm not only saves on space, it actually outperforms
Scott’s state-of-the-art nonblocking abortable QL un-
der contention, and even more so when there are more
threads than processors. Moreover, as the rate of lock
aborts increases, the CAL continues to perform well,
while Scott’s algorithm deteriorates rapidly.

1. Introduction

Some parallel applications require threads to be able
to abandon an attempt to acquire a lock if it takes too
long, for example to break deadlocks and to meet soft
real-time requirements [10]. In attempting to acquire
a lock that supports such functionality, a thread spec-
ifies a patience value, indicating how long it is willing

to wait to acquire the lock. If the thread does not
acquire the lock in the specified time, it returns with
an indication that it failed to acquire the lock. Locks
supporting this functionality are sometimes called try
locks [10]; we call them abortable locks.

While lock abortability is easy to support with tra-
ditional back-off locks (BLs), these locks do not scale
well under heavy contention. The state-of-the-art scal-
able abortable lock for cache-coherent multiprocessors
is the nonblocking abortable CLH Queue-lock due to
Scott [9]. Though it significantly outperforms BLs un-
der contention, Scott’s algorithm suffers from various
drawbacks compared to BLs: it has a high space over-
head, it requires specialized memory management, and
its performance is inferior under preemption.

1.1. Composite Abortable Locks

This paper presents a new scalable composite
abortable lock (CAL) which provides non-blocking
aborts while ensuring low space requirements, and
without need for a memory reclamation scheme. The
new CAL algorithm is based on the observation that
the fast lock hand-off achieved by QLs only requires the
first few threads to be queued, not all waiting threads.
The remaining threads can simply back-off. Based on
this observation, we build a lock that combines the key
algorithmic features of the BL and QL algorithms.

In a nutshell, our CAL algorithm works as follows.
We keep a small fixed size array of lock nodes (in our
benchmarks on a 30 processor machine we used an ar-
ray of size 4). Each thread accessing the lock selects
a node to use in its acquisition attempt. If the node
is in use by another thread, the thread backs off ex-
ponentially and retries, either on the same node or a
different one selected at random. If the thread succeeds
it uses the node in a “mini” CLH style queue-lock algo-
rithm based on a linked list implemented in the array.
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The thread spins on the node preceding it in the list,
and when the thread owning the preceding node signals
that it has finished its critical section, the thread ac-
cesses the critical section. It releases its node in-turn
when it completes. If a thread needs to abort while
owning a node, it leaves it after a minor update of the
node state. If it needs to abort while backing-off, it
simply leaves.

This mechanism provides several interesting algo-
rithmic properties. It distributes backed-off access at-
tempts onto several locations, reducing contention. It
provides the scalable quick-handoff mechanism of CLH
queue locks for the nodes on the lock’s critical access
path. It provides nonblocking aborts without the need
for memory management since all aborts that occur
while a thread is backed-off have zero-cost as in BLs,
and for ones that happen while holding a node, one
can simply leave the array node around since some
other thread will select it at random for future use.
For L locks and T threads, the new algorithm requires
only O(L) space in the worst case, as compared with
O(L ∗ T ) for Scott’s abortable QL algorithms. Given
all these advantages, one needs to keep in mind that
the new algorithm does not provide the same FIFO lock
access fairness as non-abortable QL. Scott’s algorithms
do.

1.2. Performance

We ran a set of experiments on a 30-processor Sun
Enterprise 6000, a cache-coherent NUMA machine.
Our new CAL not only scales as well as Scott’s al-
gorithm, but also noticeably outperforms it. This scal-
ability verifies the key insight that only the front part
of the QL is necessary to ensure fast lock handoff in
a scalable way. As we increase the number of threads
beyond the number of processors, the percentage of
failed (timed-out) acquisition attempts increases only
modestly for BL and CAL algorithms, yet the degrada-
tion is severe with Scott’s algorithm. This is because
its queue is significantly longer than that of the CAL,
and preemption within the queue has a high perfor-
mance cost. Finally, when we measure the number of
failed acquisition attempts as the patience value de-
creases, we see that our new CAL degrades gracefully
while Scott’s algorithm deteriorates rapidly.

1.3. Related Work

Traditional test-and-set (TAS) locks represent lock
ownership in a single word, and a thread wishing to
acquire the lock repeatedly attempts to atomically
change the lock from “free” to “owned” (for example)

using an atomic synchronization instruction such as
test-and-set or compare-and-swap (CAS). Design-
ing an abortable version of such locks is trivial: If a
thread exceeds its patience without acquiring the lock,
it simply gives up and returns.

However, TAS locks are known to perform poorly
under heavy load because of the memory traffic caused
by the repeated atomic instructions on the same mem-
ory location [1]. TAS locks can be improved somewhat
by reading the lock word first, and attempting to ac-
quire it only if it is not held, yielding so-called test-and-
test-and-set (TATAS) locks. TAS and TATAS locks
can be further improved by using backoff : When a
thread fails to acquire the lock, it delays for some time
before trying again, thereby reducing contention for the
lock. While these techniques help somewhat, TAS and
TATAS locks are still not scalable. Furthermore, it is
difficult to make threads backoff just the right amount,
and as a result, handing the lock off from one thread
to another can take significantly longer than necessary,
resulting in limited throughput.

TAS and TATAS locks have the additional disadvan-
tage of exhibiting very unfair behavior because they
impose no ordering whatsoever between threads at-
tempting to acquire the lock. Because a thread that
has just released the lock has it cached, it can often
acquire the lock again without allowing other threads
an opportunity to do so. While this can appear to pro-
duce high throughput, it actually starves other threads
for long periods of time, which is undesirable in many
applications.

The shortcomings of these simple locks have lead
to extensive research into scalable queue locks (QLs)
[1, 2, 3, 7, 8], which generally arrange for threads to
form a queue so that each thread “spins” on a different
memory location, allowing those locations to be cached
until the spinning thread is informed by its predecessor
in the queue that it can acquire the lock. Most of these
locks do not allow threads to abort, however.

Scott and Scherer [10] proposed abortable versions
of two classic queue-locks: the MCS lock [8] and the
CLH lock [2, 7]. However, these locks require an abort-
ing thread to wait for another thread, undermining
the value of being able to abort to meet soft real-
time requirements. Scott [9] subsequently proposed
non-blocking versions of these locks to overcome this
problem. Although these nonblocking abortable QLs
are as scalable as the original QLs, their worst-case
space requirements are unbounded. Scott does suggest
an approach for limiting memory usage to O(L ∗ T )
for L locks, where T is the number of threads in the
system, but he does not consider this approach worth-
while in practice. He suggests that the space overhead



may be a theoretically unavoidable limitation of the
non-blocking abortability property of queue-locks.

Jayanti [5] proposed another abortable queue lock,
but this lock has the severe practical disadvantages of
best-case space overhead that is linear in the number
of threads that might access the lock, as well as the
need to know an upper bound on the number of such
threads.

Lim and Agarwal [6] suggested the reactive lock,
which switches among several lock types, viz. QL and
BL, based on the concurrency/load level on the lock.
They did not show how to allow aborts. While their
scheme can probably be extended to allow aborts, by
using abortable QLs (e.g., [5, 9]) in place of regular
ones, such a scheme would inherit the disadvantages
of these QLs already discussed, including high space
overhead and complicated memory management mech-
anisms. The composite lock approach carefully com-
bines the advantages of BLs and QLs, while avoiding
their disadvantages, rather than attempting to switch
among different schemes.

The remainder of this paper is organized as follows.
In Section 2, we present a high-level overview of our
CAL approach, and in Section 3, we present a specific
example of a CAL lock based on the well-known CLH
lock, and discuss some important optimizations. We
present performance experiments in Section 4. Con-
cluding remarks appear in Section 5.

2. Overview

The key insight underlying our Composite
Abortable Lock (CAL) approach is that

1. Only the front part of the QL needs to exist in or-
der to provide the tightly timed behavior of the
algorithm. All other threads can exponentially
backoff but need not be in a tight list.

2. Distributing the backoff mechnism onto multiple
locations will reduce effects of contention incurred
by the single location in the BL.

Thus in a sense we combine the best features of QLs
and BLs, namely tight coordination at the front of the
queue and low space overhead. A number of locks may
be implemented by the Composite Lock approach. In
this section, we provide a brief high-level description
of such locks, and in the next section we present one
specific implementation in detail, and describe an op-
timization to it.

In most QLs, each thread attempting to acquire the
lock allocates a queue node, which it inserts into a FIFO
queue. Having done so, the thread then spins on a node

in the queue—usually its own node or its predecessor in
the queue—until a change to this node indicates that it
can now enter its critical section. The need for one node
per thread accounts for the space overhead of QLs, and
also necessitates some form of memory management for
these nodes, which is more complicated in algorithms
that support aborts.

Rather than allocating a node per thread, and using
memory management techniques to reclaim nodes after
use, CAL algorithms based on our approach use a small
array of C nodes for some constant C. These nodes are
used to in a manner similar to the nodes in existing QL
algorithms to create an order between waiting threads,
but because we only aim to tightly coordinate a few
threads at the front of the queue, we do not need one
node per thread.

The basic structure of algorithms based on our CAL
approach is that, rather than allocating a node before
beginning, a thread acquires one of the C pre-allocated
nodes in the array. Having acquired a node, a thread
uses it in a queueing algorithm similar to those in the
literature. Threads waiting to acquire a node can back-
off in a variety of different ways to reduce contention
and memory traffic. Because the threads that have ac-
quired nodes are tightly coordinated in the queue, this
backing off does not affect the time it takes for a thread
to handoff the lock to another thread, as is the case in
pure backoff locks.

The number C of nodes needed for the array will
depend on a variety of factors including architecture,
application behavior, etc. While we present the specific
algorithm in the next section in terms of a fixed-sized
array, it is not hard to grow the array dynamically if
necessary.

CAL implementations may employ a variety of tech-
niques for selecting a node to acquire. For example,
this selection may be completely random (as in the
concrete CAL algorithm presented in the next section),
systematic (where threads use specific nodes that are
assigned to clusters of threads based on some system-
specific heuristic), or a combination of both (for adapt-
ing to the runtime workload; for example, threads usu-
ally backoff on a fixed subset of nodes, but occassion-
ally backoff on randomly selected nodes if the load on
their default node subset increases above a particular
threshold). If the chosen slot is already owned by an-
other thread, the current thread may choose to backoff
for some time before retrying the slot acquisition step,
and it may try again to acquire the same node, choose
a different node, etc. Additional heuristics to make a
thread backoff and retry on multiple nodes (that are
selected randomly or in a specific order) may also be
used to increase the chances of early node acquisition



by the thread.
Similarly, a variety of backoff strategies can be em-

ployed by threads waiting to acquire a node.
Supporting aborts in CALs is in general much sim-

pler than in previous abortable QL algorithms. First,
if a thread decides to abort its attempt to acquire the
lock before acquiring a node in the array, no further
action is necessary; it can simply leave, just as in BLs.
Presumably aborts are most common under heavy con-
tention, and so this is the most common case. Even
for a thread that does acquire a node before decid-
ing to abort, aborting is generally significantly sim-
pler in CALs based on our approach than in previous
abortable QLs. This is because, by using a fixed array
of nodes, we avoid the complicated memory manage-
ment techniques of previous abortable QLs, and thus
an aborting thread does not need to interact with such
mechanisms. For example, in the specific CAL algo-
rithm presented in the next section, a thread that de-
cides to abort after acquiring a node performs two sim-
ple stores before leaving.

We present a composite abortable lock based in the
CLH lock [2, 7] in the next section.

3. A CLH-based CAL

The example Composite Abortable Lock we present
in this section is based on the CLH lock [2, 7]. Briefly,
the CLH lock works as follows. To acquire the lock,
a thread first allocates a node, sets the node’s status
to W (for “wait”) and inserts it into a wait-queue. If
the node is the first in the queue, the thread imme-
diately enters its critical section. Otherwise, it spin-
waits on the status of its predecessor node, waiting for
it to become R (for “release”). When a thread com-
pletes its critical section, it sets the status of its node
to R, thereby releasing the next thread in the queue
(if any) into its critical section. The order of nodes in
the wait-queue can be represented explicitly by having
each thread store the address of its predecessor’s node
in its own node, or implicitly by having each thread
remember its predecessor in a private variable. In the
CLH-based CAL presented below, a thread records its
predecessor implicitly in a private variable until such
time as it aborts, in which case it stores the predecessor
explicitly in its node, allowing other threads to clean
up its aborted node. This approach avoids the shared
memory store in the common case, where threads do
not abort their lock acquisition attempt.

We now describe our CLH-based CAL in more de-
tail. The data types and initialization are shown in Fig-
ure 1, along with pseudocode for the release method,
and pseudocode for the acquire method is shown in

Figure 2. Each lock L consists of a constant size (C)
node array buffer[1..C] (Lines 1 to 4). Each node con-
sists of a state field and a pointer to the next node
in the CLH wait-queue (Lines 9 to 13). The queue’s
Tail (Lines 5 to 8) consists of a pointer to the tail
node of the wait-queue, and a version number of the
Tail. A version number is required to avoid the ABA
problem 1. At any point in time, the Tail pointer is
either NULL or a pointer to the last node inserted in
the wait-queue. A node may be in any of the four fol-
lowing states (Lines 10 and 11): waiting (W), released
lock (R), aborted (A), or free (F). We now describe the
acquire method that a thread uses to acquire the lock.
We begin by describing the general structure of this
method without regard to abort functionality, which is
described later.

A node is in state F initially. A thread intend-
ing to acquire the lock randomly selects a node for
use (Line 18) and if the node is in state F , atomi-
cally switches it to state W , using a CAS (Line 23). If
however, the node is not in state F , the thread retries
(the loop from Line 22 to 43) with exponential back-
off (Line 39) between failed attempts, until its atomic
acquisition (Line 23) succeeds. Essentially, the thread
does a TAS lock with backoff on the node.

After a thread has successfully acquired a node
(Line 44 onwards), which is now in state W , it attempts
to atomically insert the node at the wait-queue’s Tail
(Lines 44 to 51). Then, if the inserted node is the first
in the queue, the thread has successfully acquired the
lock (Lines 53 and 54). If not, the thread spin-waits on
the next node in the queue until the node switches to
state R (Lines 56 to 68). The thread then sets the state
of the node on which it was spinning to F (Line 69), al-
lowing the node to be reused later. After executing its
critical section, the thread releases the lock by updat-
ing its node’s state to R (Line 14), thereby informing
the next thread in the queue, if any, that it can enter
the critical section.

1The ABA problem is a side effect of atomic
compare-and-swap (CAS) instruction’s semantics.
CAS(addr,old,new) atomically checks to see if the value
at address addr is the same as old, and if so, swaps new into
addr. Hence, if thread T1 reads a value, say A, from location
L, and before it does a CAS(L,A,C), thread T2 modifies L to a
new value, say B, and later writes back A into L, thread T1’s
CAS will succeed even though thread T2 modified L several
times between the read and CAS of L by T1. Because the
intention behind such uses of CAS is usually that the CAS
should succeed only if the variable accessed does not change
between the load and the CAS, this often leads to incorrect
behavior. By augmenting the variable with a version number
that is incremented on every update, we avoid this problem in
practice.



3.1. Abort Capability

As mentioned earlier, our lock supports timeout ca-
pability wherein a thread may abort waiting for a lock
after it runs out of patience. If the thread is in the back-
ing off stage (i.e. it has not acquired a node yet) then it
can abort its attempt without informing other threads
because it has not yet entered the queue (Lines 41
and 42). If the thread decides to abort when already
in the wait-queue, to preserve a consistent queue struc-
ture, it makes the next node in the wait-queue (that
the thread is spinning on) explicit (Line 63); the thread
then sets its node’s state to A (using a memory store
instruction, Line 64), effectively aborting its attempt of
acquiring the lock, and leaves. In this case, the thread,
if any, that owns the node immediately behind this re-
cently aborted node in the wait-queue is responsible
for cleaning up that aborted node (Lines 57 to 61).
The thread does so by changing its predecessor to the
aborted node’s predecessor (Line 59), and then setting
the aborted node’s state to F , preparing it for future
reuse (Line 60). Both updates can be done with sim-
ple memory stores. The thread subsequently spin-waits
on the new predecessor node. If the new predecessor
is also in state A, that node is also cleaned up in the
same fashion. As described below, if there is no node
behind a recently aborted node (i.e. the aborted node
is the Tail), then the aborted node can be cleaned up
by a thread that subsequently inserts its acquired node
at the Tail, behind the aborted node.

According to the algorithm as presented thus far,
if a thread intends to acquire a node that is in either
state A or state R, the thread waits for the node to be
cleaned up by another thread. However, if the node is
the wait-queue’s Tail, no other thread will clean it up.
We require a different mechanism to handle this case.
The mechanism we present in our algorithm (Line 27
to 38) allows the thread intending to acquire a node to
clean up that node if the node is the current Tail of
the wait-queue and to simultaneously acquire the node.
To ensure that only one thread successfully acquires
the node, this is achieved by changing the Tail using
CAS, so that it no longer points to the node. Having
thus acquired the node, the thread then stores W in
the node’s state field (Line 34), and then proceeds as
usual to link the node into the queue. The new value
stored in the Tail pointer during this special-case node
acquistion depends on the state of the node:

State R: If the state of the acquired node was R, then
the node was necessarily the only node in the wait-
queue (since the node must become the head of
the queue before switching to state R). In this
case, the new value of the Tail pointer is NULL

(Line 30 to 33), indicating that the wait-queue is
now empty. The next thread that inserts its node
into the wait-queue (perhaps the same one that
set the Tail pointer to NULL) will have implicitly
acquired the lock (Line 52 to 54), since there exists
no predecessor node in the queue.

State A: Because the first thread to link a node into
the queue after the queue is empty immediately
enters the critical section, it does not abort. Fur-
thermore, when it leaves the critical section, it sets
its node to state R. Therefore, whenever the queue
is not empty, its first node is always in state W or
state R. This implies that, if the state of the node
acquired during the above-described tail cleanup
was A, then the node was not at the head node of
the wait-queue; i.e., there must exist at least one
node ahead of that node in the wait-queue. There-
fore, in this case, the new Tail pointer stored by
the cleanup is the predecessor of the node being
cleaned up and acquired (Line 30 to 32).

3.2. An Important Optimization

We designed the algorithm described above with
performance and scalability under heavy contention in
mind. However, performance in the absence of con-
tention is also important. Ideally the lock should be
almost as simple and streamlined as a simple TAS lock
in this case. In the algorithm as presented above, we
will often have to move the Tail pointer off a released
node, claim the node, and then splice it into the queue
in the uncontended case. In this section, we briefly
describe an optimization that aims to make the lock
behave very similarly to a simple TAS lock in the ab-
sence of contention.

The key idea behind our optimization is to allow
a thread to acquire the lock without acquiring a node
and splicing it into the queue if there is no other thread
holding or requesting the lock. We achieve this by
adding a locked by unqueued thread bit to the Tail

variable (which still has a node pointer and a version
number as before). A thread that finds the pointer
to be NULL and the locked by unqueued thread bit
false can acquire the lock by simply using CAS to set
the bit to true (while ensuring that the pointer is still
NULL). Thus, an uncontended acquire in this opti-
mized algorithm is almost the same as a simple TAS
lock.

The main challenge involved in making this opti-
mization work is making it compatible with queueing
threads as before under contention. We also need to
address how we get back to the simple, uncontended
mode after a period of high contention.



We considered a number of optimization approaches,
and found several that appeared to be workable. In
some of our optimizations, we went to great lengths
to keep uncontended behavior as faithful as possible
to a simple TAS lock. In particular, we worked hard
to ensure that a thread that acquires the lock in the
absence of contention can release the lock using a sim-
ple store, as opposed to a more expensive CAS op-
eration. While we did achieve such an algorithm, it
was significantly complicated by our efforts to avoid
using CAS for an uncontended release. Furthermore,
we found that using CAS for an uncontended release
did not harm performance significantly. We therefore
decided on a simpler optimization, which is described
below.

If a thread wishing to acquire the lock finds the
locked by unqueued thread bit set, then there is con-
tention for the lock, so the thread acquires a node and
splices it into the queue, largely in the same way as
in the algorithm described above. However, because
of the thread holding the lock without getting in the
queue, the thread cannot infer that it has acquired the
lock simply because it is first in the queue, as before.
Instead, the first thread in the queue must wait until
the locked by unqueued thread bit is set to false by
the unqueued thread. The race between the unqueued
thread releasing the lock and a new thread splicing its
node into the queue explains why the unqueued thread
must use a CAS to release the lock.

Threads that do join the queue behave largely the
same in the optimized algorithm as they do in the un-
optimized one described previously except that, as de-
scribed above, a thread at the front of the queue cannot
acquire the lock until the locked by unqueued thread

bit is false. Such operations never modify the
locked by unqueued thread bit; this is done only by a
thread that acquires the lock without joining the queue.

After a period of contention in which the queue is
used, there are a number of safe ways to reset the Tail
to NULL so that the lock again behaves like a TAS lock
until contention arises again. In our implementation,
this is the responsibility of the next thread to acquire
the lock. This thread observes that the Tail pointer
points to a node in R state, or a node in A state with a
NULL next field, indicating that the queue is empty. In
this case, the thread uses CAS to set the Tail pointer
to NULL and the locked by unqueued thread bit to
true, thereby acquiring the lock, and restoring it into
uncontended mode.

We examine the performance of our algorithm, and
the effect of the optimization just described, through a
series of experiments in the next section.

1: typedef struct {
2: TailNode Tail; // contains pointer to tail node

// and a version number
3: QNode buffer[C]; // C is a constant
4: } Lock;

5: typedef struct {
6: QNode *pNode;

7: unsigned int version;

8: } TailNode;

9: typedef struct {
10: unsigned int state; // free (F), waiting (W),
11: // released (R), or aborted (A)
12: QNode *next;

13: } QNode;

initially:

L->Tail = <NULL,0>

for all i = 1..C: L->buffer[i].state = F

void release(Lock *L, QNode* acq node)

14: acq node->state = R;

Figure 1. Data types, initialization, and code
for release method.

4. Experimental Results

In this section we present results of the experiments
we conducted to compare our CALs with the TAS-
Backoff lock and the CLH-based QL with nonblocking
aborts [9]. Our experiments show that our CAL scheme
is as scalable as this CLH QL and consistently outper-
forms it under contention. They also show that our
algorithm degrades significantly more gracefully than
the CLH-based QL under adverse conditions such as
preemption and small patience values.

We performed our experiments on a 30-processor
Sun Enterprise 6000, a cache-coherent NUMA ma-
chine formed from 15 boards each with two 366MHz
UltraSPARC r© II processors and 2GB of RAM. The C
code was compiled with a Sun cc compiler 5.3, with the
flags -xO5 and -xarch=v8plusa. Each plotted data
point represents an average over three executions in
which each thread performs 100,000 lock acquisition
attempts.

In order to test the locks under heavy contention,
we created an artificial microbenchmark in which each
thread repeatedly attempts to acquire the lock and ex-
ecutes a critical section if it succeeds. The critical sec-
tion is a tight 300 nanosecond loop, where a thread
accesses only its processor’s high resolution timer. The
non-critical work (between consecutive attempts to ex-
ecute the critical section) also consists of a 300 nanosec-



QNode* acquire(Lock *L, unsigned long patience)

15: unsigned long start time = CurrNanoTime();

16: int nano backoff = INIT BACKOFF;

17: unsigned int tail version;

18: int index = ChooseRandomInt(0,C-1);

19: QNode *acq node = &L->buffer[index];

20: QNode *implicit next = NULL;

21: TailNode currTail;

// acquire a node

22: while(TRUE) {
23: if(CAS(&acq node->state,F,W))

24: break;

25: currTail = L->Tail;

26: int node state = acq node->state;

27: if((node state == A) || (node state == R)) {
28: if(acq node == currTail.pNode) {
29: QNode *next node = NULL;

30: if(node state == A)

31: next node = acq node->next;

32: if(CAS(&L->Tail,currTail,<next node,

33: currTail.version+1>)) {
34: acq node->state = W;

35: break;

36: }
37: }
38: }
39: backoff(ChooseRandomInt(0,nano backoff));

40: nano backoff <<= 1;

41: if((CurrNanoTime() - start time) > patience)

42: return NULL;

43: }
// splice node into queue

44: do {
45: currTail = L->Tail;

46: if((CurrNanoTime() - start time) > patience) {
47: acq node->state = F;

48: return NULL;

49: }
50: } while(!CAS(&L->Tail,currTail,

51: <acq node,currTail.version+1>));

// wait for predecessor to release lock

52: QNode *implicit next = currTail.pNode;

53: if(implicit next == NULL)

54: return acq node;

55: int next state = implicit next->state;

56: while(next state != R) {
57: if(next state == A) {
58: QNode *tmp = implicit next;

59: implicit next = implicit next->next;

60: tmp->state = F;

61: }
62: if((CurrNanoTime() - start time) > patience) {
63: acq node->next = implicit next;

64: acq node->state = A;

65: return NULL;

66: }
67: next state = implicit next->state;

68: }
69: implicit next->state = F;

70: return acq node;

Figure 2. Code for acquire method.
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Figure 3. Performance and Scalability: With a
large patience value, and varying the number
of threads from 1 to 30 we find that our CALs
are as scalable as QLs.

ond loop. In all of our experiments, we used a node
array of size 4.

4.1. Performance and Scalability

In our first experiment, we vary the number of active
threads between 1 and 30, and each thread attempts to
acquire the lock specifying a very large patience value.
Thus, this experiment tests the performance and scala-
bility of the locks in the absence of aborts. The results
are shown in Figure 3. The curve labelled “Scott-AL”
is the algorithm published in [9], and the one labelled
“Scott-AL-OPT” is the same algorithm with an opti-
mization we applied to it (described below). Similarly,
we use “new-CAL” and “new-CAL-OPT” for our CAL
algorithm and the optimized version of it, respectively.
“TAS-Backoff” represents the TAS lock with backoff.

We first consider the performance of the algorithms
when only one thread is active, so there is no contention
for the lock. The TAS-Backoff lock performs best in
this case, as expected. The Scott-AL and Scott-AL-
OPT algorithms perform almost as well, and new-CAL
performs significantly worse. We can see that the opti-
mization described in Section 3.2 indeed improves the
single-threaded performance (new-CAL-OPT), but it
still does not perform as well as the Scott-AL algo-
rithms. Because the critical path through lock acquisi-
tion and release is so short in the simple uncontended
case, optimizations at a lower level than we have imple-
mented so far become important. We believe we can
close the gap between new-CAL-OPT and the TAS-



Backoff and Scott-AL locks significantly, and plan to
report this in the final version of the paper.

Next we consider scalability with increasing num-
bers of threads. We observe that TAS-Backoff performs
increasingly poorly as contention increases, consistent
with numerous previous studies, e.g. [9]. We see that
Scott-AL scales well with increasing contention, also
consistent with [9].

In the release() method of Scott-AL, a thread per-
forms a CAS to attempt to change the Tail to NULL
if it still points to the thread’s node. However, this
is usually not the case under contention because other
threads have joined the queue, so the CAS is usually
wasted. We applied a common optimization whereby
the thread reads the variable and avoids an expensive
CAS operation in case it would fail anyway. We see
from Figure 3 that the optimization improves the per-
formance of Scott-AL significantly.

Our CALs not only scale as well as Scott-AL and
Scott-AL-OPT, but also noticably outperform them.
The scalability verifies the key insight that only the
front part of the QL is necessary to ensure fast lock
handoff in a scalable way.

Our CALs perform better than Scott-AL and Scott-
AL-OPT under contention because of our approach of
avoiding the need to reclaim queue nodes by having a
small fixed number of them. In the release() method
of our algorithm, a thread hands off the lock to the
next queued thread and frees the node for subsequent
reuse simply by storing R to its node’s status field. In
contrast, the Scott-AL and Scott-AL-OPT algorithms
require two separate actions: one to check whether the
Tail still points to its node (which it generally does
not under contention), and one to release the lock to
the next thread. These actions occur on two different
cache lines, one of which (the Tail pointer access) is
unlikely to be cached in the presence of contention,
whereas our release() method requires only a single
cache line access which will typically be a cache hit.

4.2. Effect of Preemption

Our next experiment studies the effect of preemp-
tion on the various locks by using more threads than
there are processors in the system. We repeat the same
experiment as before, but now we vary the number of
threads from 30 to 40, we use a patience of 512 mi-
croseconds, and we measure the percentage of lock ac-
quisition attempts that fail due to timeout. The results
are shown in Figure 4.

With 30 threads (i.e., exactly one per processor),
all of the QLs have almost zero failures, while TAS-
Backoff has almost 30% failures; because of the poor
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Figure 4. Preemption Tolerance: Preemp-
tion has a severe effect on the success rate
for the Scott-AL algorithms because when a
thread is preempted in the queue, all oth-
ers behind it in the queue must wait, and are
likely to be preempted themselves.

performance due to excessive contention, many lock
acquisition attempts timeout before succeeding.

As we increase the number of threads, the percent-
age of failed acquisition attempts increases only mod-
estly for TAS-Backoff and both of the new-CAL algo-
rithms. Some degradation is to be expected, because
occasionally a thread is preempted while holding the
lock, and all others must wait until the preempted
thread is rescheduled, resulting in excessive waiting
leading to timeout.

However, the degradation is severe for both Scott-
AL algorithms. The reason is that these algorithms
queue all waiting threads. Note that if a thread is
preempted while in the queue, all threads behind it in
the queue must wait for it to be rescheduled before they
can acquire the lock. While they are waiting, they too
may be preempted, and a pathological situation results
in which almost no acquisition attempts succeed. More
recently, He et. al. have extended Scott’s algorithms for
preemption adaptivity [4].

In contrast, because our new-CAL algorithms queue
only a small number of threads (at most 4 in our exper-
iments), this effect is much less pronounced: threads
spend less time in the queue, and are therefore less
likely to be preempted while in the queue. Note that
the preemption of a thread that has not yet acquired a
node has no effect on other threads.



4.3. Degradation

In our last experiment, we ran 30 threads, and mea-
sured the percentage of failed acquisition attempts as
we reduced the patience of the threads. The results are
shown in Figure 5.

We first observe that at the highest patience value
in this test (144 microseconds), the TAS-Backoff lock
has about 60% failures while the Scott-AL algorithms
achieve almost no failures. This is explained by a phe-
nomenon previously observed in TAS-Backoff locks [9].
These locks are very unfair in that there is no rea-
son why one thread cannot acquire the lock repeatedly
while another fails to acquire it. In fact, because releas-
ing the lock requires exclusive ownership of the cache
line containing the lock word, the thread that has just
released the lock is very likely to succeed in acquiring
it again. While this happens repeatedly, other threads
are kept waiting, and eventually they time out, which
explains the high failure rate for TAS-Backoff.

In contrast, because the Scott-AL algorithms queue
all threads attempting to acquire the lock, they are
very fair: at worst a thread has to wait for every other
thread to acquire and release the lock once. Thus, pro-
vided the patience value is large enough to accommo-
date one lock acquisition and release, no timeouts oc-
cur.

The new-CAL algorithms do not queue all waiting
threads, so—as with TAS-Backoff—it is possible for
one thread to acquire the lock multiple times while an-
other thread repeatedly fails to do so. However, even
the short queue that forms in this algorithm is sufficient
to avoid the pathological scenario described above for
TAS-Backoff, in which unfairness is almost guaranteed.
Therefore, with patience of 144 microseconds, we ob-
serve the new-CAL algorithms suffering some failures,
but much fewer than TAS-Backoff.

We next examine the behavior of the algorithms as
we gradually reduce the patience value. For the TAS-
Backoff and our new-CAL algorithms, the failure rate
gradually increases as we reduce the patience. This
is because all aborts for TAS-Backoff and almost all
aborts for the new-CAL algorithms (i.e., those that
occur before the thread has acquired a queue node)
have no further effect on the performance of the other
threads.

In contrast, because the Scott-AL algorithms im-
mediately queue every thread, all aborts happen while
the aborted thread has a node in the queue. When
a thread aborts while it is in the queue, this impacts
the performance of other threads, which are left with
the responsibility of cleaning up and deallocating the
aborted thread’s node. This additional work makes
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Figure 5. Degradation Test: The QL algo-
rithms degrade suddenly as patience value
decreases, while TAS-Backoff and our new
CAL algorithms degrade gracefully. This
is because aborts in TAS-Backoff and most
aborts in our algorithm do not have any effect
on the performance of other threads, while
in the QL algorithms an abort requires other
threads to do additional work, therefore be-
coming more likely to timeout themselves.

that thread wait longer, and therefore it is more likely
to abort itself. Thus we have a “cascading” effect, in
which aborts cause more aborts. This effect is clearly
observed in Figure 5, where the Scott-AL algorithms
are observed to quickly approach 100% failure when
the patience value becomes small enough that aborts
begin to occur.

These results show a clear advantage of our new
CAL locks over the Scott-AL algorithms, because their
success rates degrade gracefully as the load becomes
large enough that some threads start aborting.

5. Concluding Remarks

We have proposed a new form of abortable mutual
exclusion lock, which we call a Composite Abortable
Lock. This lock shows significant performance benefits
over known abortable locks. The key insight behind our
approach is that, in order to achieve scalable perfor-
mance under contention, we must tightly coordinate a
few threads to allow a fast handoff using local spinning
techniques, but that it is not necessary to tightly co-
ordinate all waiting threads, as previous scalable locks
do. Based on this observation, we show that it is pos-



sible to achieve the required coordination by queue-
ing only a small number of threads, allowing others
to simply backoff as in simple, nonscalable locks. We
also show how to use a small, fixed structure to form
this queue, eliminating the need for complicated and
expensive memory management techniques, and also
dramatically reducing worst-case space consumption.
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