
Distrib. Comput. (2006) 18(4): 267–277
DOI 10.1007/s00446-005-0136-5

SPECIAL ISSUE PODC 0 4

Faith Ellen Fich · Danny Hendler · Nir Shavit

On the inherent weakness of conditional primitives

Received: 8 November 2004 / Accepted: 4 July 2005 / Published online: 2 November 2005
C© Springer-Verlag 2005

Abstract Some well-known primitive operations, such as
compare-and-swap, can be used, together with read and
write, to implement any object in a wait-free manner. How-
ever, this paper shows that, for a large class of objects,
including counters, queues, stacks, and single-writer snap-
shots, wait-free implementations using only these primitive
operations and a large class of other primitive operations
cannot be space efficient: the number of base objects re-
quired is at least linear in the number of processes that
share the implemented object. The same lower bounds are
obtained for implementations of starvation-free mutual ex-
clusion using only primitive operations from this class. For
wait-free implementations of a closely related class of one-
time objects, lower bounds on the tradeoff between time and
space are presented.

Keywords Conditionals · Space lower bounds · Object
implementations · Mutual exclusion

1 Introduction

A wait-free implementation of a concurrent object guaran-
tees that any process can complete an operation in a finite
number of its own steps. An object type is universal if ob-
jects of this type can be used, together with registers, to
deterministically implement any object, shared by any num-
ber of processes, in a wait-free manner. Herlihy [7] proved

F. E. Fich (B) · D. Hendler
Department of Computer Science, University of Toronto Toronto,
Ontario, Canada
E-mail: faith@cs.toronto.edu

N. Shavit
Computer Science, Department Tel-Aviv University, Ramat Aviv,
Israel Scalable Synchronization Research Group, Sun Microsystems
Laboratories, Burlington, MA
E-mail: shanir@math.tau.ac.il; shanir@sun.com

D. Hendler
Faculty of Industrial Engineering and Management Technion,
Haifa, Israel
E-mail: hendler@ie.technion.ac.il

that some object types provided in multiprocessor systems,
for example object types that support compare-and-swap,
are universal and others, such as object types that support
only fetch-and-add, are not universal. Thus, in order to sup-
port deterministic, wait-free implementations of any object,
an architecture should support at least one universal object.

Here, we investigate what primitive operations a mul-
tiprocessor architecture should provide to support efficient,
deterministic, wait-free implementations of common ob-
jects. We are concerned with space complexity, specifically,
the number of objects used by an implementation.

We consider implementations of a class of objects that
includes many common objects such as counters, stacks,
queues, and single-writer snapshots. We call these objects
visible, because they support operations whose effects can
be seen by other processes.

We also define the concept of a conditional primitive.
These are operations that change the value of an object only
if the object has a particular value. Compare-and-swap is an
example of a conditional primitive. Read is a trivial condi-
tional primitive. Fetch-and-add (and restrictions of it, such
as fetch-and-increment) are not conditional. We prove that
any wait-free implementation of a visible object from base
objects that only support conditional primitives and write
must use �(n) base objects, where n is the number of pro-
cesses sharing the implemented object. We prove the same
lower bound for implementations of starvation-free mutual
exclusion from such objects.

In contrast, some visible objects can be implemented us-
ing only a constant number of base objects, if other primi-
tives are available. For example, a single-writer snapshot ob-
ject with value set {0, 1}n is visible, but can be implemented
from a single object that supports fetch-and-add. Similarly,
starvation-free mutual exclusion can be implemented from
a register and an object that supports fetch-and-increment-
mod-n (See Sect. 6.) Thus, our results indicate that an ar-
chitecture providing only conditional primitives and write
might not be the best design choice.

Some previous research gives complexity lower bounds
for the wait-free implementation of objects. Jayanti, Tan,

268 F. E. Fich et al.

and Toueg [9] showed that any implementation of a per-
turbable object (for example a counter or a single-writer
snapshot) from historyless objects and resettable consensus
objects requires at least n−1 base objects and a process must
apply at least n−1 steps, in the worst case, to perform an
operation on the implemented object. A historyless object
is an object whose value depends only on the last nontrivial
primitive (for example, write, test-and-set, or swap) that was
applied to it. A nontrivial primitive is an operation that can
change the value of the object.

The class of historyless objects and the class of objects
that support only conditional primitives are incomparable.
For example, swap is not a conditional primitive and an ob-
ject that supports compare-and-swap is not historyless. In
fact, no historyless object is universal in a system of more
than two processes. Test-and-set is a conditional primitive
and an object that only supports test-and-set is historyless.

Mutual exclusion is another problem for which there are
good lower bounds. Burns and Lynch [3] proved that at least
n registers are required to solve n-process mutual exclusion.
We extend their linear lower bound for mutual exclusion
to starvation-free implementations from objects that support
any conditional primitives.

Cypher [4] also considered implementations of n-
process starvation-free mutual exclusion using registers and
objects that support conditional primitives. He proved a
lower bound of �(n log log n/ log log log n) on the total
number of remote memory references performed by n pro-
cesses as they each enter and exit the critical section once.
Anderson and Kim [1] considered the same class of base ob-
jects and proved a lower bound of �(log n/ log log n) on the
worst-case number of remote memory references a process
performs as it enters and exits the critical section. Anderson
and Yang [10] showed that starvation-free mutual exclusion
can be solved using O(n) registers, where each entry to
and exit from the critical section performs O(log n) remote
memory references. Note that these bounds almost match
the known lower bounds. In contrast, starvation-free mutual
exclusion can be implemented using fetch-and-add or swap
with O(1) remote memory references for each entry to and
exit from the critical Sect. [2].

One-time objects are objects on which each process may
perform at most one operation. Some visible objects, when
restricted in this way, do have more space efficient im-
plementations. (See Sect. 7.) Fich, Herlihy, and Shavit [6]
proved a lower bound of �(

√
n) on the space complex-

ity of randomized wait-free implementations of n-process
consensus, which is a universal one-time object. In addi-
tion to registers, the implementations they considered could
also use historyless objects. Jayanti [8] proved an �(log n)
lower bound on the number of steps to perform fetch-and-
increment on a one-time object implemented from base ob-
jects that support only load-linked, store-conditional, swap,
and move. He also gets the same result for implementing
one-time stacks and queues that initially contain a fixed se-
quence of n different elements.

We define a class of one-time-visible objects analogous
to the class of visible objects. For implementations from

base objects that only support conditional primitives and
write, we prove lower bounds on time-space tradeoffs for
one-time-visible objects. Specifically, we prove that any
such implementation either uses at least

√
n base objects,

or the total number of applications of primitives to base ob-
jects, when each process performs one operation on the im-
plemented object, is in �(n3/2). For these implementations,
we also prove a lower bound on the tradeoff between space
and the delay induced by memory contention. We show that
any such implementation either uses at least n

2
3 base objects,

or the total number of memory stalls incurred by processes
when each of them performs one operation on the imple-
mented object is in �(n5/3). The concept of memory stalls
was defined by Dwork, Herlihy, and Waarts [5] in a paper
that introduced a formal model to capture the phenomenon
of memory contention in shared memory multiprocessors.

The rest of the paper is organized as follows. We be-
gin, in Sect. 2, with a description of our shared-memory
model. Then, in Sects. 3 and 4, we formally define condi-
tional primitives, invisible events, and the classes of visi-
ble and one-time-visible objects, give some examples, and
prove some simple properties. Section 5 contains our linear
space lower bound for implementations of visible objects.
This is followed, in Sect. 6, by our linear space lower bound
for starvation-free mutual exclusion. Finally, in Sect. 7, we
prove lower bounds on time-space tradeoffs for implemen-
tations of one-time-visible objects.

2 The shared memory system model

We consider a standard model of an asynchronous shared
memory system in which deterministic processes communi-
cate by applying operations to deterministic shared objects.
An object is an instance of an object type. An object type
is an abstract data type, which is characterized by a set of
possible values and by a set of operations that provide the
only means to manipulate it. The set of possible values of an
object need not be bounded.

An implementation of an object that is shared by a set,
P, of n processes provides a data representation using a set,
B, of shared base objects, each of which is assigned an ini-
tial value, and algorithms for each process in P to perform
each operation on the object being implemented. To avoid
confusion, we call operations on the base objects primi-
tives. We reserve the term operations for the objects being
implemented.

We consider wait-free implementations, in which each
process is guaranteed to complete an operation within a fi-
nite number of its own steps. Each step of a process consists
of some local computation and one shared memory event,
which is a primitive applied to a base object in B. We say
that the process applies this event.

An execution fragment is a (finite or infinite) sequence
of events. An execution is an execution fragment that starts
from an initial state, the subsequence of events performed by
each process is consistent with its algorithm, and each object
behaves according to its sequential specification. An initial

On the inherent weakness of conditional primitives 269

state is a state in which all base objects in B have their initial
values and all processes are idle. For any finite execution
fragment E and any execution fragment E ′, the execution
fragment E ◦ E ′ denotes the concatenation of E and E ′. Note
that E ◦ E ′ is not necessarily an execution, even if both E
and E ′ are executions. If E and E ◦ E ′ are both executions,
we say that E ′ is an extension of E . If r ∈ B is a base object
and E is a finite execution, then val(E, r) denotes the value
of r at the end of E . If no event in E changes the value of r ,
then val(E, r) is the initial value of r . In other words, in the
state resulting from executing E , each base object r ∈ B has
value val(E, r).

In an execution, each process performs a sequence of op-
eration instances on the implemented object. Each operation
instance consists of a single operation with specified argu-
ments performed by a single process on a single object. To
perform an operation instance, a process applies a sequence
of one or more events. The response from an event can influ-
ence which events occur later in the sequence. To avoid con-
fusion, we call a sequence of operation instances performed
on an implemented object a history, and reserve the term ex-
ecution for a sequence of events applied to base objects. We
say that a history is p-free if none of the operation instances
in the history are performed by process p.

A process applies all the events of one operation instance
before starting to apply events of another operation instance.
In other words, a process can only perform one operation
instance at a time. The events of an operation instance per-
formed by a process can be interleaved with events applied
by other processes. Thus, one history can give rise to many
different executions, depending on how events by different
processes are scheduled.

We use res(H, �) to denote the response of an opera-
tion instance � in a history H . If an execution E contains
an event applied by a process while it is performing an op-
eration instance �, we say that � occurs in E . If this event
is the last event the process applies while performing �, we
say that � completes in E . In this case, we let res(E, �) de-
note the response returned to the process by the operation
instance �. We say that a process is active at the end of a fi-
nite execution E if the process is in the middle of performing
some operation instance. This means that the process has be-
gun an operation instance (even if it has not yet applied any
events of this operation instance), but this operation instance
does not complete in E . If a process is active in the state
resulting from a finite execution, it has exactly one enabled
event, which is the next event it will apply, as specified by
the protocol it is using to perform its current operation in-
stance on the implemented object. If p is not active, we say
it is idle. An idle process has no enabled event.

Two executions E and E ′ are indistinguishable to a set
of processes, if, in both executions, all processes in this
set apply exactly the same sequence of events and they
get the same responses from each of these events, and
the values of all objects are the same at the end of both
executions.

We consider base objects that support a set of atomic
read-modify-write primitives. A read-modify-write (RMW)

Fig. 1 The semantics of a read-modify-write event by process p

Fig. 2 The update and response functions of the compare-and-swap
primitive with input w = 〈old, new〉

Fig. 3 The update and response functions of the test-and-set primitive

primitive can be defined by two functions: the update func-
tion, g, and the response function, h. Both take two parame-
ters, the current value v of the object to which the primitive is
to be applied and the input w to the primitive, if any. The up-
date function specifies the value of the object after the primi-
tive has been applied and the response function specifies the
value that is returned to the process that applied the primi-
tive. The event RMW(p, r, w, g, h), in which process p ∈ P
applies the RMW primitive to object r ∈ B, has the effect of
atomically performing the code shown in Fig. 1.

Compare-and-swap and test-and-set are two examples
of RMW primitives. Their update and response functions
are illustrated in Figs. 2 and 3, respectively. The test-and-
set primitive does not take an input. We use the ‘−’ symbol
as the second parameter of its update and response functions
to denote this.

Write is an example of a RMW primitive. Its update
function is g(v, w) = w and its response function always
returns ack. The event Write(p, r, w) indicates that process
p ∈ P atomically writes the value w to object r ∈ B. Read is
another example of a RMW primitive. It takes no input and
its update and response functions are g(v, −) = h(v, −) =
v. The event RMW(p, r, w, g, h) is trivial if g(v, w) = v for
all possible values v of object r ; otherwise it is nontrivial.

3 Conditional primitives and invisibility

This section formally defines the class of conditional RMW
primitives. It also introduces the concept of invisible events
and proves some properties of such events.

Definition 1 A RMW primitive 〈g, h〉 on an object with
value set V is conditional if, for every possible input w,

|{v ∈ V |g(v, w) �= v}| ≤ 1.

270 F. E. Fich et al.

A value cw ∈ V such that g(cw, w) �= cw is called a change
point of the event RMW(p, r, w, g, h). Any value v ∈ V such
that g(v, w) = v is called a fixed point of this event.

Compare-and-swap and test-and-set are both conditional
primitives. Read is also a conditional primitive. Fetch-and-
increment is not conditional. Write is not a conditional prim-
itive unless the object to which it is applied has a value set
with at most two values.

An object that supports only conditional primitives is
called a conditional object and an object that supports only
write and conditional primitives is called a write-conditional
object. All conditional objects are write-conditional. A reg-
ister, which supports read and write, and a resettable
consensus object, which supports propose and reset, are ex-
amples of write-conditional objects that are not conditional.

Informally, an invisible event is an event by some pro-
cess that cannot be observed by other processes. All read
events are invisible. A write event is invisible if the value
of the object to which it is applied is the same as the value
it writes. A write event is also invisible if it is overwritten
by another process before the process takes another step and
before the value it wrote can be accessed by another process.
This is also called an obliterated event [3]. We extend this
notion to all RMW events in the next two definition.

Definition 2 Let e be a RMW event applied by process p to
an object r in an execution E = E1 ◦ e ◦ E2. We say that e
is invisible in E if either the value of r is not changed by e
or E2 = E ′

2 ◦ e′ ◦ E3, E ′
2 ◦ e′ is p-free, no events in E ′

2 are
applied to r , and e′ is a write event to r .

A RMW event is invisible if the value of the object to
which it is applied is a fixed point of the event. Any RMW
event applied to an object is also invisible if a write event is
subsequently applied to the object before the value of the ob-
ject is read by another process. If a RMW event e is not invis-
ible in an execution E , we say that e is a visible event in E .

The following observations are direct consequences of
this definition.

Proposition 1 If an event e is invisible in an execution E,
then e is invisible in any execution E ◦ E ′.

Proposition 2 If e and e′ are events by process p, e is invis-
ible in the execution E ◦ e ◦ E ′ ◦ e′ ◦ E ′′, and E ′ is p-free,
then e is invisible in execution E ◦ e ◦ E ′.

Proposition 3 If two executions E and E ′ are indistin-
guishable to a set of processes Q, E ◦ E1 is an execution,
and all of the events in E1 are applied by processes in Q,
then E ′ ◦ E1 is an execution which is indistinguishable from
E ◦ E1 to the processes in Q.

Proof Let E2 ◦ e be any nonempty prefix of E1 and suppose
that E ′ ◦ E2 is an execution which is indistinguishable from
E ◦ E2 to the processes in Q. Since the process that applies
e is in the same state at the end of E ◦ E2 and E ′ ◦ E2, it
follows that E ′ ◦ E2 ◦ e is an execution. Since the object to

which e is applied has the same value at the end E ◦ E2 and
E ′ ◦ E2, it will be updated to the same value by e and e will
return the same response when applied at the end of these
two executions. The values of no other objects and the states
of no other processes are changed by e. Thus E ◦ E2 ◦ e and
E ′ ◦ E2 ◦ e are indistinguishable to the processes in Q. It
follows by induction that E ′ ◦ E1 is an execution which is
indistinguishable from E ◦ E1 to all processes in Q.
�
Lemma 1 If events e1, . . . , ek by process p are invisible in
execution E0 ◦ e1 ◦ E1 ◦· · ·◦ Ek−1 ◦ ek ◦ Ek and E1, . . . , Ek
are p-free, then E0◦E1◦· · ·◦Ek−1◦Ek is an execution which
is indistinguishable from E0 ◦ e1 ◦ E1 ◦ · · · ◦ Ek−1 ◦ ek ◦ Ek
to all processes in P − {p}.
Proof The proof is by induction on k. When k = 0, the
two executions are the same, so let k > 0 and assume that
the claim is true for k − 1. Suppose that events e1, . . . , ek
by process p are invisible in execution E0 ◦ e1 ◦ E1 ◦ · · · ◦
Ek−1 ◦ ek ◦ Ek and E1, . . . , Ek are p-free.

Let r be the object to which event ek is applied. If ek does
not change the value of r , then E0 ◦e1 ◦ E1 ◦· · ·◦ek−1 ◦ Ek−1
and E0 ◦e1 ◦ E1 ◦ · · · ◦ek−1 ◦ Ek−1 ◦ek are indistinguishable
to all processes in P − {p}.

Otherwise, by definition of invisibility, Ek = E ′
k◦e′◦E ′′

k ,
where no events in E ′

k are applied to r , and e′ is a write event
to r . Then executions E0 ◦e1 ◦ E1 ◦· · ·◦ ek−1 ◦ Ek−1 ◦ E ′

k ◦e′
and E0 ◦ e1 ◦ E1 ◦ · · · ◦ ek−1 ◦ Ek−1 ◦ ek ◦ E ′

k ◦ e′ are
indistinguishable to all processes in P − {p}.

In both cases, Proposition 3 implies that E0◦e1◦E1◦· · ·◦
ek−1 ◦ Ek−1 ◦ Ek is an execution which is indistinguishable
from E0 ◦e1 ◦ E1 ◦ · · ·◦ek−1 ◦ Ek−1 ◦ek ◦ Ek to all processes
in P − {p}.

For 1 ≤ i ≤ k − 1, ei is invisible in E0 ◦ e1 ◦ E1 ◦ · · · ◦
ek−1 ◦ Ek−1 ◦ ek ◦ Ek , so, by Proposition 2, ei is invisible in
E0 ◦ e1 ◦ E1 ◦ · · · ◦ Ei−1 ◦ ei ◦ Ei . Hence, by Proposition 1,
ei is invisible in E0 ◦ e1 ◦ E1 ◦ · · · ◦ ek−1 ◦ Ek−1 ◦ Ek .

Since Ek−1 ◦ Ek is p-free, the induction hypothesis im-
plies that E0 ◦ E1 ◦ · · · ◦ Ek−1 ◦ Ek is an execution which is
indistinguishable from E0◦e1◦E1◦· · ·◦ek−1◦Ek−1◦Ek to all
processes in P − {p}. Hence, by transitivity, E0 ◦ E1 ◦ · · · ◦
Ek−1 ◦ Ek and E0 ◦ e1 ◦ E1 ◦ · · · ◦ ek−1 ◦ Ek−1 ◦ ek ◦ Ek are
indistinguishable to all processes in P − {p}.
�

4 Visible and one-time-visible objects

In this section, we define the classes of visible and
one-time-visible objects. These are the objects to whose
implementations our lower bounds apply. We define both
classes in terms of the sequential specifications of the ob-
jects, rather than in terms of properties of executions of their
implementations. This makes it easier to show that specific
objects belong to these classes.

We start with the definition of one-time-visible ob-
jects. A one-time-visible object is a one-time object, which
means that every process may perform at most one opera-
tion instance on it. In addition, every process has an oper-
ation instance it may perform that must affect the response

On the inherent weakness of conditional primitives 271

of a subsequent operation instance performed by some other
process.

Definition 3 A one-time object is one-time-visible if for ev-
ery process p ∈ P, there is an operation instance �p by p
such that, for all processes q, q ′ ∈ P and every q ′-free his-
tory H1◦�q ◦H2 consisting of a subset of {�p|p ∈ P}, there
exists an operation instance �′ performed by process q ′ so
that res(H1 ◦ �q ◦ H2 ◦ �′, �′) �= res(H1 ◦ H2 ◦ �′, �′).
The operation instance �p is called p’s witness.

Note that the operation instance �′ performed by process
q ′ in Definition 3 may be different from its witness �q ′ .

A counter is an object whose values are the non-negative
integers. It supports a single parameterless operation, fetch-
and-increment, which increments the value of the object.
A modulo-k counter is an object whose set of values is
{0, 1, . . . , k − 1}, where k > 1. It supports a single pa-
rameterless operation, fetch-and-increment-mod-k. This op-
eration increments the value of the object, if its value is
less than k − 1, and resets it to 0, if its value is k − 1. A
threshold-k counter is a similar object whose set of values is
{0, 1, . . . , k}, where k ≥ 1, and whose single parameterless
operation, fetch-and-increment-upto-k, increments the value
of the object, if its value is less than k, and leaves it un-
changed, if its value is k. These operations return the old
value of the object as their response. A one-time version of
any of these objects restricts each process from performing
more than one operation instance on the object. Note that,
in a system with n processes, a one-time counter, a one-time
modulo-(n + 1) counter, and a one-time threshold-n counter
behave the same, if they all have initial value 0, since at most
n operation instances can be applied to each of these objects.

Lemma 2 A one-time modulo-k counter object is one-time-
visible.

Proof Let �p be an instance of fetch-and-increment-mod-k
for each process p ∈ P. Let q, q ′ ∈ P and let H1 ◦ �q ◦ H2
be a q ′-free history of a one-time modulo-k counter. This
history consists of at most n − 1 instances of fetch-and-
increment-mod-k. Then res(H1 ◦ �q ◦ H2 ◦ �q ′,�q ′) =
res(H1 ◦ H2 ◦ �q ′, �q ′) + 1 mod k �= res(H1 ◦ H2 ◦
�q ′, �q ′).
�

A queue is an object whose values are all the finite se-
quences of elements from a non-empty set V . It supports two
operations: enqueue and dequeue. The enqueue operation re-
ceives an element of V as input and appends this element to
the end of the sequence. It always returns the special value
ack. If the sequence is not empty, dequeue deletes the first
element in the sequence and returns it. If the sequence is
empty, dequeue just returns the special value empty. A one-
time queue is a queue on which each process can perform at
most one (enqueue or dequeue) operation.

Lemma 3 A one-time queue is not one-time-visible.

Proof To obtain a contradiction, suppose that there is a wit-
ness �p for each process. p ∈ P. None of these witnesses

is a dequeue. This is because, in any history beginning with
a dequeue performed on an initially empty queue, the first
operation instance does not change the value of the queue.

Therefore every witness must be an enqueue. Let q, q ′ ∈
P and consider any q ′-free history H1 ◦ �q ◦ H2 consisting
of at most n − 1 of these operation instances, where H1 is
not empty. Then res(H1 ◦�q ◦ H2 ◦�′,�′) = res(H1 ◦ H2 ◦
�′, �′) for any operation instance �′ by q ′. This contradicts
the assumption that �q is a witness.
�

We want to extend the definition of one-time-visible to
objects that allow processes to perform any number of op-
eration instances. A natural extension is to require that each
process has an operation instance it can always perform on
the object which must affect the response of the next opera-
tion instance performed by one of the other processes. How-
ever, this definition does not include all objects supporting
operations whose effects can be seen by other processes. For
example, consider a queue. The problem with the definition
arises when the beginning of the sequence contains n copies
of the same element. Then an operation instance �p does
not affect the responses given to the other processes when
each performs a subsequent operation instance.

One way to generalize the definition is to only require
that the operation instance by a process p affects at least one
of the responses to some sequence of subsequent operation
instances performed by other processes. However, this does
not suffice. Consider a bounded queue object with capacity
k ≥ 1. Its value is any sequence of at most k elements from
a non-empty set V . It supports the same operations as a
queue, except that the enqueue operation returns the special
value full when performed on an object whose sequence has
length k. When the bounded queue is empty, a dequeue is
invisible and when the bounded queue is full, any enqueue
is invisible. Thus, there is no single operation that can be
used as a witness.

Instead, we use a witness sequence of operation in-
stances for each process and put conditions on the possible
finite histories that can arise when each process performs its
sequence of operation instances. A prefix-interleaving of a
finite set of (finite or infinite) sequences is an interleaving of
a finite prefix of each of the sequences in the set. We denote
the set of all prefix-interleavings of a set of sequences S by
I (S). For example, if S = {(1, 2), (3)} then the set of prefix
interleavings of S is I (S) = {(), (1), (1, 2), (1, 3), (1, 2, 3),
(1, 3, 2), (3), (3, 1), (3, 1, 2)}.

Informally, an object is visible if, for every prefix-
interleaving of the witness sequences, the last operation in-
stance performed by a process affects at least one of the re-
sponses in some sequence of subsequent operation instances
performed by other processes. Now we give the formal defi-
nition.

Definition 4 An object is visible if, for every process p ∈ P,
there is an infinite sequence of operation instances �p =
�p,1, �p,2, . . ., such that, for every finite history H = H0 ◦
�p,i ◦ H1 ∈ I ({�p | p ∈ P}), where H1 is p-free, there is a
(possibly empty) p-free extension H2 of H , with H ◦ H2 not

272 F. E. Fich et al.

necessarily in I ({�p | p ∈ P}), and an operation instance
�′ ∈ H1◦ H2 so that res(H0◦�p,i ◦ H1◦ H2, �

′) �= res(H0◦
H1 ◦ H2, �

′). The sequence of operation instances �p is
called a witness sequence for p.

Counters, modulo-k counters, queues, and bounded
queues are all examples of visible objects.

Lemma 4 A modulo-k counter is visible.

Proof Let �p be an infinite sequence of instances of fetch-
and-increment-mod-k for each process p ∈ P. Let H0 ◦
�p,i ◦ H1 ∈ I ({�p|p ∈ P}) be a finite history of a modulo-
k counter, where H1 is p-free. Let H2 consist of a sin-
gle fetch-and-increment-mod-k operation instance �′ by a
process q �= p. Then res(H0 ◦ �p,i ◦ H1 ◦ H2, �

′) =
res(H0◦H1◦H2, �

′)+1 mod k �= res(H0◦H1◦H2, �
′).
�

Since a modulo-k counter can be simulated using a
counter and having each process take the responses it gets
modulo k, a counter is also visible. However, a threshold-k
counter is not visible, because, in any history consisting of
k or more instances of fetch-and-increment-upto-k, all oper-
ation instances after the k’th return the value k.

Lemma 5 A queue is visible.

Proof Let the witness sequence �p, for each process p ∈ P,
be an infinite sequence of enqueue operation instances with
some element v as input. Let H0 ◦ �p,i ◦ H1 ∈ I ({�p | p ∈
P}) be a finite history of a queue, where H1 is p-free, and
suppose the queue contains e elements at the end of this his-
tory. Then e > 0. Let H2 consist of e dequeue operation in-
stances performed by some process other than p and let �′
denote the last operation instance in H2. Then res(H0◦�p,i ◦
H1 ◦ H2, �

′) = v �= empty = res(H0 ◦ H1 ◦ H2, �
′).
�

It is more delicate to prove that a bounded queue with
sufficiently large capacity is visible.

Lemma 6 A bounded queue with capacity at least n is
visible.

Proof Consider a bounded queue with capacity at least n
that initially contains f elements. Partition P into two sets,
P′, which contains min{ f, n} processes, and P′′ which con-
tains the rest. Each witness sequence �p is an infinite se-
quence of alternating dequeue and enqueue operation in-
stances. For p ∈ P′, the witness sequence begins with a
dequeue, while, for p ∈ P′′, it begins with an enqueue.

For any finite history H ∈ I ({�p | p ∈ P}) of this
bounded queue and any subset P ⊆ P, let �P(H) denote
the number of processes in P that perform an odd number
of operation instances in H . Then the number of elements in
the bounded queue at the end of H is f −�P′(H)+�P′′(H).
This number is between max{0, f − n} and max{n, f }.
Let H0 ◦ �p,i ◦ H1 ∈ I ({�p | p ∈ P}) be a finite his-
tory of the bounded queue, where H1 is p-free. Then
H0 ◦ H1 ∈ I ({�p | p ∈ P}).

If �p,i is a dequeue and there are e items in the queue
at the end of H0 ◦ �p,i ◦ H1, then there are e + 1 items in
the queue at the end of H0 ◦ H1. In this case, let H2 consist
of e + 1 dequeue operation instances by some process other
than p and let �′ be the last operation instance in H2. Then
res(H0◦�p,i ◦H1◦H2, �

′) = empty �= res(H0◦H1◦H2, �
′).

Similarly, if �p,i is an enqueue and there are e items
in the queue at the end of H0 ◦ �p,i ◦ H1, then there are
e − 1 items in the queue at the end of H0 ◦ H1. In this
case, let H2 consist of e dequeue operation instances by
some process other than p and let �′ be the last operation
instance in H2. Then res(H0 ◦ �p,i ◦ H1 ◦ H2, �

′) �=
empty = res(H0 ◦ H1 ◦ H2, �

′).
�
Stacks and bounded stacks with capacity at least n are

also visible. The same proofs work with enqueue replaced
by push and dequeue replaced by pop.

A single-writer snapshot object with the set of values
V1 × · · ·× Vn supports two operations: scan and update. An
update(v) by process p sets the p’th component of the value
to v ∈ Vp. A scan returns the value of (all n components) of
the object.

Lemma 7 A single-writer snapshot object is visible if each
component has at least two possible values.

Proof Consider a single-writer snapshot object. Let u p be
the initial value of the p’th component of the object and
let vp be another possible value of the p’th component.
Let the witness sequence �p for process p be an alternat-
ing sequence of update(vp) and update(u p) operation in-
stances, starting with update(vp). Then, in every history
H ∈ I ({�p | p ∈ {1, . . . , n}}) of this object, every oper-
ation instance changes the value of a single component.

Let H0 ◦�p,i ◦ H1 ∈ I ({�p | p ∈ {1, . . . , n}}) be a finite
history such that H1 is p-free. Let H2 consist of a single
scan operation instance �′ by a process other than p. Since
�p,i changes the value of the p’th component of the object,
but no operation instance in H1 ◦ H2 does, it follows that
res(H0 ◦ �p,i ◦ H1 ◦ H2, �

′) �= res(H0 ◦ H1 ◦ H2, �
′).
�

A swap object with a non-empty set of values V supports
a single operation, swap, with a single input w ∈ V . This
operation changes the value of the object to w and returns its
previous value.

Lemma 8 A swap object with a set of at least 2n values is
visible.

Proof Consider a swap object with a set of at least 2n dif-
ferent values. Let u0 be its initial value and let {u p | p ∈
P} ∪ {vp | p ∈ P} be a set of 2n different values, where
u p �= u0 for all p ∈ P. Let the witness sequence �p for pro-
cess p be an alternating sequence of swap(u p) and swap(vp)
operation instances, starting with swap(u p). Then, in every
history H ∈ I ({�p | p ∈ P}), every operation instance
changes the value of the swap object.

Let H0 ◦ �p,i ◦ H1 ∈ I ({�p | p ∈ P}) be a finite history
such that H1 is p-free. Let H2 consist of a single instance

On the inherent weakness of conditional primitives 273

of swap by a process other than p and let �′ be the first
operation instance of H1 ◦ H2. Then res(H0 ◦ �p,i ◦ H1 ◦
H2, �

′) �= res(H0 ◦ H1 ◦ H2, �
′).

The definition of a visible object can be generalized to al-
low the input of each operation instance �p,i to be a function
of the responses to operation instances �p,1, . . . , �p,i−1.

Lemma 9 A swap object with a set of at least n + 1 values
is visible (under this more general definition).

Proof Consider a swap object with a set of at least n + 1
different values. Let u0 be its initial value and let {u p | p ∈
P} be a set of n other values. For each p ∈ P, let �p,1 be an
instance of swap with input u p and, for i > 1, let �p,i be an
instance of swap whose input is the value returned to p by
�p,i−1. Then, in every history H ∈ I ({�p | p ∈ P}), every
operation instance changes the value of the swap object.

Let H0 ◦ �p,i ◦ H1 ∈ I ({�p | p ∈ P}) be a finite history
such that H1 is p-free. Let H2 consist of a single instance
of swap by a process other than p and let �′ be the first
operation instance of H1 ◦ H2. Then res(H0 ◦ �p,i ◦ H1 ◦
H2, �

′) �= res(H0 ◦ H1 ◦ H2, �
′).
�

Definition 4 can be further generalized so that, whenever
a process performs sufficiently many consecutive operation
instances of its witness sequence, at least one of these oper-
ation instances changes the result of some subsequent oper-
ation instance performed by another process. The proofs of
the results in Sects. 5 and 6 also hold for this more general
definition.

A swap object is historyless, hence it is not perturbable
[9]. An object that supports only compare-and-swap and has
at least n different values is an example of a perturbable ob-
ject [9] that is not visible, because it is conditional. Thus the
classes of visible and perturbable objects are incomparable.

Finally, we prove an important relationship between vis-
ible objects and visible events: In any wait-free implementa-
tion of a visible object, a process must apply visible events
in the course of performing the operation instances of its
witness sequence.

Lemma 10 Consider a wait-free implementation of a visi-
ble object with witness sequence �p, for each p ∈ P, and
let E be a finite execution in which every process performs
a prefix of its witness sequence. If �p,i is the last operation
instance completed by p in E and p is idle at the end of
E, then, while p performs �p,i , it applies an event that is
visible in E.

Proof Let H ∈ I ({�p | p ∈ P}) be the history from which
E was obtained. Since �p,i is p’s last operation instance in
H , this history can be written as H0 ◦ �p,i ◦ H1, where H1
is p-free. Then Definition 4 implies that there is a p-free
extension H2 of H and an operation instance �′ ∈ H1 ◦ H2
so that res(H0 ◦�p,i ◦ H1 ◦ H2, �

′) �= res(H0 ◦ H1 ◦ H2, �
′).

Let E ′ be any extension of E that results from executing
H2. Then execution E ◦ E ′ can be written as E0 ◦ e1 ◦ E1 ◦
· · · ◦ ek ◦ Ek , where e1, . . . , ek is the sequence of events

applied by p while performing the operation instance �p,i
and E1, . . . , Ek are p-free.

To obtain a contradiction, suppose that all of the events
e1, . . . , ek are invisible in E . Then, by Proposition 1, they
are invisible in E ◦ E ′. Hence, by Lemma 1, E0 ◦ e1 ◦
E1 ◦ · · · ◦ ek ◦ Ek and E0 ◦ E1 ◦ · · · ◦ Ek are indistin-
guishable to all processes in P − {p}. This implies res(E0 ◦
e1 ◦ E1 ◦ · · · ◦ ek ◦ Ek, �

′) = res(E0 ◦ E1 ◦ · · · ◦ Ek, �
′),

which is impossible, since res(H0 ◦ �p,i ◦ H1 ◦ H2, �
′) �=

res(H0 ◦ H1 ◦ H2, �
′).
�

5 A space lower bound for visible objects

In this section, we prove a linear space lower bound for vis-
ible objects. To do this, we define the concept of a levelled
execution. At the end of such an execution, every process
has an enabled RMW event that is assigned a distinct level.
These events have the property that no event can be made
invisible by events at higher levels. Then, we prove that any
wait-free implementations of a visible object shared by n
processes has a levelled execution. Finally, we show that any
implementation that uses only write-conditional base objects
and has a levelled execution must use �(n) base objects.

Definition 5 A finite execution E is levelled if there is a
sequence e1, e2, . . . , en of RMW events that are enabled at
the end of E such that each is by a different process in P
and, for every nonempty execution fragment E ′ consisting
of some subset of these events (in any order), e j is visible in
E ◦ E ′, where j = min{i | ei ∈ E ′}. We call e1, e2, . . . , en a
levelled sequence and say that event e j is at level j .

Lemma 11 A wait-free implementation of a visible object
shared by n processes has a levelled execution.

Proof Consider a wait-free implementation of a visible ob-
ject with a set S of witness sequences. We construct a lev-
elled execution E0◦E1◦· · ·◦En that results from a history in
I (S), i.e. in which each process performs a prefix of its wit-
ness sequence, in order, on the object. This execution is con-
structed inductively, so that, at the end of E0 ◦ E1 ◦ · · · ◦ Ei ,
processes pi+1, . . . , pn are idle, processes p1, . . . , pi are
active, and, for j = 1, . . . , i , the enabled event e j of process
p j cannot be made invisible by any sequence of events by
processes p j+1, . . . , pn as they continue performing their
witness sequences. Then the execution E0 ◦ · · · ◦ En is
levelled.

Let E0 be the empty execution. Let 1 ≤ i ≤ n and sup-
pose that execution E0 ◦ · · · ◦ Ei−1 has been constructed.
We examine the successive events that process pi applies
as it performs the next operation instance of its witness se-
quence. Let E be the prefix of Ei constructed so far. Initially
E is empty.

While there are finite sequences of events E ′ and E ′′ by
processes in {pi+1, . . . , pn}, such that the next event e ap-
plied by pi is invisible in the execution E0 ◦ · · · ◦ Ei−1 ◦
E ◦ E ′ ◦ e ◦ E ′′ and this execution is the prefix of an ex-
ecution that results from a history in I (S), extend E by

274 F. E. Fich et al.

E ′ ◦ e ◦ E ′′. Note that, if e does not change the value of
the base object to which it is applied, then E ′ and E ′′ can be
empty execution fragments. By Proposition 1, e is invisible
in E0 ◦ · · · ◦ Ei−1 ◦ E ◦ E ′′′ for every extension E ′′′.

Since the implementation is wait-free, pi will eventually
complete its operation instance. Then Lemma 10 implies
that pi must have applied a visible RMW event while per-
forming this operation instance. Thus, eventually, the event
e of pi enabled at the end of E0 ◦ · · · ◦ Ei−1 ◦ E cannot
be made invisible by any sequence of events by processes
pi+1, . . . , pn as they continue performing their witness se-
quences. In this case, let ei = e and let Ei = E ◦ E ′,
where E ′ is an extension of E in which all of the active pro-
cesses among pi+1, . . . , pn complete their current operation
instances and no other processes take any steps. The wait-
freedom of the implementation guarantees the existence
of E ′.

Since processes p1, . . . , pi−1 are active at the end of
E0 ◦ · · · ◦ Ei−1 and they apply no events in Ei , they are
still active at the end of E0 ◦ · · · ◦ Ei−1 ◦ Ei . Furthermore,
at the end of E0 ◦ · · · ◦ Ei−1, the enabled event e j of process
p j , for j = 1, . . . , i − 1, cannot be made invisible by any
sequence of events by processes p j+1, . . . , pn as they con-
tinue performing their witness sequences. Thus, the same is
true at the end of E0 ◦ · · · ◦ Ei−1 ◦ Ei .
�

Next, we prove that any implementation which has a lev-
elled execution and uses base objects which support only
write and conditional primitives, uses �(n) objects. The
proof relies on the following observation.

Lemma 12 Suppose e and e′ are write or conditional RMW
events by different processes that access the same object r .
If both are enabled at the end of execution E, e is visible in
E ◦ e ◦ e′ and E ◦ e′ ◦ e, and e′ is visible in E ◦ e′, then e is
a write event and e′ is a nontrivial conditional RMW event.

Proof Since e is visible in E ◦ e ◦ e′, it follows that e′ is not
a write event. Thus it is a conditional RMW event. Note that
e′ is nontrivial, because e′ is visible in E ◦ e′.

Since e is visible in E ◦ e ◦ e′ and E ◦ e′ ◦ e, we also
know that val(E ◦ e, r) �= val(E, r) and val(E ◦ e′ ◦ e, r) �=
val(E ◦ e′, r). If e is a conditional RMW event, then it has a
unique change point, so val(E ◦ e′, r) = val(E, r). This is a
contradiction. Therefore e is a write event.
�
Theorem 1 The number of base objects used in an n-
process, wait-free implementation of a visible object is at
least n if the implementation uses only registers and condi-
tional objects, and at least � n

2 � if the implementation uses
only write-conditional objects.

Proof By Lemma 11, any n-process, wait-free implemen-
tation of a visible object has a levelled execution, E , with
a levelled sequence, e1, . . . , en . Suppose i < j . Then ei is
visible in E ◦ ei ◦ e j and E ◦ e j ◦ ei , and e j is visible in
E ◦ e j . If events ei and e j both access the same object r ,
then, by Lemma 12, ei is a write event and e j is a nontrivial
conditional RMW event. Thus, each object is accessed by at

most two of these events. Hence, there are at least � n
2 � base

objects.
If only registers and conditional objects are used, then

each object is accessed by at most one of these events, so
there are at least n base objects.
�

6 A space lower bound for starvation-free
mutual exclusion

In this section, we prove a similar linear lower bound on
space for starvation-free mutual exclusion. We model this
problem as the implementation of an object that supports
two operations, enter and exit. When a process performs en-
ter, the object (eventually) responds with crit. We say that a
process is in the critical section from the time that it receives
a crit response from the object until it performs exit. When a
process performs exit, the object (eventually) responds with
rem. A correct object ensures that at most one process is in
the critical section at any point in time.

While a process is in the critical section, it cannot per-
form enter. Moreover, a process can perform exit only while
it is in the critical section. Formally, when a process is in
the critical section, it has the first event of an instance of
exit enabled. When a process is not in the critical section,
nor performing an instance of enter or exit, either it has the
first event of an instance of enter enabled or it has no events
enabled.

We consider executions where each process alternately
performs instances of enter and exit, starting with enter. It
is assumed that no process halts while it is performing an
instance of enter or exit or while it is in the critical section.
This can be formalized by restricting attention to fair exe-
cutions. These are executions E such that, for each process
p, either p applies infinitely many events in E , or E has in-
finitely many prefixes, at the end of which, p has no enabled
events.

The following lemma shows that a process must apply a
visible event when it performs enter.

Lemma 13 Let E be a fair execution of an implementation
of starvation-free mutual exclusion. Then, while a process
performs an instance of enter, it must apply a visible event
in E.

Proof To obtain a contradiction, suppose that process p ap-
plies no visible event in E while performing some instance
� of enter. Let E1 be the shortest prefix of E in which �
completes and all the events that p applies while performing
� are invisible. Then E1 contains no events by process p af-
ter it completes � and p is in the critical section at the end of
E1. Let E ′

1 be the execution fragment obtained from E1 by
removing all events applied by p while it is performing �.
Since all these events are invisible in E1, Lemma 1 implies
that E ′

1 is an execution which is indistinguishable from E1
to all processes in P − {p}.

Consider any p-free extension E2 of E ′
1 such that some

process q �= p is in the critical section at the end of E ′
1 ◦ E2.

On the inherent weakness of conditional primitives 275

Since every operation instance performed in a fair execution
eventually completes, such an execution E ′

1 ◦ E2 exists. By
Proposition 3, E ′

1 ◦ E2 and E1 ◦ E2 are indistinguishable to
all processes in P − {p}, so process q is also in the critical
section at the end of E1 ◦ E2. But p is in the critical section
at the end of E1 and E2 is p-free, so p is also in the critical
section at the end of E1◦E2. This contradicts the correctness
of the implementation.
�

Like the linear space lower bound for the implementation
of a visible object in Sect. 5, a linear space lower bound for
starvation-free mutual exclusion can be obtained by demon-
strating the existence of a levelled execution. The proof of
this result is very similar to the proof of Lemma 11. One dif-
ference is that Lemma 13 is used instead of Lemma 10. The
other difference is that wait-freedom is replaced by the as-
sumption that the mutual exclusion object eventually gives a
response to each enter and exit operation.

Lemma 14 Any implementation of starvation-free mutual
exclusion has a levelled execution.

The proof of the lower bound for starvation-free mutual
exclusion is the same as the proof of Theorem 1, except that
Lemma 14 is used instead of Lemma 11.

Theorem 2 The number of base objects used in an n-
process implementation of starvation-free mutual exclusion
is at least n if the implementation uses only registers and
conditional objects, and at least � n

2 � if the implementation
uses only write-conditional objects.

Starvation-free mutual exclusion has a much more space
efficient implementation if other primitives are available. For
example, it can be implemented using a modulo-n counter
and a register with the same set of values. The idea is that
a process can perform enter by first applying fetch-and-
increment-mod-n to the modulo-n counter. Then it repeat-
edly reads the register until the response it received from
the modulo-n counter appears there. At this point, the pro-
cess enters the critical section. To perform exit, the process
writes the next value modulo n into the register.

The modulo-n counter ensures that all processes that
have performed at least one step of some instance of enter,
but have not yet completed this instance, or are in the criti-
cal section have (last received) different values. Thus, only
one of these processes, the process that has the value cur-
rently in the register, can be in the critical section. Provided
the register and the modulo-n counter have the same initial
value, processes enter the critical section in the same order in
which they apply the fetch-and-increment-mod-n primitive.

7 Time-space tradeoffs for one-time-visible objects

Even when there is a linear lower bound on the space com-
plexity of implementing an object, it might be possible to
implement the object using far fewer base objects, under the

restriction that each process can perform at most one oper-
ation instance. For example, our lower bound in Sect. 5 im-
plies that �(n) objects that support only compare-and-swap
are required for a wait-free implementation of a counter.
However, a one-time counter has a wait-free implementation
from a single object that supports compare-and-swap and
has value set {0, 1, . . . , n}. To perform fetch-and-increment,
a process applies compare-and-swap(0, 1), compare-and-
swap(1, 2), . . ., compare-and-swap(n − 1, n), in order, until
one of them returns true.

Since a one-time counter is a one-time-visible object, a
space lower bound for one-time-visible objects analogous to
Theorem 1 does not exist. Instead, in this section, we pro-
vide time-space tradeoffs for wait-free implementations of
one-time-visible objects that use only write-conditional base
objects.

The following result is analogous to Lemma 10 for visi-
ble objects. We restrict attention to histories of length n − 1
so there can be a subsequent operation instance whose re-
sponse can be affected by the last change to the value of the
object.

Lemma 15 Consider an n-process, wait-free implementa-
tion of a one-time-visible object with witness �p for p ∈ P.
Let E be an execution of a history that consists of n − 1
different witnesses, each of which completes. Then each pro-
cess that performs its witness, applies an event that is visible
in E.

Proof Let H1 ◦ �p ◦ H2 be the history from which E was
obtained. By Definition 3, there is an operation instance �′
by a process q so that H1◦�p◦H2 is q-free and res(H1◦�p◦
H2◦�′, �′) �= res(H1◦H2◦�′, �′). Let E ′ be the extension
of E that results when q performs �′. Then execution E ◦ E ′
can be written as E0◦e1◦E1◦· · ·◦ek◦Ek , where e1, . . . , ek is
the sequence of events applied by p (while performing �p)
and E1, . . . , Ek are p-free.

To obtain a contradiction, suppose that all of the events
e1, . . . , ek are invisible in E . Then, by Proposition 1, they
are invisible in E ◦ E ′. Hence, by Lemma 1, E0 ◦ e1 ◦ E1 ◦
· · · ◦ ek ◦ Ek and E0 ◦ E1 ◦ · · · ◦ Ek are indistinguishable to
process q ∈ P−{p}. This implies res(E0 ◦e1 ◦ E1 ◦· · ·◦ek ◦
Ek, �

′) = res(E0 ◦ E1 ◦ · · · ◦ Ek, �
′), which is impossible,

since res(H1◦�p ◦ H2◦�′, �′) �= res(H1◦ H2◦�′,�′).
�
The next lemma shows that when multiple conditional

events and write events that access the same object are si-
multaneously enabled, most of them can be made invisible.

Lemma 16 Any set of write or conditional RMW events that
access the same object can be scheduled so that at most one
of them is visible.

Proof Suppose e1, . . . , ek are write or conditional RMW
events that access the same object r and are enabled at the
end of some finite execution E . Let E ′ be the execution frag-
ment that consists of the events e1, . . . , ek in the following
order. All the events ei that are invisible in E ◦ ei are sched-
uled first. These are the write events with argument val(E, r)
and the conditional RMW events for which val(E, r) is a

276 F. E. Fich et al.

fixed point. Next the remaining write events are scheduled.
Finally, the remaining conditional RMW events are sched-
uled.

All of the events in the first part are invisible in E ◦ E ′
since they don’t change the value of r . If the second part of
E ′ is not empty, all of its write events, except for the last, are
invisible in E ◦ E ′, because each is immediately followed by
a write event accessing the same object. In this case, none
of the events in the third part of E ′ is visible in E ◦ E ′, as
the value of r is a fixed point of these events. If the second
part of E ′ is empty, then only the first event of the third part
of E ′, if it exists, may be visible in E ◦ E ′, as it changes
the value of r to a fixed point of all subsequent events in the
third part of E ′.
�

The following theorem states a tradeoff between the
number of write-conditional base objects used by an im-
plementation and the worst-case total number of nontrivial
events applied by processes in an execution of the protocol.

Theorem 3 Any wait-free n-process implementation of a
one-time-visible object from m < n write-conditional base
objects has an execution in which the total number of non-
trivial events applied by all processes is in �(n2/m).

Proof We construct an execution E0 ◦ E1 ◦ · · · ◦ E�(n−1)/m�
from any history consisting of n − 1 witnesses, performed
by different processes, each of which completes. This exe-
cution is constructed inductively: Execution E0◦E1◦· · ·◦Ei
contains at least i(n − 1 − m(i − 1)/2) nontrivial events, at
most m · i processes complete their operation instances, and
none of the at least n − 1 − m · i processes active at the end
perform a visible event in this execution.

Let E0 denote the execution in which n − 1 processes
become active, but do not perform any events. Let 1 ≤ i ≤
�(n −1)/m� and suppose that execution E0 ◦ E1 ◦ · · · ◦ Ei−1
has been constructed. Let each process that is active at the
end of this execution continue to apply events to perform its
witness until it is about to apply a nontrivial RMW event
to one of the m write-conditional base objects. This must
eventually happen, since, by Lemma 15, the process must
eventually apply a visible event, and all trivial RMW events
are invisible. By Lemma 16, all these enabled events can be
scheduled so at most one event applied to each base object
is visible. After all of these events are applied, we let the at
most m processes that applied visible events run until their
witnesses are complete. This concludes Ei .

None of the remaining processes have yet applied a visi-
ble event, so they are still active at the end of E0 ◦ E1 ◦ · · · ◦
Ei−1◦Ei . There are at least n−1−m(i−1)−m = n−1−m·i
such processes.

Since Ei−1 contains at least (i − 1)(n − 1 − m(i − 2)/2)
nontrivial RMW events and each of the processes active at
the end of E0 ◦ E1 ◦ · · · ◦ Ei−1 applies at least one nontrivial
RMW event in Ei , it follows that E0 ◦ E1 ◦ · · · ◦ Ei−1 ◦ Ei
contains at least (i −1)(n −1−m(i −2)/2)+n −1−m(i −
1) = i(n − 1 − m(i − 1)/2) nontrivial RMW events.

Let E be obtained from E0 ◦ E1 ◦ · · · ◦ E�(n−1)/m� by
letting each process active at the end run until its witness is

complete. Then the total number of nontrivial RMW events
in execution E is at least �(n − 1)/m�(n − 1 − m(�(n −
1)/m� − 1)/2) ∈ �(n2/m).
�
Corollary 1 Any wait-free n-process implementation of a
one-time-visible object from write-conditional base objects
either uses at least

√
n base objects or has an execution in

which the average number of nontrivial events each process
applies is in �(

√
n).

The time-space tradeoffs in Theorem 3 and Corollary
1 can be strengthened by counting the number of memory
stalls caused by contention when multiple processes simul-
taneously apply nontrivial RMW events to the same object.
When this happens, the events are serialized and all events,
except the first, incur memory stalls.

Definition 6 Let E be an execution and let e0, . . . , el be
a maximal sequence of two or more consecutive nontrivial
events in E by different processes that access the same ob-
ject r . Then e j incurs j memory stalls in E .

The concept of memory stalls was introduced by Dwork,
Herlihy, and Waarts [5]. Unlike us, they count all events,
not just nontrivial events. We obtain tradeoffs between the
space complexity and the worst case number of memory
stalls incurred in an execution for wait-free implementations
of one-time-visible objects from write-conditional base ob-
jects. These results immediately imply the same results for
their definition.

Theorem 4 Any wait-free n-process implementation of a
one-time-visible object from m < n write-conditional base
objects has an execution in which the total number of mem-
ory stalls incurred by all events is in �(n3/m2).

Proof Consider the execution E constructed in the proof of
Theorem 3 with one added requirement: when the at least
n − 1 − m(i − 1) enabled nontrivial RMW events are sched-
uled in Ei , all the events that access the same object are
applied consecutively. If r j of these events access the j’th
object, for j = 1, . . . , m, then the total number of stalls in-
curred by these events is

∑m
j=1 r j (r j − 1)/2. By convexity,

this sum achieves its minimum value, m[(n − 1)/m − i +
1][(n−1)/m−i]/2, when r1 = · · · = rm = (n−1)/m−i+1.
Hence the total number of memory stalls incurred by all
events in E is at least

�(n−1)/m�∑

i=1

m[(n−1)/m−i+1][(n−1)/m−i]/2 ∈ �(n3/m2).

�
Corollary 2 Any wait-free n-process implementation of a
one-time-visible object from write-conditional base objects
either uses at least n2/3 base objects or has an execution
in which the total number of memory stalls incurred by all
events is in �(n5/3).

On the inherent weakness of conditional primitives 277

8 Conclusions

Many conditional and write-conditional objects are uni-
versal, so they can be used to deterministically imple-
ment any object shared by any number of processes in a
wait-free manner. However, we have proved that any de-
terministic wait-free implementation of a visible object or
starvation-free mutual exclusion from conditional and write-
conditional base objects requires �(n) base objects when
shared by n processes. So, these implementations cannot be
space efficient. This implies that more than just conditional
and write-conditional primitives should be provided in the
design of asynchronous shared memory systems.

Our techniques can also be applied to prove lower
bounds for implementations of visible objects and wait-
free mutual exclusion using certain other primitives, such
as load-linked and store-conditional. Further work is needed
to extend the applicability of these techniques and to under-
stand their limitations. More generally, it is a challenging
open question to determine what primitives should be pro-
vided to allow time and space efficient implementations of
any object.

Acknowledgements This work was supported by the Natural Sci-
ences and Engineering Research Council of Canada and Sun
Microsystems.

References

1. Anderson, J.H., Kim, Y.J.: An improved lower bound for the time
complexity of mutual exclusion. Distrib. Comput. 15(4), 221–253
(2002)

2. Anderson, J.H., Kim, Y.J., Herman, T.: Shared-memory mutual
exclusion: major research trends since 1986. Distrib. Comput.
16(2–3), 75–110 (2003)

3. Burns, J.E., Lynch, N.A.: Bounds on shared memory for mu-
tual exclusion. Information and Computation 107(2), 171–184
(1993)

4. Cypher, R.: The communication requirements of mutual exclu-
sion. In: Proceedings of the 7th Annual ACM Symposium on Par-
allel Algorithms and Architectures, pp. 147–156 (1995)

5. Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory
algorithms. J. ACM 44(6), 779–805 (1997)

6. Fich, F., Ruppert, E.: Hundreds of impossibility results
for distributed computing.Distrib. Comput. 16(2–3), 121–163
(2003)

7. Herlihy, M.: Wait-free synchronization. ACM Transactions on
Programming Languages and Systems 13(1), 124–149 (1991)

8. Jayanti, P.: A time complexity lower bound for randomized im-
plementations of some shared objects. In: Proceedings of the 17th
Annual ACM Symposium on Principles of Distrib. Comput., pp.
201–210 (1998)

9. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for
non-blocking implementations. Siam J. Comput. 30(2), 438–456
(2000)

10. Yang, J.H., Anderson, J.H.: A fast, scalable mutual exclusion al-
gorithm. Distrib. Comput. 9(1), 51–60 (1995)

