
Linear Lower Bounds on Real-World Implementations of Concurrent Objects

Faith Ellen Fich
University of Toronto
fich@cs.toronto.edu

Danny Hendler
University of Toronto

hendler@cs.toronto.edu

Nir Shavit
Sun Microsystems Laboratories

shanir@sun.com

Abstract

This paper proves
� � � �

lower bounds on the time to
perform a single instance of an operation in any imple-
mentation of a large class of data structures shared by

�

processes. For standard data structures such as counters,
stacks, and queues, the bound is tight. The implementa-
tions considered may apply any deterministic primitives to
a base object. No bounds are assumed on either the num-
ber of base objects or their size. Time is measured as the
number of steps a process performs on base objects and the
number of stalls it incurs as a result of contention with other
processes.

1 Introduction

The design of concurrent data structures for multipro-
cessor machines is an important area of research. They are
widely available and have been extensively researched (see
[18] for a detailed survey of the literature), but we lack
a basic understanding of the limitations in achieving high
scalability in their design. Even for standard concurrent
data structures, such as counters, queues, and stacks, imple-
mented using any read-modify-write synchronization primi-
tives, known non-blocking linearizable implementations re-
quire time linear in

�
, the number of processes. The best

lower bounds that had been attained for implementations
that use arbitrary read-modify-write primitives were

� � � � �

[11]. Thus, it was open whether the linear upper bounds
were inherent.

This paper provides a matching linear lower bound for
non-blocking concurrent implementations of a large class
of objects, including common data structures such as coun-
ters, queues, and stacks, from arbitrary read-modify-write
primitives. Note that any operation on a single shared ob-
ject can be expressed as a read-modify-write primitive.

At the core of our paper, we use a new variant of a cov-
ering argument [6, 10] to prove linear time lower bounds
on a class of objects that includes shared counters [14] and
single-writer snapshots [1, 3, 5]. Covering arguments bring

processes to a state in which they are poised to overwrite
certain shared objects, causing a loss of information, which
leads to incorrect behavior. Our proof technique does not
hide information. Rather, processes are brought to states
where they will access objects concurrently with other pro-
cesses, thus incurring memory stalls. We build an execution
in which, in the course of performing a single high level
operation, we cause a process to incur a sequence of

� 
 �

stalls, one with each other process in the system. It does not
matter for the proof whether these stalls are on the same or
different objects.

This lower bound proof does not apply to objects such as
queues and stacks. However, we are able to prove a linear
time lower bound on implementations of these objects by
way of a reduction. For example, if we initialize a queue
with sufficiently many consecutive integers and use de-
queue operations to return these numbers, we obtain an im-
plementation of a counter that can support a bounded num-
ber of fetch&increment operations. We construct an execu-
tion of bounded length, in which

� 
 �
stalls are incurred by

a process performing a single instance of fetch&increment,
under the assumption that any process performing an in-
stance of fetch&increment accesses less than

�
distinct base

objects. This gives us the desired lower bound, since ei-
ther some process takes linear time to access the

�
base ob-

jects, or the length of the execution can be bounded so that
a queue can be used to implement the counter.

In the next two sections, we discuss related work and we
present our model. Next, we define a class of objects, G, for
which we obtain a linear lower bound. Then we prove the
lower bound for this class. Finally, we extend the applica-
bility of the lower bound to stacks and queues.

2 Background

There has been extensive work on lower bounds in
shared memory computation, and the reader can find a sur-
vey in [10]. In this extended abstract, we will focus on re-
cent work aimed at deriving lower bounds for implementing
common data structures on real machines.

Apart from simple read and write operations, mod-

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



ern multiprocessor machines support special read-
modify-write (RMW) synchronization primitives such as
fetch&increment, compare&swap, or load-linked/store-
conditional. The time to complete an operation is
influenced not only by the number of objects a process
must access, but also by the amount of contention it incurs
at an object when other processes access it concurrently.
To capture this real world behavior, researchers such as
Merritt and Taubenfeld [17], Cypher [7], and Anderson
and Kim [2] have devised complexity measures, based on
an approach suggested by Herlihy, Dwork, and Waarts [8],
in which time complexity counts not only the number of
accesses to shared objects, but also the number of stalls, the
delays as a result of waiting for other processes that access
the object at the same time.

One can thus formalize the goals of recent lower bound
research on non-blocking real-world concurrent data struc-
tures as providing time lower bounds on implementations
that take into consideration not just the number of steps per-
formed by an operation but also the number of stalls it in-
curs.

To better understand this goal, consider, for example,
the question of implementing a shared concurrent counter.
If the hardware supports, say, a fetch&increment synchro-
nization primitive, then the simplest way of implementing a
concurrent counter, shared by

�
processes, is by using the

following straight-forward non-blocking (and, in fact, wait-
free [12]) implementation: all processes share a single ob-
ject on which each performs a fetch&increment operation to
get a number. Unfortunately, this implementation has a seri-
ous drawback: it is essentially sequential. In the unfortunate
case where all processes attempt to get a number from the
counter simultaneously, one unlucky process will incur a
time delay linear in

�
while waiting for all other earlier pro-

cesses to complete their operations. To overcome this prob-
lem, researchers have proposed using highly distributed
non-blocking coordination structures such as counting net-
works [4, 14]. Counting networks use multiple base objects
to implement shared counters that ensure that many pro-
cesses can never access a single object at the same time.
However, all such structures provide counters that are ei-
ther not linearizable or require linear time [14, 19, 20]. For
counters, the implication of the lower bounds in our paper
is that, in the worst case, there is no implementation that has
time complexity better than the straight-forward centralized
solution.

Jayanti, Tan, and Toueg [16] prove linear time and
space lower bounds for implementations of a class of ob-
jects, called perturbable, from historyless primitives [9]
and resettable consensus. Some key objects in our class,
such as counters and single-writer snapshots, are also per-
turbable. Their result is stronger than ours in the follow-
ing sense: they only count shared memory accesses, not

stalls. However, the set of historyless primitives is a proper
subset of the read-modify-write primitives and does not
include real-world primitives such as fetch&increment or
compare&swap.

3 Model

We consider a standard model of an asynchronous deter-
ministic shared memory system, in which processes com-
municate by applying operations to shared objects. An ob-
ject is an instance of an abstract data type. It is specified by
a set of possible values and a set of operations that provide
the only means to manipulate it. No bound is assumed on
the size of an object (i.e. the number of different possible
values the object can have). The application of an opera-
tion by a process to a shared object can change the value of
the object. It also returns a response to the process that can
change its state. A configuration describes the value of each
object and the state of each process.

An implementation of an object that is shared by a set of�
processes provides a specific data-representation for the

object from a set of shared base objects, each of which is
assigned an initial value, and algorithms for each process
to apply each operation to the object being implemented.
To avoid confusion, we call operations on the base objects
primitives. We reserve the term operations for the objects
being implemented. We also say that an operation of an
implemented object is performed and that a primitive is ap-
plied to a base object.

We consider base objects that support a set of atomic
read-modify-write (RMW) primitives. A RMW primitive
applied by a process to a base object atomically updates the
value of the object with a new value, which is a function� � � � � 


of the old value
�

and any input parameters
�

, and
returns a response � � � � � 


to the process.
Fetch&add is an example of a RMW primitive. Its up-

date function is � � � � � 
 � � � �
, and its response value is

�
,

the previous value of the base object. Fetch&increment is a
special case of fetch&add where

�
always equals

�
. Read is

also a RMW primitive. It takes no input, its update function
is � � � 
 � �

and its response function is � � � 
 � �
. Write is

another example of a RMW primitive. Its update function
is � � � � � 
 � �

, and its response function is � � � � � 
 � � � �
.

A RMW primitive is nontrivial if it may change the value
of the base object to which it is applied. Read is an example
of a trivial primitive.

An event is a specified primitive with specified input pa-
rameters applied by a specified process to a specified base
object. We say that the process applies the event and that the
event accesses the base object. An event whose primitive is
nontrivial is called a nontrivial event.

Suppose a process  wants to perform an operation !  
on an implemented object ! . The implementation of ! pro-

2

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



vides an algorithm for performing � � , which � executes.
While executing this algorithm, � does local computation
and applies primitives to base objects. Which events are
applied by � while it is performing an operation on an im-
plemented object is a function of the input parameters to
the operation and may also depend on events that other pro-
cesses apply.

An execution is a (finite or infinite) sequence of events in
which, starting from an initial configuration, each process
applies events and changes state (based on the responses it
receives) according to its algorithm. Any prefix of an exe-
cution is an execution. If � � � is an execution, then the se-
quence of events � � is called an extension of � . The value
of a base object � in the configuration that results from ap-
plying all the events in a finite execution � is called � ’s
value after � . If no event in � changes the value of � , then

� ’s value after � is the initial value of � .

An operation instance is a specified operation with spec-
ified input parameters performed by a specified process on
the implemented object. In an execution, each process per-
forms a sequence of operation instances. Each process can
perform only one operation instance at a time. The events
of an operation instance applied by some process can be in-
terleaved with events applied by other processes. If the last
event of an operation instance � has been applied in an exe-
cution � , we say that � completes in E. In this case, we call
the value returned by � in � the response of � in E. We say
that a process � is active after � if � has applied at least one
event of some operation instance that is not complete in � .
If � is not active after � , we say that � is idle after � . In
an initial configuration, each base object has its initial value
and all processes are idle. If a process is active in the con-
figuration resulting from a finite execution, it has exactly
one enabled event, which is the next event it will apply, as
specified by the algorithm it is using to apply its current op-
eration instance to the implemented object. If a process is
idle and has not yet begun a new operation instance, then it
has no enabled event. If a process is idle but has begun a
new operation instance, then the first event of that operation
instance is enabled. If a process � has an enabled event �
after execution � , we say that � is poised to apply � after

� .

Linearizability is a consistency condition for concurrent
objects introduced by Herlihy and Wing [15]. An execution
is linearizable if each operation instance that completes in
the execution appears to take effect atomically at some point
between when its first event is applied and when it com-
pletes. If the first event of an operation instance has been
applied in the execution, but the operation instance is not
complete, then either it appears to take effect atomically at
some point after its first event or it appears to have no ef-
fect. The resulting sequence of all complete and possibly
some incomplete operation instances is called a lineariza-

tion of the execution. An implementation is linearizable if
all its executions are linearizable. In this paper, we consider
only linearizable implementations.

An execution � is p-free if process � applies no events
in � . In a solo execution, all events are by the same pro-
cess. An implementation satisfies solo-termination [9] if,
after each finite execution, for each active process, there is
a finite solo extension in which the process completes its
operation instance. This is a very weak progress condition.
Lower bounds obtained assuming only this progress condi-
tion also apply to stronger progress conditions such as wait-
freedom.

An implementation is obstruction-free [13], if it satis-
fies solo termination. Any implementation that is lock-free
or wait-free is also obstruction-free. Obstruction-free im-
plementations do not use locks. This is important when
one process cannot wait for other processes to take steps,
for example, on systems built for multi-threaded multi-
core chips, which involve extensive context switching. Al-
though obstruction-freedom makes no progress guarantee
when processes contend for an implemented object, con-
tention managers, using probabilistic mechanisms such as
backoff, enable obstruction-free implementations to achieve
good progress in real-world situations.

In all shared-memory systems, when multiple processes
attempt to apply nontrivial events to the same object simul-
taneously, the events are serialized and operation instances
incur stalls caused by contention in accessing the object.
The formal concept of memory stalls was introduced by
Dwork, Herlihy, and Waarts [8]. The following definition
is stricter than theirs.

Definition 1 Let � be an event applied by a process � as
it performs an operation instance � in an execution � 	

� � � � � � � � � � � � , where � � � � � � � is the maximal consecutive
sequence of events immediately preceding � that apply non-
trivial primitives to the same base object accessed by � and
that are applied by distinct processes different than � . Then

� incurs
�

memory stalls in � . The number of stalls in-
curred by � in � is the number of memory stalls � incurs in

� , summed over all events � of � in � .

The difference between this definition and the original
definition by Dwork, Herlihy, and Waarts is that their def-
inition also counts stalls caused by events applying trivial
primitives such as read. Thus our lower bounds also apply
to their definition of stalls.

4 The Class �

In this section, we define a general class � of objects to
which our lower bound applies. Roughly, objects in this
class have an operation whose response can be changed by
a sequence of operations performed before it.

3

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



Definition 2 An object � shared by
�

processes is in the
class � if it has an operation Op and an initial value such
that, for any two processes � and � and for every sequence
of operation instances � � � 	 on � , where


 � is an instance of Op by process � ,


 no operation instance in � � 	 is by � or � , and


 each operation instance in � 	 is by a different process,

there is a sequence of operation instances � on � by pro-
cess � such that, for every sequence of operation instances
 � 
 	 , where


 
 
 	 is an interleaving of � and the sequences of op-
eration instances performed by each process in � � 	 ,


 
 	 contains no operation instances by � , and


 each operation instance in

 	 is by a different process,

the responses of � are different when � � and

 � are each

performed on � starting with its initial value.

In other words, if the operation instances in � are per-
formed before � , together with all the operation instances
in � � 	 , except for possibly the last operation instance by
each process, then � is guaranteed to have a different re-
sponse.

Many common objects are in � . Furthermore, determin-
ing whether an object is in � is relatively easy. We present
two examples of such proofs.

A modulo-m counter is an object whose set of values is
the set � � � � � � � � � � � � !

, for some
� # �

. It supports
a single parameterless operation, fetch&increment modulo
m. The fetch&increment modulo m operation atomically in-
crements the value of the object to which it is applied and
returns the previous value of the object, unless the object
has the value

� � �
, in which case, it sets the value of the

object to 0 (and returns
� � �

).

Theorem 3 A modulo-
�

counter object shared by
� * �

processes is in � .

Proof: Consider a modulo-
�

counter with initial value 0.
The only operation Op supported by a modulo-

�
counter is

fetch&increment modulo m. Let � � � 	 be a sequence of op-
eration instances on this object such that � is an instance of
Op by process � , all other operation instances are by neither

� nor � , and each operation instance in � 	 is by a differ-
ent process. Let

,
and

, 	 denote the number of operation
instances in � and � 	 , respectively. Then

, . 0 2 �
is the

response of � in � � and
, 	 * � � 6

.
Let � be a sequence of 7 8 � � , 	 � �

instances of
Op by a process � that performs none of the operation in-
stances in � � � 	 . Consider any sequence of operation in-
stances


 � 
 	 where

 
 	 is an interleaving of � and the

sequences of operation instances performed by each pro-
cess in � � 	 . Suppose that


 	 contains no operation in-
stances by � and each operation instance in


 	 is by a dif-
ferent process. Then


 	 contains at most
� � 6

operation
instances and



contains between

, = , 	 = 7 � > � � 6 A 8
, = �

and
, = , 	 = 7 8 , = � � �

operation instances.
Thus the response of � in


 � must be one of the values> , = � A . 0 2 � � > , = 6 A . 0 2 � � � � � � > , = � � � A . 0 2 �
.

Since
� * �

, none of these values is equal to
, . 0 2 �

.

A counter is an object whose set of values is the
integers. It supports a single parameterless operation,
fetch&increment, that atomically increments the value of
the object to which it is applied and returns the previous
value of the object. It follows from Theorem 3 that a counter
object shared by any number of processes is in � .

The value of a single-writer snapshot object over sets
of elements Q S � � � � � Q U is a vector of

�
components,V S � W W W � V U , where component

V Z
assumes an element

from Q Z
. We assume that [ Q Z [ ] 6

for all ^ _ � � � � � � � � !
. A

single-writer snapshot object supports two operations: scan
and update. The operation instance update(v) by process

� Z
sets the value of component

V Z
to

c
. A scan operation

instance returns a vector consisting of the values of the
�

components.

Theorem 4 A single-writer snapshot object is in � .

Proof: Consider a single-writer snapshot object with any
initial value. Let Op be a scan operation. Let � � � 	 be
a sequence of scan and update operation instances on this
object such that � is a scan operation instance by process �
and all other operation instances are by neither � nor � . Let

� be a sequence that consists of a single instance of update
by process � which changes the value of its component to
something other than its initial value.

Consider any sequence of operation instances

 � 
 	

where

 
 	 is an interleaving of � and the sequences of op-

eration instances performed by each process in � � 	 . Sup-
pose that



contains the instance of update by � . Then the

responses of � in � � and

 � differ in component � .

However, there are common objects that are not in � .
One example is a stack. Since a push operation only returns
an acknowledgement, � would have to be a pop. Let �
consist of a single push of value � . Then for any sequence

� of operation instances by process � and any initial stack
contents, the same value is returned by � in � � and � � � .

Likewise, a queue is not in � . Since an enqueue opera-
tion only returns an acknowledgement, � would have to be
a dequeue. Let � 8 f S W W W f Z g consist of a sequence of ^
dequeue operation instances, where ^ is the number of ele-
ments initially in the queue, followed by a single enqueue

4

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



of some element
�
. Then � returns

�
in � � . For any se-

quence of operation instances � by process � , let � denote
the size of the queue after � is performed starting with an
empty queue. Let � � � 	 � 	 	 , where � 	 	 is the shortest
suffix of � that contains � enqueue operations. Then � re-
turns

�
in

� 
 � � � � � � 	 � � 	 	 � , since, after
� 
 � � � � � � 	 � � 	 	 , the

queue contains � � �
elements, the first of which is

�
.

5 A Time Lower Bound

In this section, we prove a linear lower bound on the
worst case number of stalls incurred by an operation in-
stance in any obstruction-free implementation of an object
in class � . To do this, we use a covering argument. How-
ever, instead of using poised processes to hide information
from a certain process, we use them to cause an operation
instance by this process to incur

� � �
stalls. Specifically, we

construct an execution containing an operation instance by
process � that incurs one stall arising from contention with
a single nontrivial event by each of the other processes. We
call this an

� � � � #
-stall execution. It is formally defined as

follows.

Definition 5 An execution $ % 
 � � � % �
is a k-stall execution

for process � if

' $ is � -free,

' there are distinct base objects ( 
 ) * * * ) ( �
and disjoint

sets of processes + 
 ) * * * ) + �
whose union has size

.
such that, for / � � ) * * * ) 2 ,

– each process in + 4 is poised to apply a nontrivial
event to ( 4 after $ , and

– in % 4 , process � applies events by itself until it is
first poised to apply an event to ( 4 , then each of
the processes in + 4 accesses ( 4 , and, finally, �
accesses ( 4 ,

' all processes not in + 
 6 � � � 6 + �
are idle after $ ,

' � starts at most one operation instance in % 
 � � � % �
,

and

' in every
� ; � < 6 + 
 6 � � � 6 + � #

-free extension of $ , no
process applies a nontrivial event to any base object
accessed in % 
 � � � % �

.

We say that $ is a
.

-stall execution when � is under-
stood. Note that the empty execution is a 0-stall execution
for any process. In a

.
-stall execution, an operation instance

performed by process � incurs
.

stalls, since it incurs C + 4 C
stalls when it accesses ( 4 , for / � � ) * * * ) 2 .

Figure 1 depicts the configuration that is reached after
the prefix $ of a

� F
-stall execution $ % 
 � � � % H is executed.

Each of the processes depicted above base object ( �
is

poised to apply a nontrivial event to ( �
. The arrows show

the path taken by � when it incurs all of the stalls caused by
these events. In this configuration, process � has not yet be-
gun to perform its operation instance. Only processes in the
set I H� J 
 + �

are active in this configuration. In % 
 , � ’s oper-
ation instance will access ( 
 and incur five stalls from the
events of the processes in + 
 . Then, in % L , � ’s operation in-
stance will incur four additional stalls when it accesses ( L .
In total, � will incur 19 stalls in the execution $ % 
 � � � % H .

Theorem 6 Consider any obstruction-free
�

-process im-
plementation of an object O in class � from RMW base ob-
jects. Then the worst case number of stalls incurred by a
single operation instance is at least

� � �
.

Proof: Fix a process � . It suffices to prove the existence of
an

� � � � #
-stall execution for � . To obtain a contradiction,

we suppose there is no such execution.
Let T U . U � � [

be the largest integer for which
there exists a

.
-stall execution for process � in which � is

performing an instance � of the operation that witnesses
the membership of O in � . Let $ % 
 � � � % �

be such a
.

-stall
execution with base objects ( 
 ) * * * ) ( �

accessed by sets of
processes + 
 ) * * * ) + �

, where C + 
 6 � � � 6 + � C � .
.

We will prove that there exists a
� . � . 	 #

-stall execution
for some

. 	 ^ �
. To do this, we use properties of the class

� to show there is some other process � that applies a non-
trivial event to a base object that is accessed by process � in
a solo extension of $ % 
 � � � % �

.
Let % be an extension of $ % 
 � � � % �

in which process �
applies events by itself until it completes its operation in-
stance � and then each process in + 
 6 � � � 6 + �

applies
events by itself until it completes its operation instance. The
obstruction-freedom of the implementation guarantees that

% is finite. Let
�

be the value returned by � in $ % 
 � � � % � % .
Consider a linearization � � � 	 of the operation instances

performed in $ % 
 � � � % � % . Then � returns value
�

in � � .
Since all processes not in + 
 6 � � � 6 + �

are idle after $ and
no operation instance begins in $ % 
 � � � % � % after � ’s first
event, � 	 contains at most

. U � � [
operation instances,

each performed by a different process.
Let � be a process not in + 
 6 � � � 6 + � 6 ; � <

. Since
the object O is in class � , Definition 2 implies that there
is a sequence of operation instances � by � such that

�
is

not returned by � in
d � , for every interleaving

d d 	 of �
and the sequences of operation instances performed by each
process in � � 	 , if no operation instance by � is in

d 	 and
each operation instance in

d 	 is by a different process.
Let e be the solo extension of $ by process � in which

it completes all of the operation instances in � . The
obstruction-freedom of the implementation guarantees that

e is finite. Because $ % 
 � � � % �
is a

.
-stall execution and e

is
� ; � < 6 + 
 6 � � � 6 + � #

-free, e applies no nontrivial event

5

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



5,1

5,2

   O  5

   S
5

   p

   p

   p

   O  1

   p

   p

   p

   p
1,2

   p
1,3

   p
1,4

   p
1,5

   p
1,1

4,5

   S2    S3

   S1

2,1
   p
   p

2,4

2,3

2,2

   O  2    O    O  4  3

   p

3,1

3,2

3,3

   p
4,2

   p
4,3

   p
4,4

   p

   p
4,1

   S4

p

Figure 1. The configuration after the prefix � of a
� �

-stall execution � � � 	 	 	 � 
 is executed.

to any base object accessed in � � 	 	 	 � �
. Therefore the value

of each base object accessed in � � 	 	 	 � �
is the same after �

and � � . Consequently, � � 	 	 	 � �
is an extension of � � . Fur-

thermore, the value of each base object accessed in � � 	 	 	 � �
is the same after � � � 	 	 	 � �

and � � � � 	 	 	 � �
.

Let � � be an extension of � � � � 	 	 	 � �
in which � applies

events by itself until it completes its operation instance �
and then each process in � � � 	 	 	 � � �

applies events by
itself until it completes its operation instance.

Let
! � ! � be a linearization of the operation instances

performed in � � � � 	 	 	 � � � � . Then
! ! � is an interleaving

of # and the sequences of operation instances performed by
each process in $ $ � . Since all processes not in � � � 	 	 	 �

� �
are idle after � � and no operation instance begins in

� � � � 	 	 	 � � � after � ’s first event,
! � contains no operation

instances by , , and each operation instance in
! � is by a

different process.
We claim that during � , process , applies a nontrivial

event to some base object accessed by � in � . Suppose
not. Then � applies exactly the same sequence of events
in � � and gets the same responses from each as it does
in � . Hence � will also return the value

-
in execution

� � � � 	 	 	 � � � � . This implies that
-

is the response of � in! � , which contradicts the fact that . is in / .
Let 0 be the set of all finite ( 1 � 2 � � � � 	 	 	 � � �

)-free
extensions of � . Let 6 � 8 � be the first base object accessed
by � in � to which some process applies a nontrivial event
during event sequences in 0 . 6 � 8 � is well-defined since

� : 0 and, during � , process , applies a nontrivial event to
some base object accessed by � in � . Since � � � 	 	 	 � �

is a<
-stall execution, no event sequence in 0 applies a nontriv-

ial event to any of 6 � = > > > = 6 �
, so 6 � 8 � is distinct from these

base objects. Let
< � be the maximum number of processes

that are simultaneously poised to apply nontrivial events to
6 � 8 � in event sequences in 0 . Let � � be a minimal length
event sequence in 0 such that a set � � 8 � of

< � processes are
simultaneously poised to apply nontrivial events to 6 � 8 � af-
ter � � � .

Since � � is ( 1 � 2 � � � � 	 	 	 � � �
)-free and � is � -free, � � �

is also � -free. Furthermore, for C D � = > > > = G , each process
in � H is poised to apply a nontrivial event to 6 H after � and
hence after � � � .

Let � � 8 � be the prefix of � up to, but not including � ’s
first access to 6 � 8 � , followed by an access to 6 � 8 � by each
of the

< � processes in � � 8 � , followed by � ’s first access to
6 � 8 � . Then � � � � � 	 	 	 � � 8 � is an execution. Note that �
starts only one operation instance in � � � � � 	 	 	 � � � � 8 � .

If J is a ( 1 � 2 � � � � 	 	 	 � � � � � � 8 � )-free extension of � � � ,
then � � J : 0 . Since � � � 	 	 	 � �

is a
<

-stall execution, � � J
applies no nontrivial events to any base object accessed in

� � 	 	 	 � �
. By definition of 6 � 8 � and the maximality of

< � , J
applies no nontrivial events to any base object accessed in

� � 8 � .
Hence � � � � � 	 	 	 � � � � 8 � is a

O < Q < � S
-stall execution.

Since
< U < Q < � X Z [ �

, this contradicts the maximality
of

<
.

6 Stacks and Queues

We do not know whether the result of Theorem 6 holds
for stacks or queues. However, we are able to prove that, for
any obstruction-free

Z
-process implementation of a stack or

queue, the worst-case number of events and stalls incurred
by a process as it performs an operation instance is at leastZ

. We derive this result using a reduction from counters to
stacks and queues.

We begin by showing that, for any obstruction-free im-
plementation of a counter, either there is an execution
in which a process accesses a linear number of differ-
ent base objects while performing a single instance of
fetch&increment, or there is an execution of bounded length
in which a process incurs a linear number of memory stalls
while performing a single instance of fetch&increment.
Then we show that a stack or queue can be used to imple-
ment a counter that supports any bounded number of oper-
ation instances.

Lemma 7 Consider any obstruction-free implementation
of a counter shared by

Z
processes, from RMW base ob-

jects. Suppose that the maximum number of distinct objects
accessed by a process while performing a single instance of
fetch&increment is at most

\
. Then there exists an execution

that contains at most
Z O Z [ � S ^ Q Z

operation instances and
in which some process incurs

Z [ �
stalls while performing

one instance of fetch&increment.

6

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



Proof: Fix a process � and an instance � of
fetch&increment by � . The construction proceeds in
phases. In phase � � � , we construct an execution

� � 
 � 
 � � � � 
 � 
 � � � � with the following properties:

� � � is � -free,

� there are distinct objects � � 
 � � � � � � � � 
 � �
and disjoint

sets of processes � � 
 � � � � � � � � 
 � �
whose union has size� � , such that, for �  " � � � � � $ � ,

– each process in � � 
 & is poised to apply a nontriv-
ial event on � � 
 & after � � , and

– in 
 � 
 & , process � applies events until it is poised
to apply its first event to � � 
 & , then each of the
processes in � � 
 & accesses � � 
 & , and, finally, � ac-
cesses � � 
 & ,

� � � contains at most
' � instances of fetch&increment,

and

� � � is a solo execution by process � in which it com-
pletes � .

In this execution, � incurs
� � stalls. Thus it suffices to con-

struct such an execution with
� �  ' * "

.
Note that � � 
 � 
 � � � � 
 � 
 � �

is not necessarily a
� � -stall ex-

ecution. In particular, processes not in � � 
 � . � � � . � � 
 � �
may

be active after � � , and there may be
2 3 � 4 . � � 
 � . � � � . � � 
 � � 8

-
free extensions of � � containing nontrivial events applied to
objects accessed in 
 � 
 � � � � 
 � 
 � �

.
Since the number of stalls,

� � , is an integer between 0
and

' * "
, proving that

� � increases with � would imply
that there is a phase � : ' * "

such that
� �  ' * "

. But� � ? � may be smaller than
� � in our construction. Instead,

we define an integral progress parameter, @ � B D � � 2 ' * " 8 I J
,

and prove that, if
� � K ' * "

, then @ � K @ � ? � . This implies
that there is a phase � : 2 ' * " 8 I

such that
� �  ' * "

.
To define @ � , let S � denote the sequence of all base ob-

jects accessed by � in the execution � � 
 � 
 � � � � 
 � 
 � � � � in the
order they are first accessed by � . In particular, each of the
objects � � 
 � � � � � � � � 
 � �

occurs in S � . Moreover, if � K � U ,
then � � 
 & precedes � � 
 & V in S � . Suppose that � � 
 & occurs in
position

W � 2 � 8
of S � , for �  " � � � � � $ � . Then let

@ �  
� �

Y
& Z � [ � � 
 & [ � 2 ' * " 8 I ^ ` � a & b �

Note that @ � can usually be viewed as a
c
-digit number in

base
' * "

whose f ’th most significant digit is the number
of processes in � � 
 � . � � � . � � 
 � �

poised at the f ’th object
in S � . (The only exception is when

� �  ' * "
and all

these processes are poised at the same object.) Let � k de-
note the empty execution, which contains no instances of
fetch&increment. Let $ k  � k  � and let

� k denote the

solo extension of � k in which � performs � until it com-
pletes. Then @ k  � .

Suppose that, for some � � � , we have constructed
� � 
 � 
 � � � � 
 � 
 � � � � with

� � K ' * "
. Then we will construct

� � ? � 
 � ? � 
 � � � � 
 � ? � 
 � � r s � � ? � such that @ � ? � t @ � . Since� � K ' * "
, there exists a process w xB � � 
 � . � � � . � � 
 � � . 3 � 4

.
Consider the solo extension z of � � by w in which

z completes
'

instances of fetch&increment. If z ap-
plies no nontrivial event to the base objects accessed by

� in � � 
 � 
 � � � � 
 � 
 � � � � , then 
 � 
 � � � � 
 � 
 � � � � is an exten-
sion � � z and � � z 
 � 
 � � � � 
 � 
 � � � � is indistinguishable from

� � 
 � 
 � � � � 
 � 
 � � � � to process � . Thus � must receive the
same response in both of these executions. Let

|
be the

number of fetch&increment instances that complete in � � .
Then there are

| ~ '
fetch&increment instances that com-

plete in � � z . Since � applies its first event after � � z , lin-
earizability implies that � ’s response in � � z 
 � 
 � � � � 
 � 
 � � � �
is at least

| ~ '
. However, there are at most

' * "
active

processes after � � . So, by linearizability, � ’s response in
� � 
 � 
 � � � � 
 � 
 � � � � is at most

| ~ ' * "
. This is a contradic-

tion. Thus z applies at least one nontrivial event to one of
the base objects accessed by � in � � 
 � 
 � � � � 
 � 
 � � � � .

Let z U be the shortest prefix of z such that w is poised to
perform a nontrivial event at one of these base objects after

� � z U . Let � � ? �  � � z U . Since � � is � -free, so is � � ? � .
Since � � contains at most

' � instances of fetch&increment,
and z U contains at most

'
instances, it follows that � � ? �

contains at most
' 2 � ~ " 8

instances.
Suppose that, after � � ? � , w is poised at the object in posi-

tion f of S � . Let $ � ? �  " ~ � 3 � [ W � 2 � 8 K f 4
, so $ � ? � * "

is the number of objects � � 
 & that occur before position f
in S � . For �  " � � � � � $ � ? � * "

, define � � ? � 
 &  � � 
 & ,
� � ? � 
 &  � � 
 & , and 
 � ? � 
 &  
 � 
 & . Let � � ? � 
 � � r s

be
the object at which w is poised after � � ? � . There are two
cases: If � � ? � 
 � � r s B 3 � � 
 � � � � � � � � 
 � � 4

, let � � ? � 
 � � r s  
� � 
 � � r s . 3 w 4

and let 
 � ? � 
 � � r s
be the same as 
 � 
 � � r s

, except
that w accesses � � ? � 
 � � r s

immediately before � does. The
other case is when � � ? � 
 � � r s xB 3 � � 
 � � � � � � � � 
 � � 4

. Then
we let � � ? � 
 � � r s  3 w 4

and we let 
 � ? � 
 � � r s
denote the

extension of � � ? � 
 � ? � 
 � � � � 
 � ? � 
 � � r s ^ � in which process
� applies events until it is poised to apply its first event
to � � ? � 
 � � r s

, then w accesses � � ? � 
 � � r s
, and, finally, � ac-

cesses � � ? � 
 � � r s
.

For �  " � � � � � $ � ? � , each process in � � ? � 
 & is poised to
apply a nontrivial event to � � ? � 
 & after � � ? � and in 
 � ? � 
 & ,
process � applies events until it is poised to apply its first
event to � � ? � 
 & , then each of the processes in � � ? � 
 & ac-
cesses � � ? � 
 & , and, finally, � accesses � � ? � 
 & .

Let
� � ? �  [ � � ? � 
 � . � � � . � � ? � 
 � � r s [ and let

� � ? � be
the solo extension of � � ? � 
 � ? � 
 � � � � 
 � ? � 
 � � r s

in which �
completes � . Obstruction-freedom guarantees the existence
of

� � ? � .
Note that

W � ? � 2 $ � ? � 8  f . If
W � 2 � 8 : f , then

7

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



� � � � � � � � � � � 
 � � � 
 � � � � � � � � �
and

� � � � � � � � � � � � �
.

If
� � � � � �  , then � � � � is disjoint from � � � � � � 
 � � � 


� � � � � � � � �
. Since ' � � � � ' ) + - /

for all � , it follows that0 1 ' � � � � ' � � + - 8 � : ; = � > � ? ' � � � � � �  @ A � + - 8 � : ; E
. Thus

F � � � =
0 � � � �

� G � ' � � � � � � ' � � + - 8 � : ; = � � � > � ? =
0 � �

� G � ' � � � � ' �� + - 8 � : ; = � > � ? - 0 1 ' � � � � ' � � + - 8 � : ; = � > � ? ' � � � � � �  @
O � + - 8 � : ; E � F � .

Hence there is an execution T � U � � � � � � U � � � � W � , with X )
� + - 8 � :

in which Z incurs
+ - 8

stalls. The total number
of operation instances contained in T � is at most

+ � + - 8 � :
and no process performs more than one operation instance
in U � � � � � � U � � � � W � . Therefore the total number of operation
instances contained in T � U � � � � � � U � � � � W � is at most

+ � + -
8 � : O +

.

Theorem 8 Consider any implementation of an obstruc-
tion free linearizable queue or stack, ` , from RMW objects,
that is shared by

+
processes. Then, in the worst case, the

total number of events applied and stalls incurred by a pro-
cess as it performs an operation instance on ` is at least+

.

Proof: If the maximum number of distinct objects ac-
cessed by a process while performing an instance of an op-
eration on ` is at least

+
, we are done. Otherwise, we use

` to implement a counter shared by
+

processes on whicha � + � + - 8 � c ; � O +
operation instances can be performed.

Specifically, ` is initialized by enqueuing the consecutive
numbers d e 8 e f f f e a

or pushing the consecutive numbersa e f f f e 8 e d .

To perform a fetch&increment operation on the counter,
a process simply applies a dequeue or pop. The response it
receives will be the number of instances of fetch&increment
that have occurred earlier.

By Lemma 7, there is an execution containing at most
a

operation instances, in which some process incurs
+ - 8

stalls while performing an instance of fetch&increment.
This implies that there is an execution of ` in which some
instance of dequeue or pop incurs at least

+ - 8
stalls. In ad-

dition, each instance of dequeue or pop applies at least one
event. Thus, in the worst case, the total number of events
applied by this process plus the total number of stalls in-
curred by this process as it performs an operation instance
on ` is at least

+
.

Acknowledgements

This research was supported by the Natural Sciences
and Engineering Research Council of Canada and Sun Mi-
crosystems.

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,
and N. Shavit. Atomic snapshots of shared memory.
J. ACM, 40(4):873–890, 1993.

[2] J. Anderson and Y. Kim. An improved lower bound
for the time complexity of mutual exclusion. In ACM
Symposium on Principles of Distributed Computing,
pages 90–99, 2001.

[3] J. H. Anderson. Multi-writer composite registers. Dis-
tributed Computing, 7(4):175–195, 1994.

[4] J. Aspnes, M. Herlihy, and N. Shavit. Counting net-
works. Journal of the ACM, 41(5):1020–1048, 1994.

[5] H. Attiya and O. Rachman. Atomic snapshots in
j � + k l m + �

operations. SIAM Journal on Computing,
27(2):319–340, Mar. 1998.

[6] J. Burns and N. Lynch. Bounds on shared memory
for mutual exclusion. Information and Computation,
107(2):171–184, December 1993.

[7] R. Cypher. The communication requirements of mu-
tual exclusion. In ACM Proceedings of the Seventh
Annual Symposium on Parallel Algorithms and Archi-
tectures, pages 147–156, 1995.

[8] C. Dwork, M. Herlihy, and O. Waarts. Contention
in shared memory algorithms. Journal of the ACM
(JACM), 44(6):779–805, 1997.

[9] F. E. Fich, M. Herlihy, and N. Shavit. On the space
complexity of randomized synchronization. Journal
of the ACM, 45(5):843–862, 1998.

[10] F. E. Fich and E. Ruppert. Hundreds of impossibility
results for distributed computing. Distributed Com-
puting, 16:121–163, 2003.

[11] D. Hendler and N. Shavit. Operation-valency and the
cost of coordination. In PODC ’03: Proceedings of
the twenty-second annual symposium on Principles of
distributed computing, pages 84–91, New York, NY,
USA, 2003. ACM Press.

[12] M. Herlihy. Wait-free synchronization. ACM Trans-
actions On Programming Languages and Systems,
13(1):123–149, Jan. 1991.

[13] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-
free synchronization: Double-ended queues as an ex-
ample. In Proceedings of the 23rd International
Conference on Distributed Computing Systems, pages
522–529. IEEE, 2003.

8

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 



[14] M. Herlihy, N. Shavit, and O. Waarts. Linearizable
counting networks. Distributed Computing, 9(4):193–
203, February 1996.

[15] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions On Programming Languages and Sys-
tems, 12(3):463–492, July 1990.

[16] P. Jayanti, K. Tan, and S. Toueg. Time and space lower
bounds for non-blocking implementations. Siam J.
Comput., 30(2):438–456, 2000.

[17] M. Merrit and G. Taubenfeld. Knowledge in shared
memory systems. In ACM Symp. on Principles of Dis-
tributed Computing, pages 189–200, 1991.

[18] M. Moir and N. Shavit. Chapter 47 – Concurrent Data
Structures – Handbook of Data Structures and Appli-
cations. Chapman and Hall/CRC, first edition edition,
2004.

[19] N. Shavit and D. Touitou. Elimination trees and the
construction of pools and stacks. Theory of Computing
Systems, 30:645–670, 1997.

[20] N. Shavit and A. Zemach. Diffracting trees. ACM
Transactions on Computer Systems, 14(4):385–428,
1996.

9

Proceedings of the 2005 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05) 
0-7695-2468-0/05 $20.00 © 2005 IEEE 


