
Reactive Di�racting Trees

Giovanni Della�Libera

M�I�T�

and

Nir Shavit

Tel�Aviv University and M�I�T�

A shared counter is a concurrent object that provides a fetch�and�increment operation in a dis�
tributed system� Recently� di�racting trees have been introduced as an e�cient way of implement�
ing shared counters in heavily loaded systems� Di�racting trees dynamically distribute processors
into small groups that can access a collection of disjoint local counters quickly in a globally co�

ordinated way� Their empirical performance under heavy load surpasses all other shared counter
implementations� However� di�racting trees of di�ering depths are optimal for only a limited load
range� There would thus be great bene�t in designing a di�racting tree algorithm that would
e�ectively scale from a simple cetralized queue�lock based counter at low loads to the optimal size
di�racting tree counter as the load increases�decreases�

This paper presents the reactive di�racting tree data structure and its implementation on a
shared memory multiprocessor system� The reactive di�racting tree is a shared structure similar
to a di�racting tree� but which can grow and shrink to better handle changing access patterns

and the memory layouts� providing true scalability and locality� The tree mimics the behavior of
an optimal size di�racting tree for each concurrency range�

Empirical evidence� collected on the Alewife cache�coherent multiprocessor and the Proteus
simulator� shows that the reactive di�racting tree provides throughput within a constant factor
of optimal di�racting trees at all load levels� It also shows it to be an e�ective competitor with
randomized load balancing algorithms in several producer�consumer applications�

We believe that reactive di�racting trees will provide fast and truly scalable implementations
of many primitives on multiprocessor systems� including shared counters� k�exclusion barriers�
pools� stacks� and priority queues�

�� INTRODUCTION

Coordination problems in multiprocessor systems have received much attention
recently� In particular� shared counters and their applications are an important
area of study because the fetch�and�increment operation is a primitive that is be�
ing widely used in concurrent algorithm design� Since good hardware support for
implementing scalable shared counters in multiprocessor systems are not readily
available� there have been a variety of software solutions proposed for this problem�

A preliminary version of this paper appeared in the Proceedings of the �th Annual Symposium on
Parallel Algorithms and Architectures �SPAA�� June 	

��

� � G� Della�Libera and N� Shavit

b

0-wire

1-wire

abcde

a

b

c

d

e

Fig� 	� A Balancer at work

��� Background

Straightforward software solutions often involve protecting a centralized counter
register with a spin�lock� either a test�and�set lock with exponential backo� �see the
work of Agarwal and Cherian� Anderson� Rudolph et� al� and Graunke and Thakkar
��	
	 ��	 �
� or a queue�lock �see the work of Anderson or Mellor�Crummey and
Scott�
	 ���� These algorithms are popular because they provide minimal latencies
in low load situations� when requests are sparse and mostly sequential in nature�
However� they can not hope to obtain good throughput under high loads due to
the bottleneck inherent in mutual exclusion�

More sophisticated concurrent algorithms proposed include the combining trees of
Yew� Tzeng� and Lawrie �
� and Goodman� Vernon� and Woest ���� the Combining
Funnels of Shavit and Zemach �

� the Counting Networks of Aspnes� Herlihy� and
Shavit ��� and the Di�racting Trees of Shavit and Zemach �
�	
�� These methods
are highly distributed and lower the contention on individual memory locations�
allowing for better performance at high loads� The software combining methods ���	

	
� have the advantage of providing linearizable ��� counter implementations��
and under high loads their performance is comparable and even slightly better than
that of counting networks ���	
�	

� However� empirical studies show that both
the software combining methods and counting networks are inferior to di�racting
trees under high loads �
�� In such situations di�racting trees are two to three
times faster �their average latency for an increment operation is two to three times
smaller and throughput is two to three times larger��

What are Di�racting Trees� On an abstract level� di�racting trees are distributed
data structures constructed from simple one�input two�output elements called bal�
ancers� Tokens �processes� arrive on the balancer�s input wire at arbitrary times�
and are output on its output wires� One may think of a balancer as a toggle mech�
anism �a bit that is repeatedly complemented�� that given a stream of input tokens�
repeatedly sends one token to the left output wire and one to the right� balancing
the number of tokens that have been output� Figure � shows how a balancer would
balance �ve distinct tokens �A�E� arriving sequentially in alphabetical order� A
di�racting tree consists of a collection of balancers that are connected to one an�
other by wires to form a balanced binary tree� It distributes input tokens to output
wires by having them toggle through a sequence of balancers from the root to leaves�
As depicted in Figure �� tokens are output in increasing order modulo � to create

�Linearizable counting network constructions exist �	� ��� ���� but require limiting assumptions
on the underlying system�s behaviour�

Reactive Di�racting Trees � �

b

b

b

b

b

b

b

0

1

0

1

0

1

0
1

0

1

0

1
0

1

a
b

c

f

d

e
g

h i

k j l

m

a

b

c

d

e

h

j

i

f

g

k

l

m

Fig� �� A Di�racing Tree

a step�like output pattern� Trees of balancers having this step�property can easily
be adapted to count the total number of tokens that have entered the network�
Counting is done by adding a �local� queue�lock protected counter to each output
wire i� so that tokens coming out of that wire are consecutively assigned numbers
i� i� �� i� �� � �� � � �� as in Figure
�

However� under high loads� the balancer toggle bits� especially the one at the
root balancer of the tree� will be accessed by many processes concurrently� forming
contention hot�spots ��� and sequential bottlenecks that are as bad as that of a
centralized spin�lock�protected counter implementation� Di�racting trees overcome
the problem by having a �prism� mechanism in front of the toggle bit of every bal�
ancer� allowing independent pairs of tokens to be �di�racted� in separate memory
locations in a coordinated manner one to the left and one to the right� A coordi�
nated pair of processors can leave the balancer without either of them having to
toggle the shared bit� since each pair of toggles leaves the bit in the same state� The
processors need simply agree between themselves which one would have gotten the
��� bit� and which the ���� The di�raction mechanism uses randomization to en�
sure high collision�di�raction rates on the prism� and the tree structure guarantees
correctness of the output values�

Di�racting trees of varying depths provide optimal performance throughout the
load range� and the trivial di�racting tree� a counter protected by a queue�lock�
provides the best performance under low load� However� a di�racting tree of a given
depth has unwanted costs for lower loads due to its higher latencies� and as load
increases its performance will eventually levels out as it becomes overcapacitated
�
��

In summary� the prior art seems to be �rmly divided into two camps� the central�
ized lock�based algorithms which work well in the low load cases and the distributed
algorithms that provide superior performance under high load� The lock�based algo�
rithms are championed by the queue�lock methods� and the distributed algorithms
are led by Di�racting Trees� One set of experiments we conducted revealed that in
a low load situation� the throughput over a �xed period of time for a queue�lock

� � G� Della�Libera and N� Shavit

b

b

b

b

b

b

b

��
��
��
��
��
��

��
��

��
��

��
��

0 8 16...
countersbalancers

c
c

c
c

c

c
c

c

1 9 17...

2 10 18...

3 11 19...

4 12 20...

5 13 21...

6 14 22...

7 15 23...

0

1

0

1

0

1

0
1

0

1

0

1
0

1

input wire

Fig� �� A counting di�racting tree

based counter was ��� operations while the di�racting tree delivered only �� opera�
tions� With the same period of time but under a high load� the queue�lock counter
went down to ��� operations� while the di�racting tree rose to ���� operations� A
factor of �� di�erence separates each of these sets of numbers�

��� Goals

The family of Di�racting Trees� from a degenerate tree consisting of a single queue�
lock based counter� to deep trees with a collection of counters at their leaves� provide
peak performance over the full range of concurrency levels� Our goal is to create
a single dynamically changing Di�racting Tree structure that can estimate the
system�s load at any point and assume the optimal size Di�racting Tree for that
load�

Lim and Agarwal ���	 �� recently came up with a reactive scheme that switched
between a test�and�test�and�set lock ���� a queue lock� and a combining tree� This
algorithm performed well from the low to mid�load ranges� as the combining tree
took over for the queue lock� The algorithm only applies to algorithms that have
one centralized lock�based counter� which precludes di�racting trees� but gave us
valuable insights to reactive policy making�

We now focus on the two main ideas necessary to create a reactive di�racting
tree algorithm�

�Localize decision making�

�Use cache�coherence to make global agreement inexpensive�

Localized decision making spares processors from continually deciding on the
overall structure of the shared counter� which is what Lim and Agarwal�s algorithm
requires� A major drawback with global decision making is that processors can get
delayed while they wait for a change to occur� By making the changes in the shared
counter local to only part of the counter data structure� the number of processors
directly delayed will drop signi�cantly� and when other processors arrive in the

Reactive Di�racting Trees � �

changed part of the structure� the decision will have already been made and they
can quickly adapt�

Cache�coherence makes localized decision making a reality� Keeping processors in
agreement globally is usually an expensive requirement� If an algorithm adds global
state which does not often change in high load situations� then this information can
be cached� making constant reference to it an inexpensive proposition� If the load
in an area of the tree is low� then changes can be made without high cost� which
enables localized decision making�

��� Reactive Di�racting Trees

Our algorithm� the Reactive Di�racting Tree �or RDT�� uses the above two princi�
ples to make di�racting trees reactive� A signi�cant change in the load of the system
will cause the RDT to grow or shrink into the matching optimal tree� These changes
occur in a localized fashion at some leaves of the tree� but in a way that quickly
applies to all leaves if a genuine global change of load occurred� However� in some
cases the tree�s memory layout is designed so that di�erent ends of the trees are
layed out in separate parts of memory� the tree may become irregularly formed to
give optimal performance� State is added to the nodes of the tree to indicate if
they are acting as balancers or counters� and the caching of this state information
enables processors to pass through the tree without much delay�

We implemented and tested the RDT on the MIT Alewife machine of Agarwal
et� al ��� However� the largest Alewife machine only has
� nodes� limiting the
load range we could test with� We thus show that the Proteus Parallel Hardware
Simulator of Brewer et� al ��	 �� which we run with up to ��� processes� simu�
lates Alewife well� giving results that are comparable when normalized� For the
experiment described earlier where we measured throughput over a �xed period of
time� the single RDT structure provided under low load ��
 operations and under
high load
�
� operations� as compared with �� for the optimal queue�lock and
���� for the optimal di�racting tree� The results we present in the experimental
section show that in general the RDT performs within a constant factor of optimal
di�racting trees at all load levels� and future work promises to lower this factor�

In summary� we believe that the RDT and its underlying concepts will prove an
e�ective paradigm for the design of future data structures and algorithms for multi�
scale computing� This remainder of this paper is organized as follows� Section �
explains the design of the RDT and its asynchronous shared�memory implemen�
tation� and discusses di�erent scaling policies� Section
 provides the empirical
performance results on the Alewife machine and the Proteus simulator� Section �
lists directions for further research�

�� REACTIVE DIFFRACTING TREES

In order to keep the presentation as self contained as possible� we begin by review�
ing the basics of di�racting trees� We then describe in detail the changes necessary
to make them reactive� This includes an implementation of the RDT on an asyn�

� � G� Della�Libera and N� Shavit

type balancer is

lock� lock

toggle� int �� � or � ��

Left� ptr to balancer �� wire y� ��

Right� ptr to balancer �� wire y� ��

end

globals

Width� int

Root � ptr to root of Binary�width� tree

function simple	balancer
b� ptr to balancer� returns ptr to balancer

begin

lock
b�lock�

k �� b�toggle

b�toggle �� ��k �� toggle the bit ��

unlock
b�lock�

if k � � return b�Left

else return b�Right

end

function fetch�incr
� returns int

begin

b�� Root

while not leaf
b�

b �� simple	balancer
b�

endwhile

i �� increment	counter	at	leaf
b�

return i � Width � number	of	leaf
b�

end

Fig� �� A Shared�Memory tree�based counter implementation

chronous� cache�coherent� distributed shared�memory system� Finally� the reactive
scaling policy issue is discussed�

��� Di�racting Trees

The Di�racting Trees of Shavit and Zemach �
� are counting trees� a special form
of the Counting Network data structures introduced by Aspnes et� al �� �See also
��	 ��	 ����

A Counting Tree is a binary tree of nodes called balancers� A balancer is a
computing element with one input wire and two output wires� Tokens arrive on
the balancer�s input wire at arbitrary times� and are output on its output wires�
We denote by x the number of input tokens ever received on the balancer�s input
wire� and by yi� i � f�� �g the number of tokens ever output on its ith output wire�
Given any �nite number of input tokens x� it is guaranteed that within a �nite
amount of time� the balancer will reach a quiescent state� that is� one in which the

Reactive Di�racting Trees � 	

bb

b
0

1

0

1

0

1

��c

��c

��
��c

��
��c

0 4 8 12 ...

2 10 18 ...

6 14 22 ...

1 3 5 7...

Fig� � An irregular di�racting tree�s counting scheme

sets of input and output tokens are the same� In any quiescent state� y� � dx��e
and y� � bx��c� We will abuse this notation and use yi both as the name of the
ith output wire and as the count of the number of tokens output on that wire� As
explained earlier� Figure � shows how a balancer would balance �ve distinct tokens
�A�E� arriving sequentially and in alphabetical order�

The Counting Tree layout is de�ned as follows� Let k be a power of two� and
let us de�ne the counting tree Binary��k inductively� When k is equal to �� the
Binary��k network consists of a single balancer with output wires y� and y��
For k � �� we construct the Binary��k tree from two Binary�k trees and one
additional balancer� We make the input wire x of the single balancer the root of
the tree and connect each of its output wires to the input wire of a tree of width k�
We then re�designate output wires y�� y�� � � � � yk�� of the tree extending from the �
output wire as the even output wires y�� y�� � � � � y�k�� of Binary��k and the wires
y�� y�� � � � � yk�� of the tree extending from the balancer�s � output wire as the odd
output wires y�� y�� � � � � y�k���

One can extend the notion of quiescence to trees in the natural way� and de�ne a
counting tree of width w as a tree of balancers� Binary�w� with outputs y�� ��� yw��
that satisfy the following step property�

In any quiescent state� � � yi � yj � � for any i � j�

Figure � shows aBinary�� tree moving input tokens to output wires in increasing
order modulo � while preserving the step property� The tree counts the total number
of tokens that have entered the network by way of the local counters attached to
each of the output wires �see Figure
�� Tokens coming out of that wire i are
consecutively assigned numbers i� i� w� � � � � i� �yi � ��w�

On a shared memory multiprocessor� one implements a balancing tree as a shared
data structure� where balancers are records� and wires are pointers from one record
to another� Each of the machine�s asynchronous processors run a program that
repeatedly traverses the data structure from the root input pointer to some output
pointer� each time shepherding a new token through the network� Pseudo�code
for this program appears in Figure �� We use an MCS�queue�lock ��� to avoid
race conditions on the balancer�s toggle bit and on the shared local counters at the
leaves�

Di�racting Trees are counting trees whose balancers are of a novel type called

 � G� Della�Libera and N� Shavit

Di�racting balancers� One could easily implement a balancer using a single toggle
bit� Each processor would toggle the bit inside the balancer� and accordingly decide

type balancer is

spin� int

size� int

prism� array����size� of int

toggle� int �� � or � ��

lock� Lock

Left� ptr to balancer �� wire y� ��

Right� ptr to balancer �� wire y� ��

endtype

location� global array����NUMPROCS� of ptr to balancer

function diff�bal
b� ptr to balancer� returns ptr to balancer

begin

location�MYID� � b

forever

rand	place � random
b�size�

his	id � Swap
b�prism�rand	place�� MYID�

if CompareSwap
location�MYID�� b� EMPTY� then

if CompareSwap
location�his	id�� b� EMPTY� then

return b�Left

else location�MYID� � b

else return b�Right

repeat b�spin times

if location�MYID� �� b then

if b�spin � MAXSPIN then

b�spin � b�spin � �

return b�Right

end repeat

if TestTestSet
b�lock� then

if CompareSwap
location�MYID�� b� EMPTY� then

k � b�toggle

b�toggle � � � k

release	lock
b�lock�

if b�spin MAXSPIN then

b�spin � b�spin � �

if k � � return b�Left

else return b�Right

else

release	lock
b�lock�

return b�Right

endfor

end

Fig� �� Code for a Di�racting Balancer

Reactive Di�racting Trees � �

1
2

k

..
:
:

prism

0/1
1
2

k / 2

..

prism

0/1

prism

Diff-Bal

Diff-Bal

Diff-Bal

0/1

1

2

3

1
2

k / 2

..

1

2

3

Fig� �� The di�racting tree mechanisms

on which wire to exit� However� if many tokens attempted to pass through the same
balancer concurrently� the toggle bit would quickly become a hot�spot� Even if one
applied contention reduction techniques such as exponential back�o�� the toggle
bit would still form a sequential bottleneck� One can overcome this sequential
bottleneck based on the following observation�

If an even number of tokens passes through a balancer� they are evenly
balanced left and right� yet the value of the toggle bit is unchanged�

Thus� one can allow pairs of colliding tokens to �pair�o�� and coordinate among
themselves which is di�racted �right� and which di�racted �left�� Then they could
both leave the balancer without either of them ever having to touch the toggle bit�
By performing the collision�coordination decisions in separate locations instead of a
global toggle bit� one can increase parallelism and lower contention� Tokens that do
not collide are simply forwarded to access the toggle bit and are routed accordingly
as before� To guarantee good performance one must make sure that many collisions
and thus few toggle accesses occur� not an obvious task given the asynchrony in
the system�

To achieve this goal� Shavit et� al �
�	
� provide an e�cient implementation of
the di�racting balancer that is based on adding a special prism array �in front� of
the toggle bit in every balancer� When a token �processor� P enters the balancer�
it �rst selects a location j in prism uniformly at random� P tries to �collide� with
the another processor that selected j� and if successful they leave the balancer one
to the left and the other to the right� Otherwise� P waits ��spins�� for a �xed
time spin to see whether some other processor R will enter and collide with it by
selecting the same location j in prism� If no collision occurs within time spin� P
attempts to access the queue�lock on the toggle� and if it fails� it starts all over
again by accessing the prism �
�� Figure � Figure � shows three tokens traversing
the tree� where tokens � and
 collide on the �rst prism and are routed left and right
and token two does not collide and is thus routed to the toggle bit which routes it
to the left� Figure � shows the code for the di�racting balancer� This algorithm

� � G� Della�Libera and N� Shavit

State Count

0/1

P
ri

sm

Limit

Balancer
Counter
Counter_Limit
Off

Fig� �� A reactive di�racting tree node

has been shown to satisfy the balancing properties above �
��

��� Reactive Di�racting Trees

The steady�state analysis in �
� showed the importance of relation among the depth
of the tree� the size of the prisms� and the spin constant to tree performance� One
of the �ndings of their analysis is that a tree designed to serve P processes should
have a depth d and number of prism locations L such that P

dL
� O���� L � d� and

L � cd�d� where c is a machine�dependent constant� Their idea was that given the
approximate range of load that a di�racting tree would be subject to� a developer
could choose appropriate values of d and subsequently decides on an appropriate
L� A reactive backo� scheme was also implemented in �
� to provide the best spin
constant�

The idea behind our new reactive algorithm is to move from the �xed Binary

structure to a exible tree structure� one that would allow dynamic control of
the three parameters� Tree Depth� Prism Size� and Spin� The new structure will
craft the optimal di�racting tree for a given load� It will employ localized decision
making to allow the tree to change depth� As the number of processors P and
subsequently the load changes� the tree will expand or collapse to optimize d and
L� The spin constant will be dynamically determined using the reactive backo�
scheme described in �
��

We now describe a sequence of changes to the original di�racting tree algorithm
in order to turn it into a reactive di�racting tree� A formal I�O automata based
speci�cation and correctness proof of this algorithm is outside the scope of this
paper and can be found in Della�Libera�s thesis ����

��� Irregular Di�racting Trees

We begin by relaxing the restriction that a counting tree is a balanced binary tree�
We only require that balancers in the tree have two children and counters be located
only at the tree leaves� The idea is that we can avoid the expense of a requiring
processors to agree to �globally� switch from one di�racting tree to another of an
entirely di�erent size� if we can �locally� shrink and grow the tree from its leaves�
However� expanding or shrinking locally will cause the tree to be irregular at times�

Reactive Di�racting Trees � ��

typedef State oneof Balancer� Counter� Counter	Limit� or Off

type node is

node	lock� Lock

�� state and versioning section��

state� State

ID� int �� version of node ��

PID� int �� version of children ��

�� balancer section ��

spin� int

size� int

prism� array����size� of int

toggle� int

toggle	lock� Lock

��counter section ��

level� int

count� int

init� int

change� int

�� counter	limit section ��

limit� int

�� binary tree section ��

Left� ptr to node �� wire y� ��

Right� ptr to node �� wire y� ��

Parent� ptr to node

Sibling� ptr to node

endtype

Fig�
� De�nition of RDT node structure

and so we show how to design an irregular counting tree that counts correctly�

The idea is simple� In a balanced Binary counting tree of depth d� each balancer
is the root of a subtree of balancers with counters at their leaves� This subtree can
abstractly be viewed as an implementation of a single shared counter that hands
out the set of indexes corresponding to the values that would be returned by the
counters at its leaves� The complete subtree could thus be replaced by a pointer to
a single lock�based counter in place of the root balancer� and the tree would behave
exactly the same� Figure � shows an example of an irregular tree equivalent to
Binary��� and how one would set the counter�s returned values to make it hand
indexes out correctly�

In more detail� one can assign each node a unique name by associating with it a
binary string s determined by the path leading to it from the root of the tree as in
the code of Figure �� The string has� reading from left to right� a � digit for each
traversal to a left child and � for a traversal to a right child� Let level�s� be the
number of digits in s and init�s� the positive integer whose binary representation
is s� with the least signi�cant bit on the left� For example� in Figure � the counter
with path s � ��� handing out numbers �� ��� ����� has init � and level
 and the

�� � G� Della�Libera and N� Shavit

counter with path s � � handing out numbers ��
� ���� has init � and level ��The
counter in a tree consisting of a single root counter would have init � and level ��
It is now easy to see that in order to hand out correct sets of values a counter s in
an irregular tree must hand out in increasing order values from the set�

Values�s� � finit�s� � i � �level�s� � i � �g

The code implementing this formula appears in Figure ���

Though our goal is dynamically changing trees� we note that irregular trees some�
times have an advantage even under static conditions� Locality issues may cause
parts of a balanced binary tree to be slower than others because of the memory
layout of the data structure� In such cases it pays o� to make the tree irregular to
maximize performance on that given memory layout� and indeed in such cases one
sees a performance improvement using an irregular tree�

��� Growing and Shrinking the Trees

We now describe the design of a new algorithm for a given node in the reactive
di�racting tree� The key idea is that a node will contain the necessary state infor�
mation in order to function either as a Balancer or a Counter� We will thus be able
to change its functionality from one to the other based on a local load measure� If
a node is a counter and its load increases� it will �grow� by unfolding into a subtree
consisting of a balancer and two counters as its Left and Right children� If it is a
balancer with two children counters and the load on it decreases� it will �shrink�
by folding its two children counters and changing to function as a counter�

The �rst issue that arises when attempting to implement such a dynamic struc�
ture is that it is no longer possible for every processor to initially memorize the
complete structure of the tree� as it could in the static di�racting tree� Thus� upon
visiting a node of the tree� a processor would need to determine if that node was
a counter or balancer� We do so by adding to each node a shared state variable�
This state variable takes on three values� Counter� Balancer� or O�� The �rst
two are clear in the context of merging the types of data structures together� A
processor that visits a Balancer node balances� and one that visits a Counter node
counts� The O� state is used in order to avoid the need to dynamically allocate�de�
allocate memory for nodes as the tree grows and shrinks �allocation could take a
long time and bottleneck the processors� or a pointer to a deallocated node could
remain around long enough to cause a problem if it was reallocated�� Instead� one
pre�assigns a maximal tree size creating an initial con�guration of balancers and
counters from the root and leaving the rest of the nodes in the tree O� � To un�
fold a node it is set to Counter and when it is again folded it is turned back to
O�� A description of the node structure is provided in Figure � �The additional
Counter Limit state is explained in the sequel��

The above scheme raises a key performance issue� The reason for the good per�
formance in di�racting trees is the highly distributed nature of the data structure
�
�� By having processors access disjoint memory locations contention is lowered
to a minimum� However� the state variable introduces a potential source of con�

Reactive Di�racting Trees � ��

� root� global ptr to node �� main root of tree ��

� Bookkeeping� global array ����NUMPROCS� of pair

�

� function fetch	incr
� returns int

� answer� int

� IDRecord� array �enumeration of nodes� of int

� n� ptr to node

� begin

� IDRecord�root� � �

�� n � root

�� answer � INVALID

��

�� forever

�� if
n�ID �� IDRecord�n�� then

�� n � n�Parent

�� continue

��

�� switch n�state

�� case Balancer�

�� Bookkeeping�MYID� � �n

�� if

n�state �� Balancer� ��
n�ID �� IDRecord�n���

�� n � n�Parent

�� continue

�� IDRecord�n�Left� � n�PID

�� IDRecord�n�Right� � n�PID

�� if n�state �� Balancer then

�� n � diff�bal
n�

�� case Off�

�� n � n�Parent�

�� case Counter or Counter	Limit�

�� answer � increment	counter
n��

�� if valid
answer� then

�� return answer

�� else n � n�Parent

�� endswitch

�� endfor

�� end

Fig� 	�� Code for main traversal of RDT

tention since all processors accessing a given node in the tree will attempt to read
it concurrently� The way to overcome this problem and achieve good performance
is to use a cache coherence mechanism� either explicitly written or one provided
by the multiprocessor machine� in order to keep an updated copy of each node�s
state information locally� The idea is that if the cache coherence mechanism works
correctly� by adding a sensible scaling policy controlling tree size� state variables of
nodes in the upper parts of the tree �closer to the root� will most of the time have
valid cached copies and so the shared copies will rarely be concurrently accessed�

Unfortunately� with caching in place� there is a time delay until all caches are

�� � G� Della�Libera and N� Shavit

function increment	counter
n�ptr to node� returns int

answer�int

begin

acquire	lock
n�node	lock�

if
n�state �� Counter or Counter	Limit� and

n�ID �� IDRecord�n�� then

answer � n�count

n�count � n�count � power
��n�level�

if n�count �� n�limit then

n�state � Off

n�ID � n�ID � �

release	lock
n�node	lock�

return answer

else

release	lock
n�node	lock�

return INVALID

end

Fig� 		� Code for counting in an RDT node

updated after a state change �an invalidation� �
� This may cause a situation in
which a process accesses a node only to discover that it is in the O� state� We
overcome this problem by noticing that if a processor visits an O� node� it follows
that the tree folded beneath it� The solution is thus for a processor to trace up
the node�s ancestral path until it �nds a non�O� node it can successfully visit�
eventually leaving the tree after accessing a some counter� Since each traversing
process accesses a counter once� even after backtracking� the remaining issue to be
dealt with is how to e�ciently maintain consistency of the values returned by the
dynamically changing counters� In other words� how does one prevent duplicating
or omitting of values�

To better understand how consistency could be violated with the current design�
consider the following scenario� Consider an RDT in the initial shape of a Binary��
tree� consisting of a simple balancer at the root and two child counters� Clearly�
one counter hands out the even numbers and one the odd numbers� Assume that
the �rst number to be handed out is �� and there are �� increment requests made�
� requests leave the root balancer along each of the two wires� but do not access the
counters yet� Next� the tree decides to shrink� turning into a Counter at the root
and turning the two children O�� Assume that the � requests along one wire arrive
at the �even� counter� see the O� state� and return to the parent� obtaining the
�rst � values� ������
� and �� Now� the tree decides to unfold again� and it initializes
the two Counters to next hand out values � and �� Finally� the other � requests
access the odd counter� They receive �� �� �� ��� and �
� Notice the problematic
gaps between the �� numbers handed out�

To solve this problem� we need to make sure that once a balancer becomes a
counter� all requests that have passed through that balancer and have not been
satis�ed return back to the same node and access it again� The way to do this is

Reactive Di�racting Trees � ��

to use a versioning scheme� When a balancer becomes a counter� the two children
will increase their version numbers� so that if a processor arrives at a node with
a di�erent version number� from that which it expected given its parents version
number� it will revisit the parent node and get updated� To make versioning e��
cient� each processor caches the versioning numbers throughout its traversal of the
tree� and if at any point it �nds an inconsistent version number� it traverses back
up the tree until it �nds agreeing version numbers� which in the worst case will
require traversing back to the Root node whose version number never changes� To
reduce size and complexity in the implementation� the versioning scheme can be
folded into the state variable � since versioning really is additional state� However�
for simplicity� it is kept separate here� The de�nition of the new node structure is
given in Figure ��

Figure �� contains the code for the main traversal of a processor through a
reactive di�racting tree� The Bookkeeping work is explained later in this chapter�

��	 A Walk Through the Traversal Code

The traversal starts with some base initializations� starting the traversal at the root
node �Lines ������ The traversal is structured as an in�nite loop �Lines �
�
�� that
continues until an answer is found and the loop is broken� The �rst thing that is
checked is whether a processor�s view of the version �IDRecord�n�� of the current
node is equal to the node�s actual version �n��ID�� If it is not� the processor moves
up the hierarchy to n�s parent and restart the loop �Lines �������

It then enters the main part of the loop which is a switch of the current node�s
state �n��state� �Lines ���
��� If the node is a balancer� the processor performs
some bookkeeping to track what node it is at �Line ���� does a sanity check to make
sure the checks it performed are still valid �Lines ����
�� then stores away what it
expects the node�s children�s versions to be when it reachs them� �Lines �������
Finally� it performs the balancing step and continues the loop with n becoming one
of the nodes children �Lines ������� The next part of the switch is the O� state�
which means the processor reached a node after it was folded� In that case it simply
moves up to n�s parent and continues �Lines �������

Finally� the processor reaches the case where it hits a Counter or Counter Limit�
It attempts to increment the counter �Line
��� If it is successful� then it exits the
function with the correct answer �Line

�� otherwise it moves up to n�s parent and
continues �Line
���

��
 The Folding Mechanism

We now describe how the transitions that reshape the tree structure work� The
folding transition occurs locally at the bottom of the tree� two sibling counters
fold into their parent balancer� becoming a new counter� The unfolding transition

�Technically� these version numbers are integers from an unbounded range� but they are bounded
by the values of the counters� so any implementation which handled the over�ow of the counters
could handle this as well�

�� � G� Della�Libera and N� Shavit

State Count

0/1

P
ri

sm

Limit

9

State Count

0/1

P
ri

sm

Limit

11

State Count

0/1
P

ri
sm

Limit

9

Balancer−>
Counter

Counter−>Off

State Count

0/1

P
ri

sm

Limit

13

State Count

0/1

P
ri

sm

Limit

11

Balancer−>
Counter

Counter−>Off

Counter−>Counter_Limit

State Count

0/1

P
ri

sm

Limit

3

11

Fig� 	�� Two cases of Folding� Parent node at Level 	

transforms a counter at the tree leaf into a balancer with two counters as children�
The algorithms we present here lock all of the three nodes involved to perform a
transition� but this can be reduced to having one lock at a time� For the sake of
simplicity we avoid the reduced version which requires extra state information and
signi�cantly complicates the transition code�

We begin by describing the algorithm�s folding mechanism� the code for which
appears in Figure ��� but leave for later the discussion as to how a process decides to
trigger folding� Upon deciding that a balancer and its children counters need to be
folded� a processor will attempt to acquire the three node locks� If it is successful�
then it tests whether the three nodes are a balancer with two child counters� Once
the locks are obtained and the states are checked� the two child counters� values are
compared� Now� the values these two counters hand out are alternating values their
parent would have handed out as a single counter� Imagine the ordered sequence
Values of indexes that their parent would hand out if it was a single counter� By
de�nition one of the child counters hands out the values which appear in the odd
positions of the sequence� and the other hands out the even�positioned values� The
ideal situation in folding is that the two counters� current values are consecutive
in the list Values� The init value� the next value to be handed out by the parent
counter� can be set to the lower of the two� The children can then be turned O� �
and the parent can thus be set to Counter� This is demonstrated by the right�hand
picture in Figure ��� describing such a folding transition with a parent node at level
��

State Count

0/1

P
ri

sm

Limit

9

State Count

0/1

P
ri

sm

Limit

11

State Count

*0

P
ri

sm

Limit

9

Counter−>
Balancer

Off−>Counter

State Count

*1

P
ri

sm

Limit

State Count

0/1

P
ri

sm

Limit

9

State Count

0/1

P
ri

sm

Limit

7

7

Counter−>
Balancer

Off−>Counter

Fig� 	�� Two cases of Unfolding� Parent node at level 	

Reactive Di�racting Trees � �	

There are however cases where the two counters� values are not consecutive on
the sequence of Values� and in which additional reasoning is required� For example�
consider a situation as in the righthand part of Figure �� where the parent is at
level � and the larger child�counter �incrementing by � each time� handed out the
value �
� The smaller counter handed out
� The larger counter must have thus
handed out � and �� However� we cannot set the limit of the parent to �
 without
guaranteeing that � and �� that should be handed out by the smaller counter will
be handed out� A scheme could be implemented that allowed for storing the values
that weren�t handed out in a queue in the new counter node� but this would add
another level of complexity and signi�cantly decrease performance� We thus need an
idea that allows the algorithm to transition quickly without centralized accounting
for the unreturned values�

We proceed as follows� After locking the three nodes� we take the maximum of
the two child�counter values� �nd its position in the parent�s Values sequence� and
pick the value in the preceding position as a special limit value� When folding� the
parent counter is assigned the limit as its init value� The larger counter is turned
O�� The reasoning is that it has clearly handed out the value preceding the limit
�recall that counters alternate in handing out values in the parents Values sequence�
and has not handed out its current maximum value� By turning it to O� we are at
worst forcing processors accessing it to go back to the parent� but no values past
and including the limit will be handed out by mistake�

Finally� the state of the smaller counter is set to a new Counter Limit state� which
acts just like a Counter� except that if the counter�s value reaches the limit value�
it turns O� and hands out no more values �including the limit which is not handed
out�� The reasoning for this is that by the de�nition of the step property for
the parent node balancer in the tree �before the locking mechanism of the folding
started�� there must be at least enough pending processors to traverse the smaller
counter to increase its count to reach the limit value �by de�nition it is the smaller
counter that hands out the limit value��

Let us return to the right�hand part of Figure �� which depicts an example of one
such situation where the larger child�counter incrementing by � each time handed
out the value �
� The smaller counter handed out
� The parents sequence of
Values end with f� � � �
� �� �� �� ��� �
g� The limit is thus set to ��� which would
have been handed out by the smaller child counter� We know the larger child
counter already returned � and � before setting its current count to �
� This means
that the smaller child counter still has to return � to make the output sequence
complete with a new init value of ��� Fortunately� we know that there must be a
processor with a pending request that will access the smaller child�counter to get
this �� This is because the larger child�counter�s transitioning from � to � and �
to �
 requires four tokens �processors� di�racting through the balancer� that is� at
least two tokens sent in the direction of the smaller child�counter�

�
 � G� Della�Libera and N� Shavit

��� A Walk Through the Folding Code

Figure �� contains the folding code� A processors starts the function by acquiring
the three node locks so that it can perform state changes atomically �Lines ��

� function attempt	fold
n�ptr to node� returns boolean

� nLeft� nRight� nMax� nMin� ptr to node

� valLimit� int

� begin

� nLeft � n�Left

� nRight � n�Right

�

� acquire	lock
nLeft�toggle	lock�

� acquire	lock
nRight�toggle	lock�

�� acquire	lock
n�toggle	lock�

��

�� if
n�state �� Balancer� and

��
nLeft�state �� Counter� and
nRight�state �� Counter� and

��

nLeft�count �� nLeft�change� or
nRight�count �� nRight�change�� then

��

�� n�state � Counter

�� n�PID � n�PID � �

�� valLimit � MAX
nLeft�count�nRight�count� � power
��n�Level�

�� n�count � valLimit

�� n�change � n�count

��

�� Assign nMin� nMax to be nLeft� nRight�

�� such that nMin�count � nMax�count

��

�� nMax�state � Off

�� nMax�ID � nMax�ID � �

��

�� if nMin�count � valLimit then

�� nMin�state � Counter	Limit

�� nMin�limit � valLimit

�� else

�� nMin�state � Off

�� nMin�ID � nMin�ID � �

��

�� release	lock
nRight�node	lock�

�� release	lock
nLeft�node	lock�

�� release	lock
n�node	lock�

�� return TRUE

�� else

�� release	lock
nRight�plock�

�� release	lock
nLeft�plock�

�� release	lock
n�plock�

�� return FALSE

�� end

Fig� 	�� Code for folding

Reactive Di�racting Trees � ��

���� It then checks the conditions necessary for folding� that the parent of the
current node is a balancer� both its children are counters� and at least one child
has done some counting �Lines ������� Then� the parent node is updated with the
new state information� It becomes a Counter� it�s PID �parent�s view of child�s
ID� is incremented� and it receives a new value� which is calculated by taking the
maximum of it�s two children�s values and subtracting one increment from it �Lines
������� The processor then sorts out which of the two children has a larger counter
value �Lines ����
�� The larger child �nMax� is turned O� and its ID is incremented
�Lines ������� If the smaller child �nMin� is in balance with the bigger child� then
its turned O� and it�s ID is incremented �Lines
��

�� Otherwise� it becomes a
Counter Limit and it�s limit is set �Lines ���
��� Finally� whether the folding was
done or not� all locks are released and the appropriate value is returned �Lines

�����

��� The Unfolding Mechanism

Unfolding is a bit simpler than folding� but has its own challenges� Figure ��
contains the code for unfolding� The same three locks are initially set� the node
states are checked� making sure that only a node that is currently a Counter with
two O� children is unfolded� Then one of the child counters is set to the current
counter�s value and the other child counter is set to the counters following value�
One would want that upon changing the current parent counter to a balancer�
the next request always goes to the smaller child counter value� We thus set the
balancer�s toggle bit in the direction of the child with the smaller value� An example
of the two possible cases for a parent node at level � is shown in Figure �
� �

The biggest problem with unfolding is mainly an implementation issue� Consider
when the folding and unfolding actions would occur� Folding occurs when there
was a below�average load in a given area of the tree� There is thus little delay
and contention once the node locks are acquired� since there just aren�t that many
processors around� On the other hand� unfolding can be a costly process� since it
occurs because of high load in a given area of the tree�

To minimize this problem� our implementation releases the parent lock as soon
as it�s state is set� so that the processors that are waiting to access the counter
can sooner �nd out that it is now a di�racting balancer and can be accordingly
routed to the child�counters� We also added an optimization that has the processor
releasing the parent node�s lock go through and tell all of the processors waiting in
the queue�lock leading to the node�s counter that the state has changed� so they
can di�ract without delay� This gives the di�racting balancer a good start under
high loads� A future optimization could lie in implementing a tree lock ��� instead
of a queue lock so this release could occur even faster�

�An alternative to the above algorithm would be to keep consistent the role of the Left or �rst child
as the primary child in balancing� Then� the processor returning the smaller value would always
be routed there� Since the toggle bit would then always be reset to �� the change amounts to a
technical di�erence� We chose the �rst method because it allows each node to have a consistent
set of Values� simplifying the formal reasoning about how it works �	���

� � G� Della�Libera and N� Shavit

�� A Walk Through the Unfolding Code

Figure �� contains the unfolding code� A processor executing the unfolding function
�rst caches the node�s current version and then takes care of some bookkeeping�
mainly checking to see whether any processors are currently di�racting through this
node� If this is the case the processor gives up �Lines ����� Otherwise� it acquires
the locks for this node and it�s children to guarantee atomicity �Lines ����
�� It
checks the conditions needed for unfolding� namely that the node has been used for
counting� is a Counter� both children are O�� and the version is consistent with the
one cached at the beginning of the unfolding function�s execution �Lines ������� It
then updates the parent node�s information� making it a Balancer and incrementing
it�s PID �parent�s view of child�s ID� by one �Lines ������� Then� based on the �nal
value of the parent node� it decides which child to initially point to �Lines �������
Finally� the parent�s lock is released so that other nodes can start balancing �Lines
����

The children�s information is then updated� Both become Counters� their ID�s are
incremented� their values are set based on the �nal value of the parent node� and
their changed values are recorded for future reference �Lines ���
��� Finally� regard�
less of whether unfolding was completed� all locks are released and the appropriate
value is returned �Lines �������

���� The Bookkeeping Mechanism

The missing item from the unfolding section was the Bookkeeping mechanism� We
now explain its necessity� A Balancer� upon folding into a Counter� must force all of
the delinquent processors that were already di�racted through the node to return
and traverse it again� Our use of versioning guarantees this will happen� However�
imagine that the said node now wishes to unfold again� When it becomes a Balancer�
the new processors will balance through it and have correct forecasts for the new
child Counters� However� consider a processor currently traversing the node that
had also traversed this node in its �rst incarnation as a Balancer� It received the
forecast for its children� then also Counters� and began to balance� While it was
attempting to di�ract or access the toggle bit� all of these state changes occur�
ed� and the node was now into its second incarnation as a Balancer� If this old
processor were to di�ract against a new processor� then it would upset the balance
of the system� since it would arrive at one child Counter� �nd an incorrect version
number� and return to the parent� while its partner from di�raction would arrive
at the other child Counter and correctly access it� Now� imagine this happened
potentially many times� and each time the old processor went towards the same
Counter� When it came time to fold again� there would be no processors left to
bring the troubled Counter back into balance with its sibling�

The solution to this problem is simple and the code is given in the main traversal
�Figure ��� and unfolding code �Figure ���� We create a global bookkeeping array�
one in which every processor has an entry� A processor� upon visiting a Balancer�
registers in its entry of the array the balancer it is visiting� It then rechecks to make
sure that the node is still a Balancer with the forecasted ID and enters the balancing

Reactive Di�racting Trees � ��

� function attempt	unfold
n�ptr to node� returns boolean

� nLeft� nRight� ptr to node

� val� ID� i� int

� begin

� nLeft � n�Left

� nRight � n�Right

� ID � n�ID

� for i from � to NUMPROCS

� if
Bookkeeping�i� � n� return FALSE�

��

�� acquire	lock
nLeft�toggle	lock�

�� acquire	lock
nRight�toggle	lock�

�� acquire	lock
n�toggle	lock�

��

�� if
n�state �� Counter� and
n�count �� n�change� and

��
nLeft�state �� Off� and
nRight�state �� Off� and

��
n�ID �� ID� then

��

�� n�state � Balancer

�� n�PID � n�PID � �

�� val � n�count

�� if

val � n�init� � power
��n�level�� mod � �� �

�� n�toggle � �

�� else

�� n�toggle � �

�� release	lock
n�toggle	lock�

��

�� nLeft�state � Counter

�� nRight�state � Counter

�� nLeft�ID � nLeft�ID � �

�� nRight�ID � nRight�ID � �

�� if

val � n�init� � power
��n�level�� mod � �� �

�� nRight�count � val

�� nLeft�count � val � power
��n�level�

�� else

�� nLeft�count � val

�� nRight�count � val � power
��n�level�

�� nLeft�change � nLeft�count

�� nRight�change � nRight�count

��

�� release	lock
nRight�toggle	lock�

�� release	lock
nLeft�toggle	lock�

�� return TRUE

�� else

�� release	lock
nRight�toggle	lock�

�� release	lock
nLeft�toggle	lock�

�� release	lock
n�toggle	lock�

�� return FALSE

�� end

Fig� 	� Code for unfolding

�� � G� Della�Libera and N� Shavit

function increment	counter	wrapper
n�ptr to node� returns int

startTime� elapsedTime� answer� timeRatio � int

success � boolean�

begin

startTime � GetTime
�

answer � increment	counter
n�

elapsedTime � GetTime
� � startTime

TotalTime�n� �� elapsedTime

TotalHits�n� �� �

if
TotalHits�n� MINIMUM	HITS�

timeRatio � TotalTime�n� � TotalHits�n�

if
timeRatio UNFOLDING	LIMIT�

success � unfold	node
n�

else if
timeRatio � FOLDING	LIMIT�

success � fold	node
n�

if
success�

TotalTime�n� � �

TotalHits�n� � �

return answer

end

Fig� 	�� Code for Scaling Policy

section of the code� If the information on the second check was inconsistent with
the processor�s �recollection� of its state in its former traversal of this node� it will
go up the tree until it gets back on track� Now� the �nal piece is a restriction
on unfolding� In order for a processor to unfold a Counter� it must traverse the
bookkeeping array and make sure no processor is registered as visiting this node
as a Balancer� If this traversal is successful� it then unfolds the node if the node�s
ID was the same as before the bookkeeping array traversal� This scheme is correct
for the following reason� Consider the two events� ��� a processor sees that the
node is a Balancer and puts itself into the node�s bookkeeping array location� and
��� an unfolding processor sees that the node was a Counter and that the �rst
processor�s bookkeeping entry did not have this node registered� The ordering of
these two events on a machine that guarantees atomicity per memory location� �as
the Alewife machine does ���� implies that either the �rst processor will see the
update upon its recheck� or the unfolding processor will learn that it was out of
date and will not unfold�

���� Reactive Cache Sizing

The choice of cache size for the algorithm is an interesting study topic on its own�
The steady�state analysis �
� predicts that there should be cd�d prism locations in

Reactive Di�racting Trees � ��

the di�racting tree� where c is a constant and d is the depth� Now� in the reactive
tree� we have changing depths� The solution is thus for each processor to keep an
estimate of the tree�s current depth� A skeletal cache of the state is enough for a
processor to average the depths of the various paths into the tree and come up with
an average depth� Given the best experimental constant c and a large enough prism
to handle the largest allowed tree� processors can then simply pick a value randomly
within their expected prism size� In practice eventually processors will converge to
the same average depth providing the most e�cient balancing regardless of the size
of the tree�

���� The Reactive Folding and Unfolding Policy

There are three main quali�cations that a good scaling policy should meet�

�The policy should react quickly to large changes in the load�

�The policy should keep the overhead that it causes low and factor it into its
decision making process�

�The policy should keep the number of �false positives�� that is� unnecessary
changes in tree size� low and limit many consecutive oscillations�

Keeping this in mind� most of our policy development was focused on studying
the contention at a counter lock� We felt that this was a good estimate for the
overall load of the tree� If the lock was always empty when a processor arrived
at the counter� then that counter should be folded into its parent� If the lock was
always overloaded� then the counter should be unfolded� We found that observing
the time it took to access the counter was a good measure� MCS queue�locks ���
have the nice property that the times measured are stable under consistent load
levels� unlike the oscillating times a spin�lock �
 would provide�

We designed our policy by setting thresholds for these times� Passing below a
folding threshold or taking longer than the unfolding threshold was a good indi�
cation that the local area should change� However� the data structure should not
change based on the �opinion� of one processor� Our �nal policy is thus a variant of
Lim�s policy in his reactive data structure paper ���� It uses a string of consecutive
times to decide if to allow a transition� The minimum number of consecutive times
is a constant that is decided upon by experimentation� The code for implementing
this policy appears in Figure ���

This policy met all three quali�cations� A large change in the load will move
the time consistently below or above these thresholds and allow for a change� The
overhead will be low since only one test is needed to see if the time is within the
thresholds� stopping any current streaks and allowing the processor to continue�
Finally� by requiring consecutive times� a nice hysteresis a�ect occurs� because it
could not immediately change back in the other direction�

This choice of policy is a simple example that works rather e�ectively� as con�
�rmed in the experimental section� yet there is room for improvement� Future
approaches could include on�line competitive schemes ��
 or policies that measure

�� � G� Della�Libera and N� Shavit

overall the balancer performance� Since the balancers are tuned by the dynamic
prism sizing� a study of the toggling behavior and di�racting rates could reveal a
pattern which indicates when it should fold and when its children should unfold�

�� EXPERIMENTAL RESULTS

We evaluated the performance of an implementation of Reactive Di�racting Trees
on a shared�memory multiprocessor machine� The MIT Alewife machine developed
by Agarwal et� al� �� was our target machine� However� the largest Alewife has
only
� nodes� and we were interested in scalability for more than ��� processors�
We must thus rely on simulations to provide higher concurrency level results� To
support such testing� we conducted the same experiments on the Proteus� simula�
tor� developed by Brewer et� al� ��� where we were able to extend our results to ���
processes� We performed a correlation study to show that the results were compara�
ble� The set of benchmarks under which we tested RDT include index�distribution�
sudden spikes in load levels� and producer�consumer runs� all of which demonstrate
the advantages �and disadvantages� of the RDT�

��� Experimental Environments

The MIT Alewife machine �� consists of a multiprocessor with cache�coherent dis�
tributed shared memory� Each node consists of a Sparcle processor� an FPU� ��KB
of cache memory� a �MB portion of globally�addressable memory� the Caltech MRC
network router� and the Alewife Communications and Memory Management Unit
�CMMU�� The CMMU implements a cache�coherent globally�shared address space
with the LimitLESS cache�coherence protocol ��� The LimitLESS cache�coherence
protocol maintains a small� �xed number of directory pointers in hardware� and re�
lies on software trap handlers to handle cache�coherence actions when the number
of read copies of a cache block exceeds the limited number of hardware directory
pointers� The current implementation of the Alewife CMMU has � hardware direc�
tory pointers per cache line�

The synchronization primitives that Alewife provides for performing a read�
modify�write operation are based on a set of colored load�store operations ��� Using
such operations Alewife supports a memory with full�empty bits� every memory lo�
cation has a full�empty bit associated with it and has operations which allow a
processor during a load or store to atomically set the bit to full if empty and vice�
versa� This allows mutually exclusive access to the information in the location�

The simulation part of our work was performed using Proteus� a multiprocessor
simulator developed by Brewer et� al� ��� We simulated a distributed�shared�
memory multiprocessor similar to the MIT Alewife machine� Proteus simulates
parallel code by multiplexing several parallel threads on a single CPU� Each thread
runs on its own virtual CPU with accompanying local memory� cache and commu�
nications hardware� keeping track of how much time is spent using each component�
In order to facilitate fast simulations� Proteus does not perform complete hardware

�Version ����� dated February 	�� 	

�

Reactive Di�racting Trees � ��

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

O
pe

ra
tio

ns
 p

er
 1

0^
5

C
yc

le
s

Processors

Throughput - Proteus - work = 0

Queue-Lock
DTree[2]
DTree[4]
DTree[8]

RDT

Fig� 	�� Di�racting Trees� Queue�Lock Based Counter� and RDT on Proteus

simulations� Instead� operations which are local �do not interact with the parallel
environment� are run directly on the simulating machine�s CPU and memory� The
amount of time used for local calculations is added to the time spent performing
�simulated� globally visible operations to derive each thread�s notion of the current
time� Proteus makes sure a thread can only see global events within the scope of
its local time�

��� Index Distribution Benchmark

Index�distribution is the simple algorithm of making a request and waiting some
time before the request is repeated� In this case� the amount of time between re�
quests is randomly chosen between � and work� a constant that determines the
amount of load present� The value work � � represents the familiar counting
benchmark� providing the highest possible load for the number of processors given�
A higher value� usually work � ���� is chosen to better distribute the requests
over time� providing a lower�load environment� We ran this benchmark for a
�xed amount of time on the Alewife machine ���� cycles�� varying the number
of processors	 and the value of work� We also ran this benchmark on the Proteus
simulator ���	 cycles�� and correlated the results� Since there are usually startup
costs� the algorithms were run for some �xed time before the timing was started�

We mainly collected throughput data� The throughput is the total number of
get next index�� operations that completed in the time allowed� We also ex�
amined latency� the average amount of time between the call to get next index��

�Throughout this paper� each processor only runs one process

�� � G� Della�Libera and N� Shavit

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 5 10 15 20 25 30 35

O
pe

ra
tio

ns
 p

er
 1

0^
5

C
yc

le
s

Processors

Throughput - work = 0

A&P:QueueLock

P:->DTree[4]

P:->DTree[8]

A:->DTree[4]

A:->DTree[8]

Proteus Optimal Composite
Alewife Optimal Composite

Fig� 	�� Optimal Composite on Proteus and normalized Alewife

and its completion� but these numbers are clearly related and one can be calculated
from the other�

32

64

128

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128 256

O
pe

ra
tio

ns
 p

er
 1

0^
5

C
yc

le
s

Processors

Throughput - Proteus - work = 0

Queue Lock
DTree[2]
DTree[4]
DTree[8]

DTree[16]
DTree[32]

Fig� 	
� Throughput of Di�racting Trees and Queue Lock on Proteus

The algorithms we ran were the Reactive Di�racting Tree� Di�racting Trees of
widths �� �� and � �and on Proteus� �� and
��� and an a queue�lock based counter�

Reactive Di�racting Trees � �	

128

256

512

1024

2048

4096

8192

16384

32768

1 2 4 8 16 32 64 128 256

C
yc

le
s

pe
r

O
pe

ra
tio

n

Processors

Average Latency - Proteus - work = 0

Queue Lock
DTree[2]
DTree[4]
DTree[8]

DTree[16]
DTree[32]

Fig� ��� Latency of Di�racting Trees and Queue Lock on Proteus

In this and all other benchmarks in this paper we used the following data structure
implementations�

The queue�locks we used were the MCS queue locks of Mellor�Crummey and
Scott ���� The MCS queue�lock consists of a queue in the form of a linked�list
of processors� each pointing towards its successor� waiting for its predecessor to
wake it up once it is done with the lock� There is a tail pointer which directs new
processors to the end of the queue� The queue�lock code was implemented using
an atomic register�to�memory�swap operation�

The Di�racting Tree algorithm we used is the improved Di�racting Tree algo�
rithm of �
�� We used queue�locks on the counters at the leaves of the Di�racting
Tree as opposed to spin�locks in the original implementation of �
�� A detailed
empirical study of the e�ects of using queue�locks can be found in ����

The Steady�State analysis of �
� suggests that there should be cd�d prism loca�
tions in the tree� with c�d locations on each level of the tree� where c is a constant�
We experimented by comparing trees at each level and found that c � ��� was the
best factor overall�

���� Alewife Results� This section presents the �rst performance results for
Di�racting Trees on the Alewife machine�
 For the Reactive Di�racting Tree�
we set the number of consecutive timings before a change to be ��� a good ex�
perimental number that limited the number of oscillations� Our experiments also

�in fact� for any counting networks structure� as the experiments of Herlihy et� al �	�� were
conducted on the ASIM Alewife simulator�

�
 � G� Della�Libera and N� Shavit

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30 35

O
pe

ra
tio

ns
 p

er
 1

0^
7

C
yc

le
s

Processors

Throughput - Alewife - work = 0

DTree[2]
DTree[4]
DTree[8]

RDT

Fig� �	� Alewife Throughput for Di�racting Trees� Queue�Lock Based Counter� and RDT

determined that the best fold and unfold threshold times were ��� and ��� cycles�
Figure �� shows throughputs for a queue�lock based counter� di�racting trees of
depth �� �� and
� and the RDT� The most interesting result is that the RDT sur�
passes all of the di�racting trees shown for a brief range� This is due to its ability to

8192

16384

32768

65536

131072

1 2 4 8 16 32

O
pe

ra
tio

ns
 p

er
 1

0^
7

C
yc

le
s

Processors

Throughput - Alewife - work = 0

QueueLock

->DTree[4]

->DTree[8]

Optimal Composite
RDT

Fig� ��� Optimal Composite vs� RDT

Reactive Di�racting Trees � ��

expand only where needed� supplying irregularly sized trees which perform better
in this range�

128

256

512

1024

2048

4096

8192

16384

1 2 4 8 16 32 64 128 256

O
pe

ra
tio

ns
 p

er
 1

0^
5

C
yc

le
s

Processors

Throughput - Proteus - work = 0

QueueLock

->DTree[4]

->DTree[8]

->DTree[16]

->DTree[32]

Optimal Composite
RDT

Fig� ��� Throughputs of Optimal Composite vs� RDT on Proteus under high load

64

128

256

512

1024

2048

4096

8192

1 2 4 8 16 32 64 128 256

O
pe

ra
tio

ns
 p

er
 1

0^
5

C
yc

le
s

Processors

Throughput - Proteus - work = 1000

QueueLock

->DTree[4]

->DTree[16]

->DTree[32]Optimal Composite
RDT

Fig� ��� Throughputs of Optimal Composite vs� RDT on Proteus under low load

� � G� Della�Libera and N� Shavit

2000

4000

6000

8000

10000

12000

14000

16000

18000

-100000 -50000 0 50000 100000 150000 200000 250000 300000 350000 400000

C
yc

le
s

pe
r

O
pe

ra
tio

n

Cycles after Change

Average Latency - Proteus - work = 0

RDT
DTree[32]

DTree[8]

Fig� �� Average latency of RDT over time in response to sudden surge

Since the Reactive Di�racting Tree should represent the optimal di�racting trees
at their peak performance points� we constructed a composite graph of the di�ract�
ing tree and queue�lock counter throughputs� with the highest throughput from any
di�racting tree or queue�lock counter at a given load level chosen for the graph� We
show the optimal composite vs� the RDT for the Alewife in Figure �� under high
load� The throughput and latency appear to stay within a factor throughout its per�
formance� The average ratio between the throughput of the RDT and the optimal
composite is �����

���� RDT Results on Proteus� Unfortunately� the Alewife machine only has
�
nodes� Since larger Alewife versions are not available� we relied on simulations to
provide higher load results� We used the Proteus simulator to simulate the Alewife
machine� although our simulation does not fully implement Alewife�s LimitLESS
cache�coherence policy�

It is thus important to compare the results gathered on the Alewife with the same
benchmarks on Proteus� to make sure that the results can be carried over� Figure ��
is the counterpart to Figure ��� Notice that the shapes of the Di�racting Trees
look similar� although they seem to atten out more quickly on the Alewife than
on the Proteus� But� we really need to see two curves side by side� We construct a
Proteus optimal composite for throughput for � to
� processors and normalize the
Alewife curve to it� This graph is shown in Figure ��� The results show that the
Alewife trees have a higher optimal load level� but the graphs still look comparable�
a good result for Proteus�

We now extend the Proteus results up to ��� processes� and add Di�racting Trees
of depths � and �� Figure �� shows the throughputs and latencies of Di�racting

Reactive Di�racting Trees � ��

producer�

repeat

produce
val��

wait until the element is consumed�

until a total of ���� elements are consumed

consumer�

repeat

consume
�

until a total of ���� elements are consumed

Fig� ��� Code for Producer�Consumer

Trees of depth � �queue�lock based counter� through �� The Proteus environment
is di�erent enough to require a change in some of the constants� The di�erence
in the timing mechanisms forced us to move the fold threshold up to ��� cycles�
However� the queue�locks had more stable waiting times� enabling us to bring the
consecutive timings threshold down to ���

We show the comparison between the optimal composite and the RDT in Fig�
ure �
 for high load case �work � �� and in Figure �� for low load case �work �
������ The results showed that Proteus charged more for the overhead required
in computing the changes� but this seems to be a constant factor that is machine�
dependent� This could be attributed to the cache�coherence di�erences between
the two architectures� For the high load case� the average ratio between the two
throughputs was ����� and in the low load case� the average factor was �����

��� Large Load�Change Benchmark

We measured the response of a RDT to a sudden spike in load levels� measuring
the average latency of the RDT in �xed width intervals before and after the change
occurred� and graphing the change in the average latency over time� Here� the
system constant for the number of consecutive timings was set at �� to better
handle sudden changes�

We ran the index�distribution benchmark with
� participating processes for a
�xed amount of time and work � �� to allow the tree to best �t the load� The
tree sized to a depth
 tree� We then started timing for four time intervals of
������ cycles� and allowed an increase in the number of processors to ���� timing
for ������� additional cycles� The tree grew to depth �� Figure �� shows the plot of
these measurements� As you can see� it takes about ������� cycles for the curve to
level o�� which given an eventual average latency of ����� cycles� indicates that it
took about �� equivalent passes through the tree to expand � levels� which is what
would be expected with the consecutive timings constant set at ��� The throughput
before the change occurred was around
�� operations per ������ cycles� At the top
of the spike� the throughput goes up to around ��� operations� and as the latency
drops o�� the throughput rises quickly to ���� operations and remains steady�

�� � G� Della�Libera and N� Shavit

The plot also contains Di�racting Trees of depth
 and � with their average
latency at ��� processors� which are what the RDT emulates before and after the
change� Here is a good example of the tradeo� that a developer must consider in
choosing to use the RDT� Imagine that the developer initially used the di�racting
tree of depth
� The triangle on the left formed by the RDT and the depth

Di�racting Tree represents the spike in latency that the algorithm must necessarily
absorb in order to change� and is a loss to the developer� However� the quadrilateral�
like shape formed between the RDT and the Di�racting Tree of depth
 to the right
of the triangle is the region that a developer gains in using the RDT� Of course� the
developer could choose to use the depth � tree all along� but the RDT outperforms
this tree in the lower load case� which may usually be the common case�

��� Producer�Consumer Benchmarks

Job pools are data structures that store a collection of jobs that need to be per�
formed by the a collection of processors� Any processor can enqueue �produce� a
new job into the pool or dequeue �consume� a job in order to perform it� The
shared counter implementation of a job pool consists of two shared counters and an
array of locations� where each location can in turn be a local queue �
� protected
by a full�empty bit �� or a spin�lock� To enqueue a job� a processor requests a
value from the producer counter and places the job at the corresponding location
�the index modulo the array width� in the array� then sets the full�empty bit to
full� To dequeue a job� a processor requests a value from the consumer counter and
goes to �nd a job in the appropriately indexed location� If the location is empty
it waits until it is full� then removes an entry from that location� and if it is now
empty it sets the locations bit to empty�

10000

100000

1e+06

1e+07

1e+08

4 8 16 32 64 128 256

C
yc

le
s

(N
or

m
al

iz
ed

)

Processors

Elapsed Time - Proteus - Producer/Consumer

RSU
RDT

Queue-Lock

Fig� ��� Producer�Consumer Performance

Reactive Di�racting Trees � ��

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 50 100 150 200 250 300

C
yc

le
s

Processors

Elapsed Time - Proteus - 10-Queens

RSU
RDT

Fig� ��� 	��Queens Performance

An alternative job pool scheme consists of one of many randomized load balanc�
ing techniques� Here� processors keep local job queues from which they choose jobs
to execute� and participate in load balancing to best distribute their job allocations�
We compare the RDT based job pool to the randomized load balancing scheme of
Rudolph et� al�RSU� ���� which we chose as a representative of this class of algo�
rithms �though one could alternately have chosen an algorithm like the job�stealing
scheme of Blumofe and Leiserson ���� In RSU� a processor about to dequeue a
job attempts to load balance with probability inversely proportional to the size of
its job queue� If it decides to load balance� it picks a processor at random and
attempts to equalize their job queue sizes�

In high load situations where processors frequently enqueue and dequeue jobs�
randomized load balancing algorithms currently outperform shared structures such
as di�racting trees �
�� The lock�based counters do well against RSU in the low
load levels� and the distributed counters seem to come close to RSU�s level of
performance� but overall� no shared structure has been able to e�ectively compete
with RSU� We now show that the RDT is an e�ective competitor�

���� ���Queens� The n�Queens problem is a classical test benchmark for job�
queue style algorithms� In this benchmark� which mimics the behavior of an al�
gorithm for solving the classical n�queens chess problem� every consume operation
produces �� new jobs at a higher depth until a limit is hit� The recursive nature
of the algorithm leads it to apply di�erent load levels on the producer and con�
sumer functions� Under low loads� the counters can become lock�based algorithms
and compete e�ectively against RSU� As the number of processors participating
increases� the trees can grow larger to give the distributed performance necessary

�� � G� Della�Libera and N� Shavit

Initialization

produce one instance with depth��

repeat

instance � consume
��

wait ���� cycles�

if instance�s depth � � then

produce �� instances with depth greater by �

until all instances have been consumed

Fig� �
� Code for 	��Queens

to compete with RSU� Figure �� shows how close the di�racting tree comes close
to RSU in total time elapsed throughout the di�ering load levels�

���� Sparse Producer�Consumer Actions� The pitfall of RSU and the other ran�
domized load balancing algorithms is the poor performance that occurs under sparse
access patterns� To exhibit this� we make half the active processors consumers and
the other half producers� Producers initially produce a job and wait until that job
is consumed before they produce a new job� This continues until a total of ����
jobs have been completed� This creates a sparse access pattern in the system since
any load balancing transaction could at most shift one job� which is the necessary
consumption for the production to continue� We ran this system for RSU� a RDT
based job pool� and a centralized job pool protected by a queue�lock� We measure
the time elapsed between the beginning of the benchmark until ���� elements are
consumed� and show the results in Figure ��� As one can see� the RDT provides
near queue�lock performance in low�loads� and approaches the performance of RSU
in higher loads�

�� CONCLUSION

Our work on a reactive di�racting tree structure was inspired by Lim and Agarwal�s
reactive lock constructions���	 ��� Following our work� Shavit and Zemach �

have recently presented combining funnels� a reactive data structure based on the
combining paradigm ���	 ��� We hope these new structures will encourage other
researchers to adopt the reactive approach in designing scalable data structures for
multiprocessor machines� Below are some examples of further work to be done�

��� One should attempt to improve the current implementation by designing a
single lock version of the algorithm �locking one node only to perform folding or
unfolding�� This will require overcoming the complexity of keeping the output
values from the tree consistent� Once this step is taken� the RDT will be closer
to being wait�free ���� the state variable will still need to be checked during
the counters fetch�and�increment operation� but a hardware based conditional�
fetch�and�increment would be enough to make this algorithm wait�free�

��� One should implement a message passing version of the RDT algorithm� In a
message passing system� di�erent processors act as nodes in the tree� passing

Reactive Di�racting Trees � ��

messages to other nodes as a substitute for traversing the tree� This allows a
processor to solely control a node� providing better ability to estimate the load
levels and accurately decide when to grow or shrink�

�
� One should design a reactive elimination tree� a form of the di�racting tree
presented by Shavit and Touitou ���� that supports both enqueue and dequeue
operations on structures such as pools or stacks� Unlike a Di�racting tree� and
elimination tree allows both tokens and anti�tokens� allowing them to be elim�
inated if they collide� This collision corresponds to an enqueue and a dequeue
exchanging values locally� and greatly enhances performance since collided op�
erations do not need to traverse the tree� It would be interesting to design
folding and unfolding mechanisms that preserve global consistency given that
there are both tokens and anti�tokens concurrently in the data�structure�

REFERENCES

�	� A� Agarwal� D� Chaiken� K� Johnson� D� Krantz� J� Kubiatowicz� K� Kurihara� B� Lim�
G� Maa� and D� Nussbaum� The MIT Alewife machine� A large�scale distributed�memory
multiprocessor� In Proceedings of Workshop on Scalable Shared Memory Multiprocessors�
Kluwer Academic Publishers� 	

	� An extended version of this paper has been submitted
for publication� Also� appears as MIT Technical Report MIT�LCS�TM���� June 	

	�

��� A� Agarwal and M� Cherian� Adaptive backo� synchronization techniques� In Proceedings of
the ��th International Symposium on Computer Architecture� pages �
������ May 	
�
�

��� T� Anderson� The performance of spin lock alternatives for shared memory multiprocessors�
IEEE Transactions on Parallel and Distributed Systems� 	�	����	�� January 	

��

��� J� Aspnes� M� Herlihy� and N� Shavit� Counting networks� Journal of the ACM� �	���	����
	���� September 	

�� Earlier version in Proceedings of the 	
rd ACM Annual Sym�
posium on Theory of Computing� pp� ������� May 	

	� Also� MIT Technical Report
MIT�LCS�TM��	� June 	

	�

�� R� D� Blumofe and C� E� Leiserson� Scheduling multithreaded computations by work stealing�
In
�th Annual Symposium on Foundations of Computer Science� pages ������� Santa
Fe� New Mexico� ����� November 	

�� IEEE�

��� E� A� Brewer� � and C� N� Dellarocas� Proteus user documentation� version ���� March 	

��

��� E� A� Brewer� C� N� Dellarocas� A� Colbrook� and W� E� Weihl� Proteus� A High�Performance
Parallel�Architecture Simulator� Technical Report MIT�LCS�TR�	�� MIT Laboratory
for Computer Science� September 	

	�

��� Costas Busch and Marios Mavronicolas� A logarithmic depth counting network �abstract��
In Proceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing� page ���� Ottawa� Ontario� Canada� ���� August 	

�

�
� D� Chaiken� J� Kubiatowicz� and A� Agarwal� LimitLESS directories� A scalable cache co�
herence scheme� In asplosIV� pages �������� Santa Clara� California� 	

	�

�	�� G� Della�Libera� Dynamic di�racting trees� Master�s thesis� Department of Electrical Engi�
neering and Computer Science� Massachusetts Institute of Technology� Cambridge� MA
��	�
� July 	

��

�		� J� R� Goodman� M� K� Vernon� and P� J� Woest� E�cent synchronization primitives for large�
scale cache�coherent multiprocessors� In Proceedings of the
rd International Conference
on Architectural Support for Programming Languages and Operating Systems� pages ���
�� Boston� Massachusetts� April 	
�
�

�	�� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph� and M� Snir� The NYU
Ultracomputer designing an MIMD parallel computer� IEEE Transactions on Computers�
C�������	��	�
� February 	
���

�	�� G� Graunke and S� Thakkar� Synchronization algorithms for shared�memory multiprocessors�
IEEE Computer� ������������ June 	

��

�� � G� Della�Libera and N� Shavit

�	�� M� Herlihy� B� H� Lim� and N� Shavit� Scalable concurrent counting� ACM Transactions on

Computer Systems� 	������������� November 	

�

�	� M� Herlihy� N� Shavit� and O� Waarts� Low contention linearizable counting� In Proceedings
of the
	nd Annual Symposium on the Foundations of Computer Science �FOCS�� pages
����� San Juan� Puerto Rico� October 	

	� IEEE� Detailed version with empirical
results appeared as MIT Technical Memo MIT�LCS�TM��
� November 	

	�

�	�� M� P� Herlihy� Wait�free synchronization� ACM Transactions on Programming Languages
and Systems� 	��	��	���	�
� January 	

	�

�	�� M� P� Herlihy and J� M� Wing� Linearizability� A correctness condition for concurrent objects�
ACM Transactions on Programming Languages and Systems� 	����������
�� July 	

��

�	�� M� Klugerman� Small�Depth Counting Networks� PhD thesis� Massachusetts Institute of
Technology� Cambridge� MA ��	�
� 	

��

�	
� M� Klugerman and C� G� Plaxton� Small�depth counting networks� In Proceedings of the 	�th
ACM Symposium on Theory of Computing �STOC�� pages �	������ 	

��

���� B� H� Lim�Reactive Synchronization Algorithms for Multiprocessors� PhD thesis� Department
of Electrical Engineering and Computer Science� Massachusetts Institute of Technolgy�
February 	

�

��	� B� H� Lim and A� Agarwal� Reactive synchronization algorithms for multiprocessors� In Pro�
ceedings of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems �ASPLOS VI�� pages ���� October 	

��

���� Nancy A� Lynch� Nir Shavit� Alexander A� Shvartsman� and Dan Touitou� Counting networks
are practically linearizable� In Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing� pages ������
� Philadelphia� Pennsylvania� USA�
����� May 	

��

���� M� S� Manasse� L� A� McGeoch� and D� D� Sleator� Competitive algorithms for on�line prob�
lems� volume �� of Proceedings of the Symposium on Theory on Computing� pages ����
���� 	
���

���� Marios Mavronicolas� M� Papatrianta�lou� and P� Tsigas� The impact of timing on lineraiz�
ability in counting networks� In Proceedings of the Eleventh International Parallel Pro�
cessing Symposium� pages �������� May August 	

��

��� J� M� Mellor�Crummey and M� L� Scott� Algorithms for scalable synchronization on shared�
memory multiprocessors� ACM Transactions on Computer Systems TOCS�
�	���	���
February 	

	� Earlier version published as TR ���� University of Rochester� Computer
Science Department� April 	

�� and COMP TR
��		�� Center for Research on Parallel
Computation� Rice UNIV� May 	

��

���� G� P�ster and V� Norton� �hot spot� contention and combining in multistage interconnection
networks� IEEE Transactions on Computers� C����	���
���
��� 	
��

���� L� Rudolph and Z� Segall� Dynamic decentralized cache schemes for MIMD parallel processors�
In Proceedings of the ��th Annual Symposium on Computer Architecture� pages ��������
June 	
���

���� L� Rudolph� M� Slivkin� and E� Upfal� A simple load balancing scheme for task allocation
in parallel machines� In Proceedings of the
rd ACM Symposium on Parallel Algorithms
and Architectures� pages ������� July 	

	�

��
� N� Shavit and D� Touitou� Elimination trees and the construction of pools and stacks� In
SPAA���� �th Annual ACM Symposium on Parallel Algorithms and Architectures� pages
����� Santa Barbara� California� July 	

� Also� Tel�Aviv University Technical Report �
January 	

�

���� N� Shavit and D� Touitou� Elimination trees and the construction of pools and stacks� Theory
of Computing Systems� ������������� November�December 	

��

��	� N� Shavit� E� Upfal� and A� Zemach� A steady state analysis of di�racting trees� Theory of
Computing Systems� �	������������ July�August 	

��

���� N� Shavit and A� Zemach� Di�racting trees� ACM Transactions on Computer Systems
TOCS� 	������������ November 	

��

Reactive Di�racting Trees � �	

���� N� Shavit and A� Zemach� Combining funnels� In Proceedings of the Seventeenth Annual

ACM Symposium on Principles of Distributed Computing� pages �	���� Puerto Vallarta�
Mexico� June ��th � July �nd 	

��

���� P� C Yew� N� F� Tzeng� and D� H� Lawrie� Distributing hot�spot addressing in large�scale
multiprocessors� IEEE Transactions on Computers� pages �����
� April 	
���

