
Brief Announcement:
Obstruction-Free Step Complexity:

Lock-free DCAS as an Example

Faith Ellen Fich2?, Victor Luchangco1, Mark Moir1, and Nir Shavit1

1 Sun Microsystems Laboratories
2 University of Toronto

We propose obstruction-free step complexity, a new complexity measure for
nonblocking algorithms. We believe that this measure provides a more pragmatic
quantification of nonblocking algorithms than previous measures, providing bet-
ter guidance for designers of practical nonblocking algorithms.

In our opinion, the main shortcoming of existing complexity measures for
nonblocking algorithms is that they are targeted towards worst-case behavior
in worst-case scenarios, and say little about behavior in more common cases.
This is true for the sensitivity measure of Attiya and Dagan [1], and the d-local
step complexity of Afek et al. [2]. These measures are directed at evaluating
the behavior of algorithms under contention, i.e., when concurrent operations
actively interfere with each other’s progress. However, in practice, a well-designed
system manages contention so that it does not impact performance too greatly.
Thus, these previous measures do not evaluate the behaviour that is likely to be
observed.

For any nonblocking algorithm, be it wait-free, lock-free or obstruction-free,
the obstruction-free step complexity of the algorithm is the maximum over all
reachable states of the number of steps required for any operation to complete
if the process executing the operation runs alone from that state.3

Obstruction-free step complexity is targeted towards a more pragmatic eval-
uation of the performance of nonblocking algorithms in real-world applications,
and is based on the assumption, evidenced by numerous technical papers, that
performance in uncontended cases is more important in many practical settings
than worst-case performance under contention. Moreover, by far the most com-
mon approach to dealing with contention is backoff, in which contended cases
are essentially turned into uncontended ones by delaying contending operations;
other contention management approaches behave similarly. This suggests that
even for applications and systems in which contention is significant, it is im-
portant to design algorithms that perform well while there is no contention. In
particular, if operations complete quickly as soon as contention subsides, then
contention management techniques such as backoff will be more effective, and
? The research of Faith Ellen Fich was financially supported by the Natural Sciences

and Engineering Research Council of Canada and the Scalable Synchronization Re-
search Group of Sun Microsystems, Inc.

3 Algorithms that can take an unbounded number of steps even in the absence of
contention have unbounded obstruction-free step complexity.



will produce progress more quickly. This is the motivation behind our proposed
complexity measure.

Because the obstruction-free step complexity of an algorithm bounds the
number of steps that a process takes when running alone from an arbitrary
reachable state, even one in which other processes may be in the midst of exe-
cuting the algorithm, it evaluates how amenable an algorithm is to contention
management strategies such as backoff.

It is important to distinguish obstruction-free step complexity from an al-
ternative measure, which we call completely contention-free step complexity : the
maximum number of steps any process takes if it runs alone from a “quiescent”
state (i.e., a state in which no process is in the midst of executing the algo-
rithm). This measure provides no insight into how amenable the algorithm is
to contention management. In particular, a lock-based algorithm may have very
low completely contention-free complexity, but a process that stops while hold-
ing a lock can prevent all the other processes from making progress indefinitely,
and no contention management can help in this case.

Taking an approach similar to that of [1, 2], we use obstruction-free step
complexity to evaluate nonblocking implementations of multilocation synchro-
nization operations from unary ones. One difficulty in designing such algorithms
is deciding what an operation should do when it discovers that another opera-
tion is already accessing a location it wants to access. One option is to “abort”
the competing operation, causing the aborted operation to retry; another is to
“help” that operation complete. Aborting operations excessively can compro-
mise lock-freedom, as multiple operations can repeatedly abort each other. On
the other hand, if an operation always helps the competing operation, long chains
can form such that one operation must recursively help all the operations in the
chain, even if none of them are actively interfering.

In particular, we consider implementations of double-compare-and-swap from
compare-and-swap, and present the first algorithm with constant obstruction-
free step complexity. All previous lock-free algorithms use the recursive-helping
technique and therefore do not have constant obstruction-free step complexity.
To achieve constant obstruction-free step complexity, our algorithm introduces
a novel approach, which carefully helps only enough to ensure lock-freedom,
while avoiding long helping chains. Note that our result does not contradict
the separation result of [1], which considered the worst-case step complexity of
wait-free algorithms over all executions: our algorithm is only lock-free, and the
obstruction-free step complexity measure focuses only on the uncontended case.

References

1. Attiya, H., Dagan, E.: Improved implementations of binary universal operations. J.
ACM 48 (2001) 1013–1037

2. Afek, Y., Merritt, M., Taubenfeld, G., Touitou, D.: Disentangling multi-object
oeprations. In: Proceedings of the 16th Annual ACM Symposium on Principles of
Distributed Computing. (1997) 111–120


