
DCAS-Based Concurrent Deques

Ole Agesen∗ 1 David L. Detlefs† Christine H. Flood† Alexander T. Garthwaite†

Paul A. Martin† Nir N. Shavit†

∗VMware
†Sun Microsystems Laboratories

Guy L. Steele Jr.†

Abstract

The computer industry is currently examining the use of
strong synchronization operations such as double compare-
and-swap (DCAS) as a means of supporting non-blocking
synchronization on tomorrow’s multiprocessor machines. How-
ever, before such a strong primitive will be incorporated into
hardware design, its utility needs to be proven by develop-
ing a body of effective non-blocking data structures using
DCAS.

As part of this effort, we present two new linearizable
non-blocking implementations of concurrent deques using
the DCAS operation. The first uses an array representa-
tion, and improves on former algorithms by allowing unin-
terrupted concurrent access to both ends of the deque while
correctly handling the difficult boundary cases when the
deque is empty or full. The second uses a linked-list repre-
sentation, and is the first non-blocking unbounded-memory
deque implementation. It too allows uninterrupted concur-
rent access to both ends of the deque.

1 Introduction

In academic circles and in industry, it is becoming evident
that non-blocking algorithms can deliver significant perfor-
mance [3, 23, 20] and resiliency benefits [11] to parallel sys-
tems. Unfortunately, there is a growing realization that
existing synchronization operations on single memory lo-
cations, such as compare-and-swap (CAS), are not expres-
sive enough to support design of efficient non-blocking algo-
rithms [11, 12, 16], and software emulations of stronger prim-
itives from weaker ones are still too complex to be considered
practical [1, 4, 7, 8, 24]. In response, industry is currently
examining the idea of supporting stronger synchronization
operations in hardware. A leading candidate among such
operations is double compare-and-swap (DCAS), a CAS per-
formed atomically on two memory locations. However, be-
fore such a primitive can be incorporated into processor de-
sign, it is necessary to understand how much of an improve-
ment it actually offers. One step in doing so is developing a

1Work done while a member of Sun Microsystems Laboratories.

body of efficient data structures based on the DCAS opera-
tion.

This paper presents two novel designs of non-blocking
linearizable concurrent double-ended queues (deques) using
the double compare-and-swap operation. Deques, originally
described in [18], and currently used in load balancing al-
gorithms [3], are classic structures to examine, in that they
involve all the intricacies of LIFO-stacks and FIFO-queues,
with the added complexity of handling operations originat-
ing at both ends of the deque. By being linearizable [17] and
non-blocking [14], our concurrent deque implementations are
guaranteed to behave as if operations on them were executed
in a mutually exclusive manner, without actually using any
form of mutual exclusion.

1.1 Related Work

Massalin and Pu [19] were the first to present a collection
of DCAS-based concurrent algorithms. They built a lock-
free operating system kernel based on the DCAS operation
(CAS2) offered by the Motorola 68040 processor, imple-
menting structures such as stacks, FIFO-queues, and linked
lists.

Greenwald, a strong advocate for using DCAS, built a
collection of DCAS-based concurrent data structures im-
proving on those of Massalin and Pu. He proposed vari-
ous implementations of the DCAS operation in software and
hardware, and presented two array-based concurrent deque
algorithms using DCAS [11]. Unfortunately, his algorithms
used DCAS in a restrictive way. The first (pages 196-197
of [11]) used the two-word DCAS as if it were a three-word
operation, keeping the two deque end pointers in the same
memory word, and DCAS-ing on it and a second word con-
taining a value. Apart from the fact that this limits applica-
bility by cutting the index range to half a memory word, it
also prevents concurrent access to the two deque ends. The
second algorithm (pages 219-220 of [11]) assumed an un-
bounded size array, and did not correctly detect when the
deque is full in all cases.

Arora et al. [3] present an elegant CAS-based deque with
applications in job-stealing algorithms. Their non-blocking
implementation works with only a CAS operation since it
restricts one side of the deque to be accessed by only a single
processor, and the other side to allow only pop operations.

To the best of our knowledge, there is no linked-list-
based deque implementation using DCAS in the literature.
List-based implementations have the obvious advantage of
avoiding fixed, static resource allocations.

1.2 The new algorithms

This paper presents two novel deque implementations that
are non-blocking and linearizable, and do not suffer from
the above-mentioned drawbacks of former DCAS-based al-
gorithms. The new array-based algorithm we present in Sec-
tion 3 allows uninterrupted concurrent access to both ends
of the deque, while returning appropriate exceptions in the
tricky boundary cases when the deque is empty or full. The
key to our algorithm is the rather interesting realization that
a processor can detect these boundary cases, that is, deter-
mine whether the array is empty or full, without needing to
check the relative locations of the two end pointers in one
atomic operation.

In Section 4 we present a linked-list-based algorithm,
which uses full-word pointers and does not restrict concur-
rency in accessing the deque’s two ends. To the best of
our knowledge this is the first linked-list based implemen-
tation of a deque using a DCAS operation. The algorithm
is based on a new technique for splitting the pop operation
into two steps, marking that a node is about to be deleted,
and then deleting it. Once marked, the node is considered
“deleted,” and the actual deletion from the list can then be
performed by the next push or next pop operation on that
side of the deque. The key to making this algorithm work is
the use of DCAS to correctly synchronize delete operations
when processors detect that there are only marked nodes in
the list, and attempt to delete one or more of these nodes
concurrently from both ends. The cost of the splitting tech-
nique is an extra DCAS operation per pop. The benefit is
that it allows non-blocking completion without needing to
“lock” both of the deque’s end pointers with a DCAS. The
splitting also requires allocating a bit in the pointer word to
indicate if it is pointing to a marked node that needs to be
deleted. However, this extra bit can be easily avoided, as we
explain later, by adding two dummy “delete-bit” records to
the structure.

In summary, we believe that through the design of lin-
earizable lock-free implementations of classical data struc-
tures such as deques, we will be able to understand better
the power of the DCAS abstraction, and whether one should
continue the effort to provide support for implementing it
[1, 4, 7, 8, 11, 12, 24] on concurrent hardware and software
processing platforms. The next section presents our compu-
tation model and a formal specification of the deque data
structure.

2 Modeling DCAS and Deques

Our paper deals with implementing a deque on a shared
memory multiprocessor machine, using the DCAS opera-
tion. This section describes the computation model we will
use in our proofs and specifies the concurrent semantics of
the deque data structure we will implement.

Our computation model follows [5, 6, 17]. A concurrent
system consists of a collection of n processors. Processors
communicate through shared data structures called objects.
Each object has a set of primitive operations that provide
the only means of manipulating that object. Each processor
P is a sequential thread of control [17] which applies a se-
quence of operations to objects by issuing an invocation and
receiving the associated response. A history is a sequence of
invocations and responses of some system execution. Each
history induces a “real-time” order of operations where an
operation A precedes another operation B if A’s response

occurs before B’s invocation. Two operations are concur-
rent if they are unrelated by the real-time order. A sequen-
tial history is a history in which each invocation is followed
immediately by its corresponding response. The sequential
specification of an object is the set of legal sequential histo-
ries associated with it. The basic correctness requirement
for a concurrent implementation is linearizability [17]: every
concurrent history is “equivalent” to some legal sequential
history which is consistent with the real-time order induced
by the concurrent history. In a linearizable implementation,
operations appear to take effect atomically at some point
between their invocation and response. In our model, ev-
ery shared memory location L of a multiprocessor machine’s
memory is a linearizable implementation of an object which
provides every processor Pi with the following set of sequen-
tially specified machine operations (see [15, 14] for details):

Read i(L) reads location L and returns its value.

Writei(L, v) writes the value v to location L.

DCAS i(L1, L2, o1, o2, n1, n2) is a double compare-and-swap
operation with the semantics described in the next sec-
tion.

We assume, based on current trends in computer architec-
ture design [13], that DCAS is a relatively expensive opera-
tion, that is, has longer latency than traditional CAS, which
in turn has longer latency than both a read or a write. We
assume this is true even when operations are executed se-
quentially. We also assume the availability of a storage allo-
cation/collection mechanism as in Lisp [25] and the JavaTM

programming language [10]. The details of the allocator are
not exposed to the user1, yet it will be assumed that it in-
cludes an operation:

New i(v) that allocates a new structure v in memory and
returns a pointer to it.

The implementations we present will be non-blocking (also
called lock-free) [14]. Let us use the term higher-level op-
erations in referring to operations of the data type being
implemented, and lower-level operations in referring to the
(machine) operations in terms of which it is implemented.
A non-blocking implementation is one in which any infinite
history containing a higher-level operation that has an in-
vocation but no response must also contain infinitely many
responses concurrent with that operation. In other words,
if some higher level operation continuously takes steps and
does not complete, it must be because some other invoked
operations are continuously completing their responses. This
definition guarantees that the system as a whole makes progress
and that individual processors cannot be blocked, only de-
layed by other processors continuously taking steps. Using
locks would violate the above condition, hence the alternate
name: lock-free.

2.1 The DCAS operation

Figure 1 contains the code of the DCAS operation. The
sequence of operations is assumed to be executed atomi-
cally, either through hardware support [16, 21, 22], through
a non-blocking software emulation [7, 24], or via a block-
ing software emulation [2]. Note that the DCAS opera-
tion is overloaded; if the middle two arguments are pointers,

1Note that the problem of implementing a non-blocking storage
allocator is not addressed in this paper but would need to be solved
to produce a completely non-blocking deque implementation.

boolean DCAS(val *addr1, val *addr2,
val old1, val old2,
val new1, val new2) {

atomically {
if ((*addr1 == old1) && (*addr2 == old2)) {

*addr1 = new1;
*addr2 = new2;
return true;

} else {
return false;

}
}

}

boolean DCAS(val *addr1, val *addr2,
val *old1, val *old2,
val new1, val new2) {

atomically {
if ((*addr1 == *old1) && (*addr2 == *old2)) {

*addr1 = *new1;
*addr2 = *new2;
return true;

} else {
*old1 = *addr1;
*old2 = *addr2;
return false;

}
}

}

Figure 1: The Double Compare-and-Swap Operation

then the original contents of the tested locations are stored
into the indicated locations, thus providing a way for the
DCAS operation to return more information than just a
success/failure flag. This overloaded definition merely rep-
resents two interfaces from our higher level language to the
same single machine instruction, in order to direct the com-
piler whether to store or to discard the contents of the result
registers after execution of the DCAS instruction.

2.2 The Deque data structure

A deque object S is a concurrent shared object created by a
make deque(length S) operation and allowing each proces-
sor Pi, 0 ≤ i ≤ n− 1, to perform one of four types of opera-
tions on S: pushRighti(v), pushLefti(v), popRighti(), and
popLefti(). Each push operation has input v of type val.
Each pop operation returns an output in the set val.

We require that a concurrent implementation of a deque
object be one that is linearizable to a standard sequential
deque of the type described in [18]. We specify this sequen-
tial deque using a state-machine representation that cap-
tures all of its allowable sequential histories. These sequen-
tial histories include all sequences of push and pop opera-
tions induced by the state machine representation, but do
not include the actual states of the machine. In the follow-
ing description, we abuse notation slightly for the sake of
brevity.

The state of a deque is a sequence [9] of items S =
〈v0, . . . , vk〉 from the range of values, having cardinality
0 ≤ |S| ≤ length S. The deque is initially in the empty
state (following make deque(length S)), that is, has cardi-
nality 0, and is said to have reached a full state if its cardi-
nality is length S.

The four possible push and pop operations, executed se-
quentially, induce the following state transitions of the se-
quence S = 〈v0, . . . , vk〉, with appropriate returned values:

• pushRight(vnew) if S is not full, changes S to be the
sequence S = 〈v0, . . . , vk, vnew〉 and returns “okay”; if
S is full, it returns “full” and S is unchanged.

• pushLeft(vnew) if S is not full, changes S to be the
sequence S = 〈vnew , v0, . . . , vk〉 and returns “okay”; if
S is full, it returns “full” and S is unchanged.

• popRight() if S is not empty, changes S to be the
sequence S = 〈v0, . . . , vk−1〉 and returns vk; if S is
empty, it returns “empty” and S is unchanged.

• popLeft() if S is not empty, changes S to be the se-
quence S = 〈v1, . . . , vk〉 and returns v0; if S is empty,
it returns “empty” and S is unchanged.

For example, starting with an empty deque S = 〈〉, the
following sequence of operations and corresponding transi-
tions can occur: pushRight(1) changes the state to S =
〈1〉; pushLeft(2) transitions to S = 〈2, 1〉; a subsequent
pushRight(3) transitions to S = 〈2, 1, 3〉. A subsequent
popLeft() transitions to S = 〈1, 3〉 and returns 2. Another
subsequent popLeft() transitions to S = 〈3〉 and returns 1
(which had been pushed from the right).

It is desirable for performance reasons that operations
on opposite ends of the deque interfere with each other as
little as possible; the ideal is that no contention occurs if the
deque contains more than one item.

3 The array-based algorithm

Initially L == 0, R == 1; S[0..length_S-1] of "null";

0 val popRight {
1 newS = "null";
2 while (true) {
3 oldR = R;
4 newR = (oldR - 1) mod length_S;
5 oldS = S[newR];
6 if (oldS == "null") {
7 if (oldR == R)
8 if (DCAS(&R, &S[newR],
9 oldR, oldS, oldR, oldS))

10 return "empty";
11 }
12 else {
13 saveR = oldR;
14 if (DCAS(&R, &S[newR],
15 &oldR, &oldS, newR, newS))
16 return oldS;
17 else if (oldR == saveR) {
18 if (oldS == "null") return "empty";
19 }
20 }
21 }
22 }

Figure 2: The array-based deque - right-hand-side pop.

The following is a non-blocking implementation of a deque
in an array using DCAS. We describe in detail the code in
Figures 2 and 3 which deal with the right-hand-side push
and pop operations, with the understanding that the left-
hand-side operations in Figures 18 and 19 are symmetric.
As depicted in Figure 4, the deque consists of an array
S[0..length S-1] indexed by two counters, R and L. We
assume that mod is the modulus operation over the integers
(-1 mod 6 = 5, -2 mod 6 = 4, and so on). Henceforth, we as-
sume that all indexes into the array S are modulo length S,

1 val pushRight(val v) {
2 while (true) {
3 oldR = R;
4 newR = (oldR + 1) mod length_S;
5 oldS = S[oldR];
6 if (oldS != "null") {
7 if (oldR == R)
8 if (DCAS(&R, &S[oldR],
9 oldR, oldS, oldR, oldS))

10 return "full";
11 }
12 else {
13 saveR = oldR;
14 if DCAS(&R, &S[oldR],
15 &oldR, &oldS, newR, v)
16 return "okay";
17 else if (oldR == saveR)
18 return "full";
19 }
20 }
21 }

Figure 3: The array-based deque - right-hand-side push.

which implies that S is viewed as being circular. We also as-
sume a distinguished value “null” (denoted as “0” in some
of the figures) not occuring in the real data values (denoted
in the code as val) range in S.

Think of the array S[0..length S-1] as if it were laid
out with indexes increasing from left to right. The code
works as follows. Initially, L points immediately to the left
of R. The pointers L and R always point to the next location
into which a value can be inserted. It will always be true
that if there is no value immediately to the right of L (re-
spectively, to the left of R), then the deque is in the empty
state. Similarly, it will always be true that if there is a non-
null value in location L (respectively, location R), then the
deque is in the full state. Figure 4 shows such empty and
full states. During the algorithm’s execution, the use of a
DCAS guarantees that at most one processor can succeed in
modifying the entry at any array location from a null to a
non-null value or vice versa.

To perform a popRight, a processor first reads R and
the location in S corresponding to R-1 (Lines 3-5). It then
checks whether S[R-1] is null. (As we noted above, S[R-1]
is shorthand for S[R-1 mod length S]). If S[R-1] is null,
then the processor reads R again to see if it has changed
(Lines 6-7). This additional read is a performance enhance-
ment added under the assumption that the common case is
that a null value is read because another processor “stole”
the item, and not because the deque is really empty. The
test is thus that if R has not changed and S[R-1] is null,

00 00 00 00 00 00 00 00 00 00 00 00 00 00

LL RR

Empty initial Deque

LL RR

Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx

A full Deque

VxVx

Figure 4: Empty and full array-based deques.

then the deque may be empty since the location to the left
of R always contains a value unless there are no items in
the deque. However, the conclusion that the deque is empty
can only be made based on an instantaneous view of R and
S[R-1], and so the processor performs a DCAS to check if
this is in fact the case (Lines 8-10). If so, the processor re-
turns an indication that the deque is empty. If not, then
either the value read in S[R-1] is no longer null or the in-
dex R has changed. In either case, the processor must loop
around and start again, since there might now be an item
to pop.

If S[R-1] is not null, the processor attempts to pop that
item (Lines 12-20). It uses a DCAS to try to decrement
the counter R and to place a null value in S[R-1], while re-
turning (via &newR and &newS) the old value in S[R-1] and
the old value of the counter R (Lines 13-15). A successful
DCAS (and hence a successful popRight operation) is de-
picted in Figure 5. If the DCAS succeeds, the processor
returns S[R-1]. If it fails, then it needs to check what the
reason for the failure was. If the reason for the DCAS failing
was that R changed, then the processor must retry again (re-
peat the loop) since there may be items still left in the deque.
If R has not changed (Line 17), then the DCAS must have
failed because S[R-1] changed. If it changed to null (Line
18), then it must be that the deque is empty. This empty
deque would have been the result of a competing popLeft
that “stole” the last item from the popRight, as in Figure 6.
If, on the other hand, S[R-1] was not null, since the DCAS
failed it must mean that it is different than the value of
S[R-1] that the processor first read (and tried to DCAS
with), and so some other processor(s) must have performed
a pop and a push between the read and the DCAS opera-
tion. The processor must thus loop back and try again, since
there may still be items in the deque. We note that Lines
17-18 are an optimization, and one can instead loop directly
back if the DCAS fails. We add this optimization to al-
low detecting a possible empty state without going through
the loop, which in case the queue was indeed empty, would
require another DCAS operation (Lines 6-10).

To perform a pushRight, a sequence similar to popRight
is performed. AS depicted in Figure 7, for a given R, the loca-
tion into which an item will be pushed is the one to which R
points (Line 5 in both procedures). A successful pushRight
operation into an empty deque is depicted in Figure 7, and
a successful pushRight operation into an almost-full deque
appears in the bottom of Figure 8. All tests to see if a loca-
tion is null are now replaced with tests to see if it is non-null
(such as in Lines 6-10). Furthermore, in the final stage of

00 V1 00 00 00 00 00 00 00 00 00

LL RR

V2 V3 V4

00 V1 00 00 00 00 00 00 00 00 00

LL RR

V2 V3 V4

00 V1 00 00 00 00 00 00 00 00 00

LL RR

V2 V3 00

Pop Right

Figure 5: A successful array-based popRight.

Pop Right contending with Pop Left

00 00 00 00 00 00 00 00 00 00 00 00 00 00

RR

00 00 00 00 00 00 00 00 00 00 00 00 00

LL RR

V1

LL Pop Left won the DCAS,
and gets the value

Figure 6: A popRight contending with a popLeft.

00 00 00 00 00 00 00 00 00 00 00 00 00 00

LL RR Push Right into empty DeQueue

00 00 00 00 00 00 00 00 00 00 00 00 00 00

LL RR

00 00 00 00 00 00 00 00 00 00 00 00 00

LL RR

V1

Figure 7: A successful array-based pushRight.

the code, in case the DCAS failed, there is a check to see if
the R index has changed. If it has not, then the failure must
be due to a non-null value in that location, which means
that the deque is full. Unlike the case of a popRight, the
DCAS (Lines 14-15) is only checking to see if there was a
null value, and if none is found it does not matter what the
non-null value was: in all cases it means that the deque is
full (Line 18).

Figure 8 shows how an almost full deque becomes full
following push operations from the left and the right. Notice
how L has wrapped around and is “to-the-right” of R, until
the deque becomes full, in which case L and R cross again.
This switching around of the relative location of the L and R
pointers is rather confusing. The key to our algorithm is the
observation that we can determine the state of the deque,
not based on these relative locations of L and R, but rather by
examining the combination of where a given pointer variable
is pointing and the value in the location associated with that
pointer.

LLRR

Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx0000

LLRR

Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx00

LL RR

Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx Vx

VL

VLVR

Almost full

Left push leaves
only one free cell

Right Push yields
a full Deque

Figure 8: Filling the array.

Theorem 3.1 The array based deque algorithm of Section 3
is a non-blocking linearizable implementation of a deque data
structure.

4 The linked-list-based algorithm

The previous sections presented an array-based deque im-
plementation appropriate in situations where the maximum
size of the deque can be predicted in advance. In this sec-
tion we present an implementation that avoids the need to
limit size, by allowing dynamic memory allocation. We rep-
resent a deque as a doubly-linked list. Each node in the list
contains two link pointers and a value.

typedef node {
pointer *L;
pointer *R;
val_or_null_or_SentL_or_SentR value;
}

It is assumed that there are three distinguished values
(called null, sentL, and sentR) that can be stored in the
value field of a node but are never requested to be pushed
onto the deque. The doubly-linked list has two distinguished
nodes called “sentinels.” The left sentinel is at a known
fixed address SL; its L pointer is never used, and its value
field always contains sentL. Similarly, the right sentinel is
at a known fixed address SR with value sentR and an unused
R pointer.

The basic intuition behind this implementation is that a
node is always removed (as part of a popRight or popLeft
operation) in two separate, atomic steps: first the node is
“logically” deleted, by replacing its value with null and set-
ting a special deleted bit to 1 in the sentinel to indicate
the presence of a logically deleted node; second, the node is
“physically” deleted by modifying pointers so that the node
is no longer in the doubly-linked chain of nodes, as well as
resetting the bit in the sentinel to 0. If a processor that is
removing a node is suspended between these two steps, then
any other process can perform the second step or otherwise
work around the fact that the second step has not yet been
performed.

More concretely, the deleted bit in each sentinel is rep-
resented as part of its pointer into the list. The following
structure is thus maintained in a single word, by assuming
sufficient pointer alignment to free one low-order bit. 2

typedef pointer {
node *ptr;
boolean deleted;
}

Initially SR->L == SL and SL->R == SR, as in the top
part of Figure 9. All push and pop procedures use an aux-
iliary delete procedure, which we describe last. We describe
only the popRight and pushRight procedures. The popLeft
and pushLeft procedures are symmetric and can be found
in Figures 20 and 21.

The code for the popRight procedure appears in Fig-
ure 11. The processor begins by checking if the right sentinel
is in one of the following states:

2One can altogether eliminate the need for a “deleted” bit by in-
troducing a special dummy type “delete-bit” node, distinguishable
from regular nodes, in place of the bit. Each processor would have
a dummy node for the left and one for the right, and pointing to a
node indirectly via its dummy node, as in Figure 10, represents a bit
value of true, and pointing directly represents false.

00

00

Empty Deque

SentL SentR

SRSL

00

00 11

00

00

SentRSentL

Empty Deque with
a right−deleted cell

SRSL

00

00

11

00 SentRSentL

Empty Deque with
a left−deleted cell

SRSL

0000

0000

11

11

0000SentL SentR

Empty Deque with
two deleted cells

SRSL

Figure 9: Four versions of an empty linked-list-based deque.

• it points to the left sentinel (Line 5 of the code and
the top of Figure 9),

• it points to a node that has a null value (and is thus
logically deleted) (Lines 6-12 of the code and the upper

00SentL SentR

SRSL

Empty Deque with one
deleted cell marked by
a right dummy node

Figure 10: Replacing the deleted bit with a dummy node.

part of Figure 15 and the three lower parts of 9), or,

• it points to a node that has a non-null value (Lines
13-19 of the code and Figure 12).

If the next node is a sentinel (Line 5), then the deque is
empty, as in the top of Figure 9, and the processor can return
“empty.” If the left node is not a sentinel, it must check if the
deleted bit in the right sentinel is true (Line 6). If so, the
processor must call the deleteRight procedure, which will
remove the null node on the right-hand side, and then retry
the pop (Line 7). If the deleted bit (in the right sentinel) is
false, then the processor must make sure that the node to be
popped does not have a null value (Line 8), which indicates
that the deque could be empty. This null node would be
the result of a deleteLeft, with the deleted bit true in the
left sentinel, as shown in the third diagram from the top
of Figure 9. The way to test for this case is to atomically
check, using a DCAS operation, if there is both a null value
in the node and a false deleted bit in the pointer to that
node from the right sentinel (Lines 9-11). Otherwise, the
deque must have been modified concurrently between the
original reads and the DCAS test, so the processor should
loop and try again.

1 val popRight() {
2 while (true) {
3 oldL = SR->L;
4 v = oldL.ptr->value;
5 if (v == "SentL") return "empty";
6 if (oldL.deleted == true)
7 deleteRight();
8 else if (v == "null") {
9 if (DCAS(&SR->L, &oldL.ptr->value,

10 oldL, v, oldL, v))
11 return "empty";
12 }
13 else {
14 newL.ptr = oldL.ptr;
15 newL.deleted = true;
16 if (DCAS(&SR->L, &oldL.ptr->value,
17 oldL, v, newL, "null"))
18 return v;
19 }
20 }
21 }

Figure 11: The linked-list-based deque - right side pop.

Finally, there is the case in which the deleted bit is false
and v is not null, as depicted in Figure 12. Using a DCAS,

V1V0

0000 00

0000

SentL SentR

00

SRSL

00V0

0000 00

0000

SentL SentR

11

SRSL

Pop
Right
Before

Pop
Right
After

Figure 12: Non-null node before and after being popped by
a popRight.

1 val pushRight(val v) {
2 newL.ptr = new Node();
3 if (newL.ptr == "null") return "full";
4 newL.deleted = false;
5 while (true) {
6 oldL = SR->L;
7 if (oldL.deleted == true)
8 deleteRight();
9 else {

10 newL.ptr->R.ptr = SR;
11 newL.ptr->R.deleted = false;
12 newL.ptr->L = oldL;
13 newL->value = v;
14 oldLR.ptr = SR;
15 oldLR.deleted = false;
16 if (DCAS(&SR->L, &SR->L.ptr->R,
17 oldL, oldLR, newL, newL))
18 return "okay";
19 }
20 }
21 }

Figure 13: The linked-list-based deque - right side push.

the processor atomically swaps v out from the node, chang-
ing the value to null, and at the same time changing the
deleted bit in the pointer to it in SR to true (Lines 14-17).
If the DCAS is successful (Line 18), the processor returns v
as the result of the pop, leaving the deque in a state where
the right sentinel’s deleted bit is true, indicating that the
node is logically deleted. The next popRight or pushRight
will call the deleteRight procedure,3 to complete the phys-
ical deletion. If the DCAS fails, then concurrent pushes or
pops must have modified the sentinel pointer, so that it no
longer points to the node whose delete was attempted. The
processor should loop back to retry the pop.

The code for the pushRight procedure appears in Fig-
ure 13. The processor starts, as depicted in Figure 14, by
allocating a new node pointed to by a variable newL (Lines
2-4). If the allocation fails, a “full” indicator is returned.
Otherwise, the processor checks if the deleted bit in the
right sentinel is true (Lines 6-7). If so, as depicted in Fig-
ure 15, it calls (in Line 8) the deleteRight procedure, which
removes the null node to which the sentinel points, prior to
continuing with the push. If the deleted bit is false, then
the processor fills in the pointers in the newL node to point

3Note that the popRight operation could also call the deleteRight
procedure before returning v.

00

00

V1

00

00

SRSL

SentL SentRV0

00

00

 NewL

00

00

V1

00

00

SentL SentRV0

00

00

Push
Right
before

Push
Right
after

SRSL

Figure 14: Before pushRight (on the left) and after a suc-
cessful pushRight (on the right).

to the right sentinel and left neighbor of that sentinel (Lines
10-13).

The processor then tries to insert the new node into the
list by using a DCAS to redirect the pointers in the sentinel
and its left neighbor to the new node, as depicted in Fig-
ure 14 (Lines 14-17). If the DCAS is successful, the node is
added (Line 18), and otherwise it must be the case that the
deque was changed concurrently, and so the processor must
loop and try to push the node again.

The code of the deleteRight procedure appears in Fig-
ure 17. The procedure begins by checking that oldL, the left
pointer in the right sentinel, has its deleted bit set to true
(Line 4). If not, the deletion has been completed by another
processor and the current processor can return. If the bit
is true, the next step is to determine the configuration of
the deque. To this end, the processor reads oldLL, the node
immediately to the left of the one to be deleted (Line 6).
This node could be in one of three states: it may contain a
null value, a non-null value, or the value sentL. The actions
to be taken for the non-null value, as shown in the upper
part of Figure 15, and for the sentL value, as shown in the
upper middle part of Figure 9, are the same (Lines 6-13).
The processor checks whether oldL.ptr (the pointer in SR)
and oldLLR.ptr (the pointer in the neighbor of the node to
be deleted) point to the same node (Line 8), the one to be
deleted. If this is not the case, one must loop and try again
since the deque has been modified. If they do point to the
same node (Lines 9-13), then the processor uses a DCAS to
attempt to redirect the pointers so that SR and oldLL point
to each other, thereby deleting the null node pointed to by
oldL. The case of the null value is somewhat different. A
null value means that there are two null items in the deque,
as shown in the bottom part of Figure 9. To delete both,
the processor checks oldR.deleted, the deleted bit of the
left sentinel, to see if the bits in both sentinels are true (Line
22). If this is the case, it attempts to point the sentinels to
each other using a DCAS (Lines 23-24). In case the DCAS
fails, the processor must go through the loop again, until the
deletion is completed, i.e. the deleted bit is read as false.

The most interesting case occurs when the deque con-
tains only two nodes, left and right, both logically deleted
and thus containing the null value, and a deleteLeft is
about to be executed concurrently with a deleteRight, as
depicted in the top part of Figure 16. Assume that the
processors reached this state by the following sequence of
events. The deleteLeft operation started first, while the
right node was still non-null. The deleteLeft then at-

00V0

0000 00

0000

SentL SentR

11

SRSL

V1

00

00

00V0

0000 00

0000

SentL SentR

00

SRSL

V1

00

00

Delete
Right
Before

Delete
Right
After

Figure 15: Null node before and after being deleted by a
deleteRight.

tempted to remove the left node by performing a DCAS
on the left sentinel’s pointer and the right node’s L pointer.
The deleteRight, which started later, detected the two null
nodes and attempted to remove both, by using a DCAS
to redirect the pointers of the sentinels towards each other
(Lines 17-25). As can be seen at the top of Figure 16, the
DCAS operations performed by deleteLeft and deleteRight
overlap on the pointer in the left sentinel. If the deleteLeft
executes the DCAS first, the result of the success is a deque
with one null node and the deleted bit of the right sentinel
still true, as shown in the bottom left of Figure 16. If, on the
other hand, the deleteRight executes the DCAS first, the
result is an empty deque consisting only of the two sentinels,
with their deleted bits false, as in the the bottom right of
Figure 16.

Theorem 4.1 The linked list based deque algorithm of Sec-
tion 4 is a non-blocking linearizable implementation of a
deque data structure.

0000

0000

00

00

Right
 Wins

Left
 Wins

0000

0000

00

11

0000

0000

11

11

00 SentRSentL

 Left delete Right delete

SentRSentRSentL SentL

00

0000 00 00

Figure 16: Contending deleteLeft and deleteRight.

1 deleteRight() {
2 while (true) {
3 oldL = SR->L;
4 if (oldL.deleted == false) return;
5 oldLL = oldL.ptr->L.ptr;
6 if (oldLL->value != "null") {
7 oldLLR = oldLL->R;
8 if (oldL.ptr == oldLLR.ptr) {
9 newR.ptr = SR;

10 newR.deleted = false;
11 if (DCAS(&SR->L, &oldLL->R,
12 oldL, oldLLR, oldLL, newR))
13 return;
14 }
15 }
16 else { /* there are two null items */
17 oldR = SL->R;
18 newL.ptr = SL;
19 newL.deleted = false;
20 newR.ptr = SR;
21 newR.deleted = false;
22 if (oldR.deleted)
23 if (DCAS(&SR->L, &SL->R,
24 oldL, oldR, newL, newR))
25 return;
26 }
27 }
28 }

Figure 17: The linked-list-based deque - right side delete.

5 Acknowledgements

We would like to thank Steve Heller, Maurice Herlihy, Doug
Lea, and the anonymous referees for their many suggestions
and comments.

Sun, Sun Microsystems, the Sun logo, Java and all Java-
based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

References

[1] Afek, Y., Merritt, M., Taubenfeld, G., and

Touitou, D. Disentangling multi-object operations.
In Proceedings of the 16th Annual ACM Symposium
on Principles of Distributed Computing (August 1997),
pp. 111–120. Santa Barbara, CA.

[2] Agesen, O., and Cartwright Jr., R. S. Platform
independent double compare and swap operation, Dec.
1998. U.S. Patent Application Express Mail Number
EL092132504US Ref P3368.

[3] Arora, N. S., Blumofe, B., and Plaxton, C. G.

Thread scheduling for multiprogrammed multiproces-
sors. In Proceedings of the 10th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures (1998).

[4] Attiya, H., and Dagan, E. Universal operations:
Unary versus binary. In Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Comput-
ing (May 23-26 1996). Phila. PA.

[5] Attiya, H., Lynch, N., and Shavit, N. Are wait-free
algorithms fast? Journal of the ACM 41, 4 (July 1994),
725–763.

[6] Attiya, H., and Rachman, O. Atomic snapshots in
O(n log n) operations. SIAM Journal on Computing 27,
2 (Mar. 1998), 319–340.

[7] Barnes, G. A method for implementing lock-free
shared data structures. In Proceedings of the 5th ACM
Symposium on Parallel Algorithms and Architectures
(June 1993), pp. 261–270.

[8] Bershad, B. N. Practical considerations for non-
blocking concurrent objects. In Proceedings 13th IEEE
International Conference on Distributed Computing
Systems (May 25–28 1993), IEEE Computer Society
Press, pp. 264–273. Los Alamitos CA.

[9] Corman, T. H., Leiserson, C. E., and Rivest,

R. L. Introduction to Algorthms, 1st ed. McGraw Hill,
1989.

[10] Gosling, J., Joy, B., and Steele Jr., G. L. The
JavaTM Language Specification. Addison-Wesley, 2550
Garcia Avenue, Mountain View, CA 94043-1100, 1996.

[11] Greenwald, M. Non-Blocking Synchronization and
System Design. PhD thesis, Stanford University Tech-
nical Report STAN-CS-TR-99-1624, Palo Alto, CA, 8
1999.

[12] Greenwald, M. B., and Cheriton, D. R. The syn-
ergy between non-blocking synchronization and oper-
ating system structure. In 2nd Symposium on Operat-
ing Systems Design and Implementation (October 28–
31 1996), pp. 123–136. Seattle, WA.

[13] Hennessy, J. L., and Patterson, D. A. Computer
Architecture: A Quantitative Approach, 2nd ed. Mor-
gan Kaufmann Publishers, 1995.

[14] Herlihy, M. Wait-free synchronization. ACM Trans-
actions On Programming Languages and Systems 13, 1
(Jan. 1991), 123–149.

[15] Herlihy, M. A methodology for implementing highly
concurrent data structures. ACM Transactions on Pro-
gramming Languages and Systems 15, 5 (Nov. 1993),
745–770.

[16] Herlihy, M. P., and Moss, J. Transactional mem-
ory: Architectural support for lock-free data structures.
Tech. Rep. CRL 92/07, Digital Equipment Corpora-
tion, Cambridge Research Lab, 1992.

[17] Herlihy, M. P., and Wing, J. M. Linearizability:
A correctness condition for concurrent objects. ACM
Transactions On Programming Languages and Systems
12, 3 (July 1990), 463–492.

[18] Knuth, D. E. The Art of Computer Programming:
Fundamental Algorithms, 2nd ed. Addison-Wesley,
1968.

[19] Massalin, H., and Pu, C. A lock-free multiproces-
sor OS kernel. Tech. Rep. TR CUCS–005–9, Columbia
University, New York, NY, 1991.

[20] Michael, M. M., and Scott, M. L. Correction of a
memory management method for lock-free data struc-
tures. Tech. Rep. TR 599, Computer Science Depart-
ment, University of Rochester, 1995.

[21] Motorola. MC68020 32-Bit Microprocessor User’s
Manual, 2nd ed. Prentice-Hall, 1986.

[22] Motorola. MC68030 User’s Manual. Prentice-Hall,
1989.

[23] Rinard, M. C. Effective fine-grain synchronization
for automatically parallelized programs using opti-
mistic synchronization primitives. ACM Transactions
on Computer Systems 17, 4 (Nov. 1999), 337–371.

[24] Shavit, N., and Touitou, D. Software transactional
memory. Distributed Computing 10, 2 (February 1997),
99–116.

[25] Steele Jr., G. L. Common Lisp. Digital Press, Digital
Equipment Corporation, 1990.

A Appendix: The matching left hand side code

0 val popLeft {
1 newS = "null";
2 while (true) {
3 oldL = L;
4 newL = (oldL + 1) mod length_S;
5 oldS = S[newL];
6 if (oldS == "null") {
7 if (oldL == L)
8 if (DCAS(&L, &S[newL],
9 oldL, oldS, oldL, oldS))

10 return "empty";
11 }
12 else {
13 saveL = oldL;
14 if (DCAS(&L, &S[newL],
15 &oldL, &oldS, newL, newS))
16 return oldS;
17 else if (oldL == saveL) {
18 if (oldS == "null") return "empty";
19 }
20 }
21 }
22 }

Figure 18: The array based deque left-hand-side pop.

1 val pushLeft(val v) {
2 while (true) {
3 oldL = L;
4 newL = (oldL - 1) mod length_S;
5 oldS = S[oldL];
6 if (oldS != "null") {
7 if (oldL == L)
8 if (DCAS(&L, &S[oldL],
9 oldL, oldS, oldL, oldS))

10 return "full" ;
11 }
12 else {
13 saveL = oldL;
14 if (DCAS(&L, &S[oldL],
15 &oldL, &oldS, newL, v))
16 return "okay";
17 else if (oldL == saveL)
18 return "full";
19 }
20 }
21 }

Figure 19: The array based deque left-hand-side push.

1 val popLeft() {
2 while (true) {
3 oldR = SL->R;
4 v = oldL.ptr->value;
5 if (v == "SentR") return "empty";
6 if (oldR.deleted == true)
7 deleteLeft();
8 else if (v == "null") {
9 if (DCAS(&SL->R, &oldR.ptr->value,

10 oldR, v, oldR, v))
11 return "empty";
12 }
13 else {
14 newR.ptr = oldR.ptr;
15 newR.deleted = true;
16 if (DCAS(&SL->R, &oldR.ptr->value,
17 oldR, v, newR, "null"))
18 return v;
19 }
20 }
21 }

Figure 20: The linked-list based deque - left side pop.

1 val pushLeft(val v) {
2 newR.ptr = new Node();
3 if (newR.ptr == "null") return "full";
4 newR.deleted = false;
5 while (true) {
6 oldR = SL->R;
7 if (oldR.deleted == true)
8 deleteLeft();
9 else {

10 newR.ptr->L.ptr = SR;
11 newR.ptr->L.deleted = false;
12 newR.ptr->R = oldR;
13 newR->value = v;
14 oldRL.ptr = SL;
15 oldRL.deleted = false;
16 if (DCAS(&SL->R, &SL->R.ptr->L,
17 oldR, oldRL, newR, newR))
18 return "okay";
19 }
20 }
21 }

Figure 21: The linked-list based deque - left side push.

1 deleteLeft() {
2 while (true) {
3 oldR = SL->R;
4 if (oldR.deleted == false) return;
5 oldRR = oldR.ptr->R.ptr;
6 if (oldRR->value != "null") {
7 oldRRL = oldRR->L;
8 if (oldR.ptr == oldRRL.ptr) {
9 newL.ptr = SL;

10 newL.deleted = false;
11 if (DCAS(&SL->R, &oldRR->L,
12 oldR, oldRRL, oldRR, newL))
13 return;
14 }
15 }
16 else { /* there are two null items */
17 oldL = SR->L;
18 newR.ptr = SR;
19 newR.deleted = false;
20 newL.ptr = SL;
21 newL.deleted = false;
22 if (oldL.deleted)
23 if (DCAS(&SL->R, &SR->L,
24 oldR, oldL, newR, newL))
25 return;
26 }
27 }
28 }

Figure 22: The linked-list based deque - left side delete.

