
On the Space Complexity of Randomized

Synchronization

Faith Fich

Computer Science Department

University of Toronto

Maurice Herlihy

Digital Equipment Corporation

Cambridge Research Lab

Nir Shavit

Computer Science Department

Tel�Aviv University

September ��� ����

Abstract

The �wait�free hierarchy� provides a classi�cation of multiprocessor synchro�
nization primitives based on the values of n for which there are deterministic
wait�free implementations of n�process consensus using instances of these objects
and read�write registers� In a randomized wait�free setting� this classi�cation is
degenerate� since n�process consensus can be solved using only O�n	 read�write

registers�
In this paper� we propose a classi�cation of synchronization primitives based on

the space complexity of randomized solutions to n�process consensus� A historyless

object� such as a read�write register� a swap register� or a test�set register� is
an object whose state depends only on the last nontrivial operation that was
applied to it� We show that� using historyless objects� 
�

p
n	 object instances are

necessary to solve n�process consensus� This lower bound holds even if the objects
have unbounded size and the termination requirement is non�deterministic solo

termination� a property strictly weaker than randomized wait�freedom�
We then use this result to relate the randomized space complexity of basic

multiprocessor synchronization primitives such as shared counters� fetch�add reg�
isters� and compare�swap registers� Viewed collectively� our results imply that
there is a separation based on space complexity for synchronization primitives in
randomized computation� and that this separation di�ers from that implied by the
deterministic �wait�free hierarchy��
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� Introduction

Traditionally� the theory of interprocess synchronization has centered around the notion
of mutual exclusion� ensuring that only one process at a time is allowed to modify com�
plex shared data objects� As a result of the growing realization that unpredictable delay
is an increasingly serious problem in modern multiprocessor architectures� a new class
of wait�free algorithms have become the focus of both theoretical ���	 and experimental
research �
� ��	� An implementation of a concurrent object is wait�free if it guarantees
that every process will complete an operation within a �nite number of its own steps�
independent of the level of contention and the execution speeds of the other processes�
Wait�free algorithms provide the additional bene�t of being highly fault�tolerant� since
a process can complete an operation even if all n � � others fail by halting�

The consensus problem is a computational task which requires each of n asynchronous
processes� with possibly dierent private input values� to decide on one of the inputs
as their common output� The �wait�free hierarchy� ���	 classi�es concurrent objects
and multiprocessor synchronization primitives based on the values of n for which they
solve n�process consensus in a wait�free manner� For example� it is impossible to solve
n�process consensus using read�write registers for n � � or using read�write registers and
swap registers� for n � � ��� �
� ��� ��� ��	� It has been shown that this separation
does not hold in a randomized setting� that is� even read�write registers su�ce to solve
n�process consensus ��� �
	� This is a rather fortunate outcome� since it opens the
possibility of using randomization to implement concurrent objects without resorting to
non�resilient mutual exclusion ��� �� ��� ��� ��	� One important application is the software
implementation of one synchronization object from another� This allows easy porting of
concurrent algorithms among machines with dierent hardware synchronization support�
However� in order to understand the conditions under which such implementations are
eective and useful� we must be able to quantify the randomized computational power
of existing hardware synchronization primitives�

In this paper� we propose such a quanti�cation by providing a complexity separation
among synchronization primitives based on the space complexity of randomized wait�
free solutions to n�process binary consensus� It is a step towards a theory that would
allow designers and programmers of multiprocessor machines to use mathematical tools
to evaluate the power of alternative synchronization primitives and to recognize when
certain randomized protocols are inherently ine�cient�

Randomized n�process consensus can be solved using O�n� read�write registers of
bounded size ��	� Our main result is a proof that using only historyless objects �for
example� read�write registers of unbounded size� swap registers� and test�set registers��
��
p
n� instances are necessary to solve randomized n�process binary consensus� We do

so by showing a more general result� there is no implementation of consensus satisfying
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a special property� nondeterministic solo termination� from a su�ciently small number
of historyless objects� The nondeterministic solo termination property is strictly weaker
than randomized wait�freedom�

Our result thus shows that� for n�process consensus� the number of object instances�
rather than the sizes of their state spaces� is the important factor� Furthermore� allowing
operations such as swap or test�set� in addition to read and write� does not
substantially reduce the number of objects necessary to solve consensus�

A variety of lower bounds for randomized algorithms exist in the literature� A lower
bound for the Byzantine Agreement problem in a randomized setting was presented
by Graham and Yao���	� They showed a lower bound on the probability of achieving
agreement among � processes� one of which might behave maliciously� Their result is
derived based on the possibly malicious behavior of a processor�

A randomized space complexity lower bound was presented by Kushilevitz� Mansour�
Rabin� and Zuckerman ���	� They prove lower bounds on the size of �i�e� number of bits
in� a read�modify�write register necessary to provide a fair randomized solution to the
mutual exclusion problem� Their results relate the size of the register to the amount
of fairness in the system and the number of processes accessing the critical section in a
mutually exclusive manner� A deterministic space lower bound on the number of bits
in a compare�swap register necessary to solve n�process consensus was proved by Afek
and Stupp ��	�

Lower bounds on the space complexity of consensus have also been obtained for
models in which objects as well as processes may fail ��� ��	�

A powerful time complexity lower bound was recently presented by Aspnes ��	 for
the randomized consensus problem when up to t processes may fail by halting� Asp�
nes studies the total number of coin �ips necessary to create a global shared coin� a
mathematical structure that he shows must implicitly be found in any protocol solving
consensus� unless its complexity is ��t��� His bound on the shared coin construction
implies an interesting ��t�� log� t� lower bound on the amount of work �total number of
operations by all processes� necessary to solve randomized consensus�

Our proof technique is most closely related to the elegant method introduced by
Burns and Lynch to prove a lower bound on the number of read�write registers required
for a deterministic solution to the mutual�exclusion problem ���	� Though related� the
problem they tackle is fundamentally dierent and in a sense easier than ours� This is
because the object they consider �mutual exclusion� is accessed by each process repeat�
edly� whereas our lower bound applies to the implementation of general objects and� in
particular� consensus �for which each process may perform only a single access��

Because the objects we consider are �single access�� our lower bound proofs required
the development of a new proof technique� The key element of this technique is a
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method of �cutting� and �splicing together� interruptible executions� executions that
can be broken into pieces between which executions involving other processes can be
inserted�

Based on our consensus lower bound� we are able to relate the randomized complex�
ity of basic multiprocessor synchronization primitives such as counters ��� ��	� fetch�add
registers� and compare�swap registers� For example� swap registers and fetch�add regis�
ters are each su�cient to deterministically solve ��process consensus� but not ��process
consensus� However� a single fetch�add register su�ces to solve randomized n�process
consensus� whereas ��

p
n� swap registers are needed� Furthermore� a primitive such

as compare�swap� which is deterministically �stronger� than fetch�add� is essentially
equivalent to it under this randomized complexity measure� Our theorems imply that
there is a space�complexity�based separation among synchronization primitives in ran�
domized computation and that their relative power diers from what could be expected
given the deterministic �wait�free hierarchy�� Our hope is that such separation results
will eventually allow hardware designers and programmers to make more informed de�
cisions about which synchronization primitives to use in a randomized setting and how
to better emulate one primitive from another�

The structure of our presentation is as follows� In Section �� we describe our model of
computation and how randomization and asynchrony are expressed within it� Section �
begins by proving a special case of the lower bound� followed by the proof of the general
case� Section � presents several separation theorems among synchronization primitives
based on our main lower bound�

� Model

Our model of computation consists of a collection of n sequential threads of control
called processes that communicate by applying operations to shared objects�

Objects are data structures in memory� Each object has a type� which de�nes a
set of possible values and a set of primitive operations that provide the only means
to manipulate that object� The current value of an object and the operation that is
applied to it determine �perhaps nondeterministically� the response to the operation
and the �possibly� new value of the object�

For example� a test�set register has f�� �g as its set of possible values� Its initial
value is �� The test�set operation responds with the value of the object and then
sets the value to �� A read�write register may have any ��nite or in�nite� set as its set
of values� Its operations are read� which responds with the value of the object� and
write�x�� for x in the value set� which sets the value of the object to x�
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Another example is the counter ��� ��	� The integers are its set of values� Its opera�
tions are inc and dec� which increment and decrement the counter� respectively� reset�
which sets the value of the counter to �� and read� which responds with the value of
the counter� leaving it unchanged� The �rst three of these operations only respond with
a �xed acknowledgement� A bounded counter is a counter whose set of possible values is
a range of integers and whose operations are performed modulo the size of that range�

Each process has a set of states� The operation a process applies and the object to
which it is applied depends on the current state of the process� Processes may also have
internal operations� such as coin �ips� The current state of a process and the result of
the operation performed determine the next state of the process� Each such operation is
called a step of the process� Processes are asynchronous� that is� they can halt or display
arbitrary variations in speed� In particular� one process cannot tell whether another has
halted or is just running very slowly�

An execution is an interleaving of the sequence of steps performed by each process�
All objects are linearizable or atomic in the sense that the processes obtain results from
their operations on an object as if those operations were performed sequentially in the
order speci�ed by the execution� The con�guration at any point in an execution is given
by the state of all processes and the value of all objects� A process may become faulty
at a given point in an execution� in which case it performs no subsequent operations�

A more formal description of our model can be given in terms of I�O automata
���� ��� ��� ��	� The randomized asynchronous computation model� which includes coin
�ips� is described in ��	� A formal de�nition of linearizability can be found in ���	�

An operation of an object type is said to be trivial if applying the operation to
any object of the type always leaves the value of the object unchanged� The read
operation is an example of a trivial operation� Two operations on an object type are
said to commute if the order in which those operations are applied to any object of the
type does not aect the resulting value of the object� For example� decrement and
fetch�add operations commute with themselves and one another� A trivial operation
commutes with any other operation on the same object�

An operation f on an object overwrites an operation f � if� starting from any value�
performing f � and then f results in the same value �or set of values� as performing
just f �i�e� f�x� � f�f ��x�� for all possible values x�� This implies that� from every
con�guration� every sequence of operations on that object yields the same sequence of
responses when preceded by f as when preceded by f � and f � If the value transition
relation associated with an operation is idempotent then the operation overwrites itself�
All write� test�set� and swap operations on an object overwrite one another�

An object type is historyless if all its nontrivial operations overwrite one another�
In other words� the value of a historyless object depends only on the last nontrivial

�



operation that was applied to it�

A set of operations on an object is interfering if every pair of these operations either
commute or overwrite one another� For example� the set of read� write� and swap
operations is interfering� but the set of compare�swap operations is not�

An implementation of an object X is a set of objects Y�� � � � � Ym representing X
together with procedures F�� � � � � Fn called by processes P�� � � � � Pn to execute operations
on X� For object types X and Y � we say that X can be implemented from m instances
of Y if there exists an implementation of an object of type X by processes P�� � � � � Pn
using objects Y�� � � � � Ym of type Y �

An implementation is wait�free if each nonfaulty process Pi always �nishes executing
its procedure Fi within a �xed� �nite number of its own steps� regardless of the pace
or failure of other processes� An implementation is non�blocking if� for every con�gura�
tion and every execution starting at that con�guration� there is some process Pi that
�nishes executing its procedure Fi within a �nite number of steps� Wait�free implies
non�blocking� The non�blocking property permits individual processes to starve� but
requires the system as a whole to make progress� The wait�free property excludes star�
vation� any process that continues to execute events will �nish its current operation� If
each procedure Fi can be called only a �nite number of times� then wait�free is the same
as non�blocking�

The wait�free and non�blocking properties can be extended to randomized wait�free
and randomized non�blocking by only requiring that Pi �nishes executing its procedure
Fi within a �nite expected number of its steps� �See ��	 for a more formal de�nition�� If
each procedure Fi can be called only a �nite number of times� then randomized wait�free
is the same as randomized non�blocking� Furthermore� if an algorithm is wait�free� then
it is randomized wait�free and if it is non�blocking� then it is randomized non�blocking�

A solo execution is an execution all of whose steps are performed by one process� An
implementation has the nondeterministic solo termination property if� for every con�g�
uration C and every process Pi� there exists a �nite solo execution� starting at con�g�
uration C� in which Pi �nishes executing its procedure Fi� In other words� if Pi has no
interference� it will �nish performing its operation� If an algorithm is randomized wait�
free �or wait�free�� then it has the nondeterministic solo termination property� since every
state transition having non�zero probability can be viewed as a possible nondeterministic
choice�

Nondeterministic solo termination is a strictly weaker property than wait�freedom
and randomized wait�freedom� For example� the simple snapshot algorithm following
Observation � in ��	 is not �randomized wait�free� but satis�es the nondeterministic solo
termination property�






We evaluate the randomized space complexity of an object type based on the number
of objects of the type that are required to implement n�process binary consensus in a
randomized wait�free manner� A binary consensus object is an object on which each of
n�processes can perform one decide operation with input value in f�� �g� returning an
output value x� also in f�� �g� The object�s legal executions are those that satisfy the
following conditions�

Consistency� The decide operations of all processes return the same value�

Validity� If x is the value returned for some decide operation� then x is the input value
for the decide operation of some process�

The �rst condition guarantees that consensus is achieved and the second condition ex�
cludes trivial solutions in which the outcome is �xed ahead of time�

We will use the term consensus to mean n�process binary consensus� A set of objects
is said to solve randomized consensus if there is a randomized wait�free implementation
of consensus from only that set of objects� No executions of an implementation may
give an incorrect answer �i�e� one that violates consistency or validity�� In other words�
we do not consider Monte Carlo implementations�

An execution of an implementation of consensus is terminating if it completes a de�
cide operation� Arbitrarily long and even non�terminating executions are possible in a
randomized wait�free implementation� For example� since it is impossible to implement
consensus in a wait�free manner for two or more processes from only read�write regis�
ters� any randomized wait�free implementation of consensus for two or more processes
from only read�write registers must have non�terminating executions� However� these
executions must occur with correspondingly small probabilities�

Consider the situation where there is a lower bound on the number of objects to solve
randomized consensus� for objects of a particular type� Then this bound can be used to
obtain lower bounds on the number of instances of that object type that are necessary
to implement objects of other types�

Theorem ��� Let X and Y be object types� Suppose f�n� instances of X solve n�
process randomized consensus and g�n� instances of Y are required to solve n�process
randomized consensus� Then any randomized non�blocking implementation �and� hence�
any randomized wait�free implementation� of X by Y for n processes requires g�n��f�n�
instances of Y �

Proof� Suppose there exists a randomized non�blocking implementation of X using
h�n� instances of Y � Let A denote a randomized wait�free implementation of consensus
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using f�n� instances of X� Construct a new randomized wait�free implementation of
consensus by replacing each instance of X in A with a randomized non�blocking im�
plementation using h�n� instances of Y � In total� this implementation uses f�n�h�n�
instances of Y � Therefore f�n�h�n� � g�n� so h�n� � g�n��f�n��

� Lower Bounds

In this section� we prove an ��
p
n� lower bound on the number of objects required to

solve randomized consensus� if each object is historyless� More speci�cally� we do this by
showing that there is no implementation of consensus satisfying nondeterministic solo
termination from only a su�ciently small number of historyless objects� Although it is
weaker than randomized wait�freedom� the nondeterministic solo termination property
is su�cient for proving our lower bound�

An implementation of consensus is required to be consistent in every execution�
Therefore� to demonstrate that an implementation of consensus is faulty� it su�ces to
exhibit an execution in which one process decides the value � and another process decides
the value �� This is done by combining an execution that decides � with an execution
that decides �� Although our lower bound is stated in terms of a strong model that
requires objects to be linearizable� it also applies to all weaker models� such as those
which guarantee only sequential consistency�

Throughout this section� we use the following notation� The number of processes
used in the implementation under consideration is n and the number of objects used is
r� If V is a subset of these objects� then V denotes the subset of these objects not in V �
The sizes of V and V are denoted by v and v� respectively�

In any con�guration of the implementation� a process P is said to be poised at object
R if P will perform a non�trivial �historyless� operation on R when next allocated a
step� In this case� the value of object R can be �xed at any single future point in time
by scheduling P to perform that operation� A block write to a set of objects V consists of
a sequence of v consecutive non�trivial �historyless� operations by v dierent processes
on the v dierent objects in V � Immediately before a block write to a set of objects V
can occur� there must be at least one process poised at each object in V � Using a block
write to V � the values of all the objects in V can be �xed� Knowing which processes
are poised at each object in a particular con�guration enables us to determine which
process to schedule next�

Under certain favourable conditions� it is possible to combine an execution that
decides � with an execution that decides �� For example� suppose there is a con�guration
C in which there is a set P of processes� one poised at each of the r objects� Let C �
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be the con�guration obtained from C by having the processes in P perform a block
write� Suppose that� from C �� there is an execution � deciding � by a set of processes
Q� none of which are in P� Furthermore� suppose that� from C� there is an execution �
deciding � that contains no steps of processes in either P or Q� Then the following is an
execution from C that decides both � and �� First perform �� Then let the processes in
P perform a block write� Call the resulting con�guration C ��� Finally� perform �� This
is illustrated in Figure ��

u
C C �

block
write
by P � u � ��

�

�

�

u
C � �� � u � ��

C ��

block
write
by P

Figure �� Combining Two Executions

Note that the con�gurations C � and C �� are indistinguishable to the processes in Q� By
writing� the processes in P have obliterated all traces of � from the objects� so � is
invisible to the processes in Q�

��� Read Write Registers and Identical Processes

First� we prove a lower bound in a much simpler situation� the objects are read�write
registers �i�e� the only operations are read and write� and all processes are identical�
Thus� if two processes are in the same state� they perform the same operation on the same
register when they are next allocated a step and� if the outcomes of those operations
are the same �e�g� the values of their coin �ips or the values that they read�� their
resulting states will be the same� Furthermore� processes with the same input value will
be in the same initial state� Although the lower bound proof in this restricted setting
is considerably easier than in the general case� the overall structure of both proofs are
similar and we feel the easier proof provides important intuition�

One technique that can only be applied in the restricted setting is cloning� Consider
any point in some execution at which a process P writes a value v to a register R� Then
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there is another execution which is the same except that a group of clones have been
left behind� all poised to write value v to register R� To construct this execution� the
clones are given the same initial state as P and P and its clones are scheduled as a
group� up to the point at which P performs the write� In other words� whenever P
is allocated a step� each of its clones is immediately allocated a step� The outcomes
of the clones� internal operations in this execution are speci�ed to be the same as the
corresponding outcomes of P �s internal operations� Then� up to the point at which P
performs the write� the clones have the same state as P and they perform exactly the
same sequence of operations� These clones can be scheduled to perform their writes at
various subsequent points of time� resetting the contents of the register R to the same
value each time�

Provided there are su�ciently many processes available� cloning enables two ex�
ecutions to be combined into an inconsistent execution under the general conditions
illustrated in Figure ��

u
C

block
write
by P
to V� u solo � ��

solo
�

block write
by Q to W

u�

�

�
Figure �� Conditions of Lemma ���

Lemma ��� Consider any implementation of consensus from r read�write registers us�
ing identical processes that satis�es nondeterministic solo termination� Let C be a con�
�guration in which there is a set of v � � processes P poised at some set of registers
V and a disjoint set of w � � processes Q poised at some �not necessarily disjoint�
set of registers W � Suppose that� after a block write to V by processes in P� there is
a solo execution � by a process in P that decides 	 and� symmetrically� after a block
write to W by processes in Q� there is a solo execution � by a process in Q that de�
cides 
� Then there is an execution from C that decides both 	 and 
 and uses at most
r� � r � ��v � �w � v� � w���� identical processes�

Proof� The proof is by induction on v � w�
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First� suppose V � W �which must be the case if w � ���

If all writes in � are to registers in W � consider the following execution starting
from C� First� processes in P perform a block write to V � next � is performed� and
then processes in Q perform a block write to W � Note that the resulting con�guration
is indistinguishable to processes in Q from the con�guration obtained from C by just
performing the block write to W � Finally� � is performed� This execution decides
both � and � and uses v � w processes� Since v�w � r� it follows that v � w �
r� � r � ��v � �w � v� � w�����

Otherwise� there is some �rst point in the solo execution � at which a register R �� W
is written to� Let C � be the con�guration just before this write occurs� let �� denote
that part of � occurring after this write� and let V � � V � fRg� Note that R �� V �
because R �� W and V � W � Hence v� � v � �� During the execution from C to
C �� every register in V is written to at least once� Thus� if there are su�ciently many
processes� a clone can be left poised at each register in V � ready to re�perform the last
write that was performed on the register prior to C �� These v clones� together with the
process performing the solo execution � �which includes the write to R and the solo
execution ���� will form P �� Note that the value of every register in V � is the same in
the con�guration immediately after the write to R and the con�guration immediately
after the block write to V � by P �� Thus� starting at either of these two con�gurations�
�� decides the value �� Furthermore� since V � W � the con�gurations C and C � are
indistinguishable to processes in Q� Therefore� starting at C �� if the processes in Q
perform a block write to W and then � is performed� the value � is decided� This is
illustrated in Figure �� By the induction hypothesis� there is an execution from C � that
decides both � and � and uses at most r��r����v�����w��v�����w���� processes�
Prepending the execution from C to C � yields an execution from C that decides both
� and � and uses �v � �� additional processes �those in P � P �� for a total of at most
r� � r � ��v � �w � v� � w�����

By symmetry� if W � V � then there is an execution starting from C that decides
both � and �� Therefore� suppose that neither V nor W is a subset of the other�

Consider any terminating execution from C that begins with a block write to U �
V � W and continues with a solo execution � by one of these u processes� Such an
execution exists by the nondeterministic solo termination property� Since U � V and
V �� �� it follows that u � � � v � �� Suppose � decides �� �The case when � decides
� is symmetric�� Let P � consist of P plus a clone of each process in Q that is poised
at a register in W � V in con�guration C� This is illustrated in Figure �� By the
induction hypothesis applied to con�guration C� sets of registers U and W � and the sets
of processes P � and Q� there is an execution from C which decides both � and � and
uses at most r�� r� ��u��w� u��w���� � r�� r���v��w� v��w���� processes�
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Figure �� V �W and � writes to R �� W

To obtain our lower bound� we show that� for any randomized consensus algorithm�
the conditions necessary to apply Lemma ��� can be achieved� provided su�ciently many
processes are available�

Lemma ��� There is no implementation of consensus satisfying nondeterministic solo
termination from r read�write registers using r� � r � � or more identical processes�

Proof� Consider any implementation of consensus satisfying nondeterministic solo ter�
mination from r read�write registers using r� � r � � or more identical processes�

Let P and Q be processes with initial values � and �� respectively� Let � denote any
terminating solo execution by P and let � denote any terminating solo execution by Q�
The existence of these executions is guaranteed by the nondeterministic solo termination
property� Furthermore� by validity� � must decide � and � must decide ��

If one of these executions� say �� contains no writes� then the execution consisting
of � followed by � decides both � and �� Therefore� we may assume that both � and �
contain at least one write�

Let �� denote the portion of � occurring after the �rst write and let V be the singleton
set consisting of the register P �rst writes to� De�ne �� and W analogously� Let � be the
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Figure �� V ��W � W �� V � and � decides �

execution consisting of those operations of � and � occurring before their �rst writes
and let C be the con�guration obtained from the initial con�guration by performing
�� If there are at least r� � r � � processes� it follows by Lemma ��� that there is an
execution from C that decides both � and �� Prepending this execution by � yields an
execution from the initial con�guration that decides both � and �� This violates the
consistency condition�

Theorem ��� At most r� � r � � identical processes can solve randomized consensus
using r read�write registers�

��� General Case

Next� we show our main result� ��
p
n� objects are necessary to implement n�process

binary consensus in a randomized wait�free manner� if the objects are historyless� The
key to the lower bound is the de�nition of an interruptible execution� Informally� an
interruptible execution is an execution that can be broken into pieces� between which
executions involving other processes can be inserted�

Each piece of an interruptible execution begins with a block write to a set of objects�
Because the objects are historyless� this block write gives these objects particular values�
no matter when it is executed� Hence� if an execution performed by other processes only
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changes the values of objects in the set� then that execution can be inserted immediately
before this piece without aecting the rest of the interruptible execution�

Note that� unlike the special case considered in Section ���� the resulting state of each
process performing the block write may depend on the value of the object it accesses�
This could in�uence a subsequent execution involving this process� Therefore� in the
de�nition of an interruptible execution� processes that participate in a block write take
no further steps�

De�nition ��� An execution � starting from con�guration C is interruptible with ini�
tial object set V and process set P if all steps in � are taken by processes in P and �
can be divided into one or more pieces � � �� � � ��k such that

	 �i begins with a block write to a set of objects Vi by processes that take no further
steps in ��

	 all non�trivial operations in �i are to objects in Vi�

	 V � V� � � � � � Vk� and

	 after � has been performed� some process has decided�

In other words� if an execution � is interruptible with initial object set V then
� � ���

�� where �� begins with a block write to V by processes that take no further
steps in � and �� contains no non�trivial operations on objects in V � Furthermore� if
C � is the con�guration obtained from C by executing ��� then either some process has
decided at C � and �� is empty or �� is an interruptible execution starting from C � with
some initial object set V � � V �

We say that an interruptible execution decides a value if� after � has been performed�
some process has decided �i�e� has returned� that value�

A terminating solo execution augmented with a su�cient numbers of clones perform�
ing block writes at appropriate points is a special case of an interruptible execution�
This is what is used to obtain the lower bound for identical processes� However� when
processes are not assumed to be identical� clones cannot necessarily be created� The
processes performing the block writes at the beginning of the pieces of an interrupt�
ible execution are used instead of clones in many places throughout the following lower
bound proof� The excess capacity of an interruptible execution� de�ned below� is used
to satisfy an additional need for clones�
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De�nition ��� An interruptible execution � � �� � � ��k starting from con�guration C
with initial object set V and process set P has excess capacity e for object set U if� at the
beginning of each piece �i� there are at least e processes not in P poised at each object
in Vi 
 U �

Note that if k � � and C � is the con�guration obtained from C by executing ��� then
interruptible execution �� � � ��k also has excess capacity e for U �

The next lemma shows that� from any con�guration in which there are su�ciently
many processes poised at certain objects� there is an interruptible execution with desired
excess capacity� Note that there was no need to prove an analogous lemma in Section
���� since the nondeterministic solo termination property guarantees the existence of
terminating solo executions �the analogue of interruptible executions��

Lemma ��� Let U and V be sets of objects and let P be a set of at least �r�� r� v��
v���� ejV 
U j processes� Consider any con�guration C in which there are at least v��
processes in P poised at every object in V and at least e processes not in P poised at
every object in V 
 U � Then there is an interruptible execution starting from C with
initial object set V and process set P that has excess capacity e for U �

Proof� By induction on v�

Consider any execution 	 starting from con�guration C with the following properties�

	 there is a set bP � P of v�v � �� processes which� at C� contains v � � processes
poised at each object in V �

	 	 begins with a block write to V by a set P� � bP of v processes that take no
further steps in 	�

	 all other steps in 	 are taken by processes in P � bP�

	 all non�trivial operations in 	 are performed on objects in V � and

	 at the con�guration C � obtained from C by executing 	� either some process has
decided or all processes in P � bP are poised at objects in V �

Such an execution may be obtained by performing the block write to V by P� and then�
for each process in P � bP� performing steps of a solo terminating execution until the
process has decided or is poised at an object in V �
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If� at C �� some process has decided �which must be the case if v � ��� then 	 is an
interruptible execution with one piece that satis�es the desired conditions� Therefore
assume that v � � and� at C �� every process in P � bP is poised at an object in V �

For every integer i � �� let yi and zi be the number of objects in V 
 U and V 
 U �
respectively� at which at least i processes in P � bP are poised in con�guration C �� Then
yi � yi�� and zi � zi���

Furthermore� there exists i � f�� � � � � vg such that yi � ze�i � v � i � �� To see
why� suppose to the contrary that yi � ze�i � v � i for all � � i � v� In particular�
yv � ze�v � �� so yi � ze�i � � for all i � v� Then� since v � v � r and v � ��

jP � bPj �
X
i��

�yi � zi�

�
v��X
i��

�yi � ze�i� �
eX

i��

zi

�
v��X
i��

�v � i� �
eX

i��

jV 
 U j

� v�v � ���� � ejV 
 U j
� v�v � ���� � jPj � �r� � r � v� � v���

� jPj � vv � v � v


 jPj � v�v � �� � jP � bPj�
This is a contradiction�

Consider the situation at con�guration C �� Suppose Y � V 
 U and Z � V 
 U
are sets of objects such that there are at least i processes in P � bP poised at every
object in Y � there are at least e� i processes in P � bP poised at every object in Z� and
jY j � jZj � v � i � �� Let V � � V � Y � Z� Then v� � v � v � i � � � r � i � �� so
i � v� � ��

Let E � P� bP be a set of ejZj processes� e poised at every object in Z � �V ��V �
U �
De�ne P � � P �P��E� At C� there are at least e processes not in P �and hence not in
P �� poised at every object in V 
 U and these processes take no steps in 	� Also� none
of the processes in E are in P �� Therefore� at C �� there are at least e processes not in P �

poised at every object in V � 
 U �

There are at least i � v� � � processes in P � bP � E � P � poised at every object in
Y � Z � V � � V � Furthermore� since none of the processes in bP � P� take any steps in
	� it follows that� at con�guration C �� there are also at least v � v� � � processes in P �

poised at every object in V �

�




Finally� since v � v� � ��

jP �j � jPj � v � ej�V � � V � 
 U j
� �r� � r � v� � v��� � ejV 
 U j � v � ej�V � � V � 
 U j
� �r� � r � v� � v��� � ejV � 
 U j
� �r� � r � �v��� � v���� � ejV � 
 U j�

Then� by the induction hypothesis� there is an interruptible execution 	� starting from
C � with initial object set V � and process set P � that has excess capacity e for U �

Now P � � P � P� and V � � V � Therefore 		� is an interruptible execution starting
from C with initial object set V and process set P that has excess capacity e for U �

The next result describes conditions under which two interruptible executions can
be combined to form an inconsistent execution� It is analogous to Lemma ���� but is
more di�cult� because we cannot just make a su�cient number of clones as we need
them� Instead� we use excess capacity in one execution to guarantee a su�cient number
of processes poised at the particular objects needed for the other execution�

Lemma ��	 Let � be an interruptible execution� starting at con�guration C� with initial
object set V � process set P� and excess capacity w for W and let � be an interruptible
execution� starting at con�guration C� with initial object set W � process set Q� and
excess capacity v for V � Suppose jPj � �r� � r � v� � v��� � w � jV 
 W j� jQj �
�r�� r�w��w����v � jV 
W j� and P and Q are disjoint� If � decides 	 and � decides

� then there is an execution starting from C that decides both 	 and 
�

Proof� By induction on v � w�

First� suppose V �W �which must be the case if w � ��� Let �� be the �rst piece of
� and let C � be the con�guration obtained from C by executing ��� All of the non�trivial
operations in �� are to objects in V � W � P and Q are disjoint� and � begins with a
block write to W by a set Q� of w processes that take no further steps in �� This implies
that the con�gurations obtained from C and C � as a result of performing the block write
to W are indistinguishable to the processes in Q�Q�� Furthermore� all processes poised
at objects in V at con�guration C are poised at the same objects at con�guration C ��
Therefore� � is an interruptible execution starting from C �� with initial object set W
and process set Q� that decides � and has excess capacity v for V � If some process has
decided � at C �� then ��� is an execution from C that decides both � and �� Otherwise�
� � ���

�� where �� is an interruptible execution �� starting from C � with process set
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P and some initial object set V � � V that decides � and has excess capacity w for W �
Since V � � V �

jPj � �r� � r � v� � v��� � wjV 
W j � �r� � r � �v��� � v���� � wjV � 
W j�
jQj � �r� � r � w� � w��� � vjV 
W j � �r� � r � w� � w��� � v�jV � 
W j�

and � has excess capacity v� for V �� By the induction hypothesis applied to �� and ��
there is an execution 	 starting from C � that decides both � and �� Hence� ��	 is an
execution starting from C that decides both � and ��

Similarly� if W � V � then there is an execution starting from C that decides both �
and �� Therefore� suppose that neither V nor W is a subset of the other�

Let V � � W � � V �W � Consider the situation at con�guration C� Since � has excess
capacity v � v� � � for V � V �� � has excess capacity v� for V �� In addition� there are
v��� processes not in Q poised at each object in W 
 V � V � � V � Form P � by adding
these processes to P� if they are not already in P� Note that P � and Q are disjoint�
There are also at least v � � � v� � � processes in P � P � poised at each object in V �
by assumption� Since � has excess capacity w for W � there are w processes not in P
poised at each object in V 
W � V � 
W � These processes are not in P �� because the
processes in P � � P are poised at objects in V � Since V � V ��

jP �j � jPj � �r� � r � v� � v��� � w � jV 
W j
� �r� � r � �v��� � v���� � w � jV � 
W j�

By Lemma ���� there exists an interruptible execution �� starting from con�guration C
with initial object set V � and process set P � that has excess capacity w for W � If ��

decides �� then it follows from the induction hypothesis applied to �� and � that there
is an execution starting from C that decides both � and �� Therefore we may assume
that �� decides �� Note that �� has excess capacity w� for W �� since W � � W �

Similarly� we may assume that there exists an interruptible execution �� starting from
C with initial object set W � and process set Q� that decides � and has excess capacity
v for V � where jQ�j � �r� � r � �w��� � w���� � v � jW � 
 V j� Q� � Q is disjoint from P�
and all processes in Q� �Q are poised at objects in W � �W �

Since �V � � V � and �W � � W � are disjoint� P � �P and Q� �Q are disjoint� By
assumption� P and Q are disjoint� It follows that P � and Q� are disjoint� Furthermore�
V � � V and W � � W � so jP �j � �r� � r � �v��� � v���� � w� � jV � 
 W �j and jQ�j �
�r� � r� �w����w���� � v� � jV � 
W �j� Then� by the induction hypothesis applied to � �

and ��� there is an execution starting from C that decides both � and ��

Lemma ��
 There is no implementation of consensus satisfying nondeterministic solo
termination from r historyless objects using �r� � r or more processes�
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Proof� Consider any �randomized� algorithm that purports to achieve wait�free binary
consensus among �r� � r processes using r objects� Partition these processes into two
sets� P and Q� each containing ��r� � r��� processes� Give each process in P the initial
value � and give each process in Q the initial value ��

Let V � W � �� By Lemma ���� there is an interruptible execution � starting
from the initial con�guration with initial object set V and process set P that has excess
capacity w for W � Since the processes in P all have initial value �� � must decide ��
Similarly� there is an interruptible execution � starting from the initial con�guration
with initial object set W and process set Q that has excess capacity v for V and de�
cides �� Hence� Lemma ��
 implies that there is an execution starting from the initial
con�guration that decides both � and �� violating the consistency condition�

The following result is a direct consequence of Lemma ����

Theorem ��� A randomized wait�free implementation of n�process binary consensus
requires ��

p
n� objects� if the objects are historyless�

� Separation Results

We use our main theorem to derive a series of results comparing the �randomized power�
of various synchronization primitives with their �deterministic power� ���	� We say that
object type X is deterministically more powerful than object type Y if the number
of processes for which consensus can be achieved is larger using instances of X than
using instances of Y � For randomized computation� we say that object type X is more
powerful than object type Y if n�process randomized consensus requires asymptotically
fewer instances of X than instances of Y �

Objects with only interfering operations cannot deterministically solve ��process con�
sensus ���	� Hence� they are deterministically less powerful than objects with operations
such as compare�swap� which can solve n�process consensus�

Consider any object with an operation such that� starting with some particular state�
the response from one application of the operation is always dierent than the response
from the second of two successive applications of that operation� �For example� a register
with the value � returns dierent values from successive applications of swap���� The
operation fetch�add applied starting with any value also has this property�� Then this
object can solve ��process consensus� Therefore� it is deterministically more powerful
than the read�write register� which cannot solve ��process consensus�
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Herlihy ���� Theorem 
	 shows that n�process consensus can be implemented deter�
ministically using a single bounded compare�swap register� Hence� from Theorems ���
and ���� we have the following result�

Corollary ��� Any randomized non�blocking bounded compare�swap register imple�
mentation requires ��

p
n� objects� if the objects are historyless�

Since there are deterministic counter implementations using O�n� read�write regis�
ters ��� ��	� neither counters nor bounded counters can deterministically solve ��process
consensus ���	�

Aspnes ��	 gives a randomized algorithm for n process binary consensus using three
bounded counters� the �rst two keep track of the number of processes with input � and
input � respectively� and the third is used as the cursor for a random walk� The �rst
two counters assume values between � and n� while the third assumes values between
��n and �n� The �rst two counters can be eliminated at some cost in performance ��	�

Theorem ��� �Aspnes There is a randomized consensus implementation using one
bounded counter�

The next result follows from Theorems ���� ���� and ����

Corollary ��� Any randomized non�blocking bounded counter implementation requires
��
p
n� objects� if the objects are historyless�

Surprisingly� the lower bounds in Corollaries ��� and ��� are both independent of the
number of values an object can assume� they hold even when the objects �such as read�
write and swap registers� used in the implementation have an in�nite number of values�
but the object being implemented has a �nite number of values�

The same result holds for the implementation of a fetch�add register� a fetch�increment
register� or a fetch�decrement register� because a single instance of any of these objects
can be easily used to implement a counter�

Theorem ��� Randomized consensus can be solved using a single instance of a fetch�add
register� a fetch�increment register� or a fetch�decrement register�

Corollary ��	 Any randomized non�blocking implementation of a fetch�add register� a
fetch�increment register� or a fetch�decrement register requires ��

p
n� objects� if the

objects are historyless�

Theorem ��� is particularly interesting since it shows that fetch�add and com�
pare�swap� which dier substantially in their deterministic power ���	� have similar
randomized power in the sense that one instance of each su�ces to solve randomized
consensus�
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� Conclusions

We have presented a separation among multiprocessor synchronization primitives based
on the space complexity of randomized solutions to n�process binary consensus� Our
main result proved that ��

p
n� objects are necessary to solve randomized n�process

binary consensus� if the objects are historyless� Randomized n�process consensus can
be solved using O�n� read�write registers of bounded size and we conjecture that the
true space complexity of this problem is !�n�� We believe that� based on our approach�
a larger lower bound may be possible by reusing the processes that perform the block
writes at the beginning of a piece of an interruptible execution�

We further believe that our lower bound approach can be extended to allow compar�
isons among other classes of primitives� and help us to better understand the limitations
of using randomization to implement various synchronization primitives from one an�
other� The lower bounds presented here only consider the implementation of a �single
access� object� but also apply to the implementation of a �multiple use� object� where
each process can access the object repeatedly� However� it may be that the implementa�
tion of certain multiple use objects� for example� real�world synchronization primitives
such as test�set and fetch�add� is signi�cantly more di�cult and that improved lower
bounds can be obtained by having some processors access the implemented object many
times� Indeed� a recent result by Jayanti� Tan� and Toueg ���	 shows that for multiple
use objects� it takes n � � instances of objects such as registers or swap registers to
implement objects such as increment registers� fetch�add registers� and compare�swap
registers�

Needless to say� there is also much work to be done in providing e�cient upper
bounds for randomized implementations of objects�
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