
Scalable Concurrent Counting

Maurice Herlihy � Beng�Hong Lim y Nir Shavit z

August ��� ����

Abstract

The notion of counting is central to a number of basic multipro�
cessor coordination problems� such as dynamic load balancing� barrier
synchronization� and concurrent data structure design� In this paper�
we investigate the scalability of a variety of counting techniques for
large�scale multiprocessors� We compare counting techniques based
on� ��� spin locks� �	� message passing� �
� distributed queues� ���
software combining trees� and ��� counting networks� Our comparison
is based on a series of simple benchmarks on a simulated ��processor
Alewife machine� a distributed�memory multiprocessor currently under
development at MIT� Although locking techniques are known to per�
form well on small�scale� bus�based multiprocessors� serialization limits
performance and contention can degrade performance� Both count�
ing networks and combining trees substantially outperform the other
methods by avoiding serialization and alleviating contention� although
combining tree throughput is more sensitive to variations in load� A
comparison of shared�memory and message�passing implementations
of counting networks and combining trees shows that message�passing
implementations have substantially higher throughput�

�Digital Equipment Corporation� Cambridge Research Lab� Cambridge� MA �����
yLaboratory for Computer Science� MIT� Cambridge� MA �����
zDepartment of Computer Science� Tel�Aviv University� Tel�Aviv� Israel 	��
�

A preliminary version of this report appeared in the Proceedings of the �rd Annual ACM
Symposium on Parallel Algorithms and Architectures� July ����� San Diego� CA ��	�

�

� Introduction

The notion of counting is central to a number of basic multiprocessor coor�
dination problems� such as dynamic load balancing� barrier synchronization�
and concurrent data structure design� �See Freudenthal and Gottlieb ����
for further examples�� For our purposes� a counter is an object that holds an
integer value� and provides a fetch�and�increment operation that increments
the counter	s value and returns its previous value� The values returned may
represent addresses in memory� loop or array indices� program counters� or
destinations on an interconnection network�
It is di
cult to design software counting techniques that scale well� The

challenge is how to ensure that the counter	s throughput continues to in�
crease as the level of concurrency increases� There are two reasons why it is
di
cult for throughput to keep up with concurrency� contention in memory
and interconnect� and unwanted serialization �i�e�� absence of parallelism��
In this paper� we present the results of an experimental investigation of the
scalability of a variety of software counting techniques� We consider �ve
basic techniques�

�� Lock�based counters� encompassing both test�and�test�and�set ��� locks
with exponential backo� ��� �� ���� and a version of the MCS queue
lock that relies only on atomic swaps �����

� A message�based counter� in which a single processor increments the
counter in response to messages�

�� A queue�based counter� which is a version of the MCS queue lock ����
optimized for distributed counting�

�� Software combining trees ��� ���

�� Counting networks ����

For each technique� we ran a series of simple benchmarks on a simulated
���processor Alewife machine ��� a cache�coherent distributed�memory ma�
chine currently under development at MIT� Our experiments were done on
the ASIM simulator� an accurate cycle�by�cycle simulator for the Alewife
architecture� ASIM is the principal simulator used by the Alewife research
group�
Each of the techniques we consider has been independently proposed

as a way to perform scalable synchronization in highly concurrent systems�

Here� for the �rst time� they are compared directly on a realistic large�scale
shared�memory multiprocessor�
Our results suggest the following�

� For a concurrent counting technique to be scalable� it must have two
distinct properties� First� it must avoid generating high levels of mem�
ory or interconnect contention� and second� it must permit concurrent
increment operations to proceed in parallel�

� For some techniques� such as the lock�based counters� contention causes
performance to degrade substantially at higher levels of concurrency�
Earlier experimental work on small�scale multiprocessors has shown
that spin locks with exponential backo� and queue locks both perform
well for certain kinds of problems on bus�based architectures ��� ��� ����
Nevertheless� our results indicate that these techniques do not scale
well to large�scale distributed memory multiprocessors� As concur�
rency increases� both spin locks with exponential backo� and queue
locks are severely a�ected by contention�

� Other techniques� such as the message and queue�based counters� are
relatively impervious to contention� but nevertheless scale poorly be�
cause the absence of concurrency causes throughput to plateau at a
relatively low level�

� Software combining trees and counting networks are the only tech�
niques we found to be truly scalable� For both techniques� throughput
increases with concurrency for as far as our experiments were able
to measure� These techniques avoid contention in the same way� by
distributing synchronization operations across a data structure� They
support concurrency in di�erent ways� combining trees merge incre�
ment requests� while counting networks allow multiple threads to tra�
verse the network at the same time�

� Although both counting networks and software combining trees have
similar scaling behavior� combining trees are more susceptible to vari�
ations in the inter�arrival times of increment requests because two
requests arriving at a node must arrive within a small time window
for combining to occur� Additionally� locks that are held for a signi��
cant amount of time at the combining tree nodes may block progress
up the tree�

�

� Combining trees and counting networks can be implemented either in
distributed shared memory� or directly by message passing and inter�
processor interrupts� For both combining trees and counting networks�
message passing substantially outperforms shared memory�

We note that the combining tree can compute a general Fetch�and��
operation� However� unlike counting networks� it is not lock�free� a stalled
process can inhibit other processes from making forward progress� In this
respect� counting networks have a substantial advantage over combining
trees in systems where individual processes might incur arbitrary delays� an
important property for concurrent data structure design�
A preliminary version of some of these results appeared in ����� This

paper extends the earlier paper in the following ways�

� We revise the queue�lock�based counter to use the MCS queue lock
instead of the Anderson queue lock ����

� We add an analysis of a centralized message�based counter�

� We add message�passing implementations of combining trees and count�
ing networks� which we have found to be the most scalable of all the
techniques considered�

� We show the importance of parallelism for scalable performance of
shared data structures� We do so by comparing two distributed data
structures� a counting network and a linearizable counting network�
The latter can compute a general Fetch�and�� but introduces a se�
quential waiting chain�

� We present statistics on the combining rates for the software combining
tree�

� Techniques for Concurrent Counting

Table � summarizes the �ve techniques we consider for shared counting� It is
convenient to classify these techniques as either centralized or distributed�
and as either sequential or parallel� A counter is centralized if its value
is kept in a unique memory location� and distributed if it is kept across a
distributed data structure� Access to the counter is sequential if requests
must update the counter in a one�at�a�time order� and parallel if multiple
requests can update the counter simultaneously�

�

Method Centralized Sequential
or Distributed or Parallel

Lock�based counter Centralized Sequential
Message�based counter Centralized Sequential
Queue�based counter Distributed Sequential
Combining Tree Centralized Parallel
Counting Network Distributed Parallel

Table �� Techniques for concurrent counting

Lock�based counter In this technique� the counter is represented by a
shared memory location protected by a spin lock� To increment the counter�
a processor must acquire the lock� read and increment the memory location�
and release the lock� We consider two spin lock algorithms� test�and�test�
and�set with exponential backo� ��� ���� and a version of the MCS queue
lock that relies only on atomic swaps �����

Message�based counter In this technique� the shared counter is rep�
resented by a private memory location owned by a unique processor� To
increment the counter� a processor sends a request message to that unique
processor and waits for a reply� The processor receiving the request message
increments the counter and sends a reply message containing the value of
the counter� Request messages are handled atomically with respect to other
request messages�

Queue�based counter This technique is based on the MCS queue lock
algorithm� adapted for counting on a network�based multiprocessor� The
MCS queue lock maintains a pointer to the tail of a software queue of lock
waiters� The lock is free if it points to an empty queue� and is busy otherwise�
The process at the head of the queue owns the lock� and each process on the
queue has a pointer to its successor� To acquire a lock� a process appends
itself to the tail of the queue� If the queue was empty� the process owns the
lock� otherwise it waits for a signal from its predecessor� To release a lock�
a process checks to see if it has a waiting successor� If so� it signals that

�

successor� otherwise it empties the queue� See ���� for further details�
The queue�based counter improves on a simple lock�based counter in the

following way� Instead of keeping the counter value in a �xed memory loca�
tion� it is kept at the processor that currently holds the lock� On releasing
the lock� that processor passes ownership of the lock and the counter value
directly to the next processor in the queue� If there is no next processor� the
current value is stored in the lock� This technique combines synchroniza�
tion with data transfer and reduces communication requirements� Figure �
shows the pseudocode for this counter following the style of �����

Software combining tree In a combining tree� increment requests enter
at a leaf of the tree� When two requests simultaneously arrive at the same
node� they are combined� one process advances up the tree with the combined
request� while the other waits for the result� The combined requests are
applied to the counter when they reach the root� and the results are sent
back down the tree and distributed to the waiting processes� Hardware
combining trees were �rst proposed as a feature of the NYU Ultracomputer
�����
For our experiments� we implemented the software combining tree algo�

rithm proposed by Goodman et al� in ���� This algorithm can compute
a general Fetch�and�� operation� although we use it for the special case of
Fetch�and�Increment� A drawback of the algorithm �especially with respect
to the counting network algorithm to be presented below� is that delays in�
curred even by a single process in traversing the tree can inhibit the progress
of all others�
Our code for this algorithm is shown in Figures and �� Because Alewife

does not have a QOSB primitive� we have omitted all calls to QOSB� We also
mark in comments a change to enhance performance of the algorithm on
Alewife� and a �x to a bug in the original code� �The reader is referred to
the original paper ��� for a more complete description of the algorithm�� An
earlier software combining tree algorithm proposed by Yew et al� ��� is not
suitable for implementing a shared counter because it disallows asynchronous
combining of requests�
We investigated two ways to implement combining trees� In a shared�

memory implementation� each tree node is represented as a data structure in
shared memory� Simple test�and�set locks are used for atomically updating
the nodes� In amessage�passing implementation� each tree node is private to
an individual processor that provides access to the node via message�passing�

�

type qnode � record

next � �qnode

value � int � nil

type counter � record

qnode � �qnode �� initially nil

value � int

�� parameter I� below� points to a qnode record allocated

�� �in an enclosing scope	 in locally
accessible shared memory

procedure fetch�and�add�C � �counter� I � �qnode� v � int	 returns int

value � int �� acquire�value�C� I	

release�value�C� I� value�v	

return value

procedure acquire�value�C � �counter� I � �qnode	 returns int

I
next �� nil

predecessor � �qnode �� fetch�and�store��C
qnode� I	

if predecessor �� nil

I
value �� nil

predecessor
next �� I �� queue self and

repeat while I
value � nil �� wait for the value

return I
value

else

return C
value

procedure release�value�C � �counter� I � �qnode� value � int	

if I
next � nil

C
value �� value

old�tail � �qnode �� fetch�and�store��C
qnode� nil	

if old�tail � I return

usurper � �qnode �� fetch�and�store��C
qnode� old�tail	

repeat while I
next � nil

if usurper �� nil

usurper
next �� I
next

else

I
next
value �� value

else

I
next
value �� value

Figure �� The MCS�queue�based counter

�

function fetch�and�add�counter � tree� incr � int	 returns int

�� Part One

last�level� saved�result � int

node � tree�node

level � int �� FIRST�LEVEL

going�up � boolean �� TRUE

repeat

node �� get�node�counter� level� pid	

lock�node	

if node�status � RESULT then

unlock�node	

repeat while node�status � RESULT �� change� minimize locking

else if node�status � FREE then

node�status �� COMBINE

unlock�node	

level �� level��

else �� COMBINE or ROOT node

last�level �� level

going�up �� FALSE

while going�up

�� Part Two

total � int �� incr

level �� FIRST�LEVEL

repeat

visited � tree�node �� get�node�counter� level� pid	

lock�visited	

visited�first�incr �� total

if visited�wait�flag then

total �� total � visited�second�incr

level �� level � �

while level � last�level

Figure � Combining Tree Code� Parts One and Two

�

�� Part Three

if node�status � COMBINE then

node�second�incr �� total

node�wait�flag �� TRUE

repeat

unlock�node	

repeat while node�status � COMBINE �� change� minimize locking

lock �node	

while node�status � COMBINE

node�wait�flag �� FALSE

node�status �� FREE

saved�result �� node�result

else

saved�result �� node�result

node�result �� node�result � total

unlock�node	

�� Part Four

level �� last�level
 �

repeat

visited � tree�node �� get�node�counter� level� pid	

if visited�wait�flag then

visited�status �� RESULT

visited�result �� saved�result � visited�first�incr

else

visited�status �� FREE

unlock�visited	 �� bug fix� need an unlock here

level �� level
 �

while level � FIRST�LEVEL

return saved�result

Figure �� Combining Tree Code� Parts Three and Four

�

balancer
x0

x1 =

y
0

y1

= 2
+x0 x1

2
+x0 x1

7 6 4 2 1

5 3

1 3 5 7

2 4 6

input output

Figure �� A Balancer�

4 3 1

5

7 6 2

1 4

3

2 6

5 7

1 5

2 6

3

4 7 4

3 7

2 6

1 5 1 5

2 6

3 7

4

inputs outputs

Figure �� A sequential execution of an input sequence to a Bitonic��� net�
work�

A Fetch�and�� traverses the tree as a series of relayed messages�

Counting network A counting network ��� is a highly concurrent data
structure used to implement a counter� An abstract counting network� like
a sorting network ���� is a directed graph whose nodes are simple computing
elements called balancers� and whose edges are called wires� Each token
�input item� enters on one of the network	s w � n input wires� traverses
a sequence of balancers� and leaves on an output wire� Unlike a sorting
network� a w input counting network can count any number N � w of
input tokens even if they arrive at arbitrary times� are distributed unevenly
among the input wires� and propagate through the network asynchronously�

��

type balancer � record

type � �INTERNAL � OUTPUT�

up � �balancer

down � �balancer

state � boolean �� initially �

count � int

lock � �lock

�� parameter B� below� points to an input balancer

�� of a counting network

procedure traverse�cnet�B � �balancer	

next � �balancer �� B

repeat

lock�next
lock	

next
state �� �
 next
state

unlock�next
lock	

if state �� �

next �� next
up

else

next �� next
down

while next
type �� OUTPUT

lock�next
lock	

count � int �� next
count

next
count �� count � WIDTH

unlock�next
lock	

return count

Figure �� Code for traversing a counting network using shared memory
operations�

��

For example� Figure � shows a four�input four�output counting network�
Intuitively� a balancer �see Figure �� is just a toggle mechanism that re�
peatedly forwards tokens to alternating output wires� Figure � shows an
example computation in which input tokens traverse the network sequen�
tially� one after the other� For notational convenience� tokens are labeled in
arrival order� although these numbers are not used by the network� In this
network� the �rst input �numbered �� enters on wire and leaves on wire
�� the second leaves on wire � and so on� �The reader is encouraged to try
this for him�herself�� Thus� if on the i�th output wire the network assigns
to consecutive output tokens the values i� i � �� i� � �� � � �� it is counting
the number of input tokens without ever passing them all through a shared
computing element�
Just as for combining trees� we investigated two ways to implement

counting networks in software�

� shared memory� Each balancer is implemented as a binary variable in
shared memory� The value of the variable indicates the output wire
on which the next token will exit� The network wiring is kept in ta�
bles local to each process� Each process �shepherds� a token through
the network by traversing balancers� one after the other� applying an
atomic complement operation to determine which balancer to visit
next� The atomic complement is implemented in software using sim�
ple test�and�set locks as in the combining tree implementation� An
atomic bit�complement operation would allow a lock�free implementa�
tion� The code for traversing a network is shown in Figure ��

� message passing� Each balancer is implemented by variables private to
a particular processor� Balancers are assigned to processors at random
with a uniform distribution �� For balancers internal to the network�
two variables name the processors representing the destination bal�
ancers of the output wires� and the third� binary variable indicates on
which of the two output wires the next token will exit� For output bal�
ancers� the two variables hold counter values� and the the third� binary
variable indicates which counter will be advanced by the next arriving
token� A token is a message that carries the identity of the request�
ing processor� A process sends a token message to an input balancer�
which complements its binary variable and forwards the token� When

�Communication delays in Alewife are such that it is not worthwhile trying to place
nearby balancers on nearby processors in a 	��processor con�guration�

�

Alewife Machine

Alewife Node

cache

Sparcle network

Alewife
CMMU

DRAMFPU

Figure �� An Alewife node�

the token reaches an output balancer� the processor implementing the
balancer complements its binary variable� advances the appropriate
counter� and sends the result to the original requester�

Counting networks achieve a high level of throughput by decomposing
interactions among processors into pieces that can be performed in parallel�
e�ectively reducing memory contention� Aspnes� Herlihy� and Shavit ���
give two O�log� n� depth counting networks� In this paper� we use their
Bitonic counting network� whose layout is isomorphic to the Bitonic sorting
network of Batcher ���� Henceforth� we use �counting network� to mean
�Bitonic counting network��

� Experimental Methodology

The MIT Alewife multiprocessor �� is a cache�coherent� distributed�memory
multiprocessor that supports the shared�memory programming abstraction�
Figure � illustrates the high�level organization of an Alewife node� Each
node consists of a Sparcle processor ���� an FPU� ��KB of cache memory�
a �MB portion of globally�addressable memory� the Caltech MRC network
router� and the Alewife Communications and Memory Management Unit
�CMMU� �����
The CMMU implements a cache�coherent globally�shared address space

��

with the LimitLESS cache�coherence protocol ���� The LimitLESS cache�
coherence protocol maintains a small� �xed number of directory pointers in
hardware� and relies on software trap handlers to handle cache�coherence
actions when the number of read copies of a cache block exceeds the limited
number of hardware directory pointers� The current implementation of the
Alewife CMMU has � hardware directory pointers per cache line�
The CMMU also interfaces the Sparcle processor to the interconnec�

tion network� allowing the use of an e
cient message�passing interface for
communication ����� The LimitLESS protocol relies on this interface to han�
dle coherence operations in software� The message interface also allows us
to use message�passing operations to implement the synchronization opera�
tions� An incoming message traps the processor and invokes a user�de�ned
message handler� The message handler can be atomic with respect to other
message handlers in the style of Active Messages �����
Our experiments were done on the ASIM simulator� an accurate cycle�by�

cycle simulator for the Alewife architecture� This is the principal simulator
used by the Alewife research group� In this section� we describe the three
synthetic benchmarks we use to compare counting techniques�

��� Counting Benchmark

In this benchmark �Figure ��� each processor executes a loop that increments
a counter as fast as it can� We measure the number of satis�ed increment
requests during the interval when all threads are actively issuing requests�
and divide that by the length of the interval� From these measurements
we arrive at the average throughput of increment requests� This is the
simplest possible benchmark� producing the highest levels of concurrency
and contention�

��� Index Distribution Benchmark

Index distribution is a load balancing technique in which processes dynami�
cally choose independent loop iterations to execute in parallel� �As a simple
example of index distribution� consider the problem of rendering the Man�
delbrot Set� Each loop iteration covers a rectangle in the screen� Because
rectangles are independent of one another� they can be rendered in parallel�
but because some rectangles take unpredictably longer than others� dynamic
load balancing is important for performance�� A similar application is a soft�
ware instruction counter ����

��

procedure do�counting�C � �counter� iters � int	

i � int �� �

repeat

fetch�and�increment�counter	

i �� i � �

while �i � iters	

Figure �� Counting Benchmark

procedure do�index�C � �counter� iters � int� w � int	

repeat

i �� fetch�and�increment�counter	

delay�random�	 mod w	

while �i � iters	

Figure �� Index Distribution Benchmark

��

In this benchmark �Figure ��� n processes execute ��� increments�
where n ranges from � to ��� Each process executes on one processor� Be�
tween each increment� each process pauses for a duration randomly chosen
from a uniform distribution between � and w� where w is ���� ����� and
����� The increment models a process taking an index� and the random
pause represents the execution of the loop iteration for that index� This
benchmark is similar to Bershad	s benchmark for lock�free synchronization
����

��� Job Queue Benchmark

A job queue is a load balancing technique in which processes dynamically
insert and remove jobs from a shared queue� Each process alternates de�
queuing a job� working on the job for some duration� and enqueuing a job�
The queue itself consists of an array with a �ag on each element that signi�
�es if the element is present or not� We use full�empty bits �� on Alewife
to implement this �ag� A head counter indicates the �rst full element� and
a tail counter indicating the �rst empty element� The elements of the array
are distributed across the machine�
A process dequeues an item by incrementing the head counter� and atom�

ically removing one job from the corresponding array position� Enqueues are
performed analogously� Note that multiple enqueue and dequeue operations
can proceed concurrently� since enqueues synchronize by incrementing the
head counter� and dequeues synchronize by incrementing the tail counter�
This benchmark �Figure ��� is structured as follows� For We vary the

number of processes� P from � to ��� Each process� executing on one pro�
cessor� repeatedly

�� obtains an index� m� from the head counter

� dequeues a job from location m modulo P of an array of size P

�� pauses for a duration randomly chosen from a uniform distribution
between � and w� where w is ���� ����� and ����� and then

�� obtains an index� n� from the tail counter

�� enqueues a new job at location n modulo P of the array of size P

The benchmark halts when a total of ��� jobs have been dequeued and
executed by all the processes�

��

type q�elem � record

value � int

not�empty � boolean �� initially �

job�array � distributed array�� � P
�� of q�elem

procedure do�job�queue�enq � �counter� deq � �counter� njobs � int	

enq�index� deq�index � int

repeat

enq�index �� fetch�and�increment�enq�counter	

enq�job�enq�index mod P� generate�job�		

deq�index �� fetch�and�increment�deq�counter	

job �� deq�job�deq�index mod P	

delay�random�	 mod w	

while �deq�index � njobs	

procedure enq�job�index � int� the�job � job	

repeat while �job�array�index��not�empty	

job�array�index��value �� the�job

job�array�index��not�empty �� true

procedure deq�job�index � int	 returns job

repeat until �job�array�index��not�empty	

the�job � job �� job�array�index��value

job�array�index��not�empty �� false

return job

Figure ��� Job Queue benchmark

��

� Spin-lock-based
� MCS-lock-based
� Message-based
� Queue-based
� Combining Tree
� Counting Network[16]

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|200

|400

|600

|800

|1000

|1200

 Processors

 T
hr

ou
gh

pu
t (

In
cr

/m
s)

�

�

�

�

�

�

� �

�

�
� � �

� � �

�

�

�

� � �
� � �

�

�

�

� �
�

� �

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

Figure ��� Comparing the throughput of the �ve counting techniques�

� Experimental Results

In this section� we present the results of running the benchmarks on various
implementations of shared counters on the Alewife simulator� All timings
assume a �� MHz processor clock� In all experiments� we use a radix�
combining tree with �� leaves and a counting network of width ��� unless
otherwise stated� We �rst present the results for the counting benchmark�
This benchmark gives a sense of the scalability and the peak throughput
of each of the counters at di�erent levels of concurrency� We then present
the throughput results for the index distribution and job queue benchmarks�
which illustrate how the counters would perform under more realistic work�
loads�

��� Counting Benchmark

Figure �� presents the throughput attained by each of the counting algo�
rithms� We measure the throughput during the interval when all processors
are actively incrementing the counter� thereby ignoring startup and wind�

��

down e�ects�
The results show that when concurrency is low� the spin�lock�based

counter gives the highest throughput due to the simplicity of the spin lock
algorithm� Nevertheless� when concurrency increases� throughput drops o�
dramatically� even for locking with exponential backo�� The MCS lock
counter� the queue lock counter� and the message�based counter maintain
essentially constant throughput as concurrency increases� This scalability
can be attributed to queuing� In both the MCS�lock�based counter and
the queue�based counter� queuing is explicitly performed in software� In
the message�based counter� queuing occurs automatically in the processors	
input message queues�
Because the queue�based counter combines transfer of the counter with

transfer of the lock� it produces less network tra
c� and outperforms the
original MCS�lock counter by a factor of more than ���
Finally� we observe that throughput increases with concurrency only for

combining trees and for counting networks� This increase can be attributed
to two factors� both techniques reduce contention� and both techniques
permit parallel increments�

Optimizing combining trees and counting networks� We imple�
ment the combining tree and counting network counters using both shared�
memory operations and message�passing� Figure � contrasts their per�
formance� showing that the message�passing implementations have roughly
twice the throughput�
There are two reasons for this performance di�erence� First� the message�

passing implementation requires less communication because each balancer
is always local to the processor that accesses it� and because traversing a data
structure with messages is more e
cient� Second� in the message�passing
implementation� message receipt causes an interrupt whose handler is itself
UN�interruptible by other messages� and therefore the interrupt handler
does not require locks to ensure atomicity�

Saturation of counting networks� Figure �� shows that the throughput
of the ���wide counting network dips at �� processors� To determine whether
this dip indicates that the counting network is saturating� we extended the
simulation to �� processors and tested counting networks with widths of
�� � and ��� Figure �� shows that the ���wide counting network does not
saturate at �� processors� We think the dip at �� processors occurs because

��

� Message-Passing CNet[16]
� Shared-Memory CNet[16]
� Message-Passing CTree
� Shared-Memory CTree

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|200

|400

|600
|800

|1000

|1200

 Processors

 T
hr

ou
gh

pu
t (

In
cr

/m
s)

�
�

�

�

�

�

�

�

�� �

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure �� Comparing the throughput of combining trees �CTree� and count�
ing networks �CNet� implemented with shared�memory and message�passing
operations�

�

� CNet[16]
� CNet[8]
� CNet[4]

|

0
|

10
|

20
|

30
|

40
|

50
|

60
|

70
|

80

|0

|300

|600

|900

|1200

|1500

|1800

 Processors

 T
hr

ou
gh

pu
t (

In
cr

/m
s)

�
�
�

�

�

�

�

�

�

�
�

�

�

�

�

� �
�

�

�

�

� � �

�
� �

Figure ��� Throughput of various sizes of counting networks�

the ���wide counting network contains �� nodes� requiring more than one
network node to be mapped onto a processor on a ���processor machine�
Figure �� also shows the concurrency levels at which the smaller counting
networks saturate�

��� Index Distribution Benchmark

We now look at the throughput of the shared counters when applied to
index distribution� Compared to the counting benchmark� this benchmark
provides a more varied load on the counters since each thread performs some
computation in between increment requests� The amount of computation
is varied by the parameter w� a higher w results in more computation�
The e�ect of increasing w is to reduce concurrency �and contention� at the
counter�
Figure �� presents the results for a spin�lock�based counter� a message�

based counter� a combining tree� and a counting network for various values
of w� The elapsed times are plotted in a log�log graph so that linear speedups
will show up as a straight line� Since the queue�based and MCS�lock�based

�

� CNet[16]
� CTree
� Message-based
� Spin-lock-based

|

1
|

2
|

4
|

8
|

16
|

32
|

64

|2.0

|4.0

|8.0

|16.0

|32.0

|64.0

|128.0

 Elapsed Times: 2048 Iters, w = 100

 Processors

 T
im

e
(m

s)

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

�

�
�

�
�

�

� � CNet[16]
� CTree
� Message-based
� Spin-lock-based

|

1
|

2
|

4
|

8
|

16
|

32
|

64

|4.0

|8.0

|16.0

|32.0
|64.0

|128.0

|256.0

 Elapsed Times: 2048 Iters, w = 1000

 Processors

 T
im

e
(m

s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� CNet[16]
� CTree
� Message-based
� Spin-lock-based

|

1
|

2
|

4
|

8
|

16
|

32
|

64

|16.0

|32.0

|64.0

|128.0

|256.0

|512.0

 Elapsed Times: 2048 Iters, w = 5000

 Processors

 T
im

e
(m

s) �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

Figure ��� Elapsed time measurements of the index distribution benchmark�

counters have the same scaling behavior as the message�based counter� we
omit them here�
For the spin�lock�based counter� performance degrades beyond a small

number of processors� This degradation is worst when w is small� For
the message�based counter� performance peaks and then degrades slightly
beyond �� processors when w � ��� and �� processors when w � ����� In
contrast� both the combining tree and counting network sustain speedups
on the benchmark all the way up to �� processors�
Performance degrades drastically with the spin�lock�based counter be�

cause of contention� as can be expected from the throughput results pre�
sented earlier� While queuing reduces contention and prevents a major
degradation of performance� sequential access to the message�based counter
limits speedup when w� and thus computation grain size� is small� The only
way to sustain speedups as more processors are added is to allow counting
to occur in parallel� as in the combining tree and counting network�

��� Job Queue Benchmark

We now look at the performance of the shared counters when applied to a
parallel job queue� Like the index distribution benchmark� this benchmark
provides a varied load on the counters since each thread performs some
computation in between accesses to the job queue� However� there are now
two counters� one for enqueuing and one for dequeuing� and the operation
includes an access to a shared data structure representing the job queue�
Thus� this benchmark places less contention on the counters compared to
the index distribution benchmark�
Figure �� presents the results for a spin�lock�based counter� a message�

based counter� a combining tree� and a counting network for various values
of w� As before� the elapsed times are plotted in a log�log graph� Again�
performance degrades drastically with the spin�lock�based counter and is
limited with the message�based counter� rea
rming the observation it is
necessary both to avoid contention and to permit parallelism to sustain
speedups as more processors are added�

��� Combining Rates

When we compare the performance of the combining tree and the counting
network in the index distribution and job queue benchmarks� we �nd that
the counting network performs much better than can be expected from the

�

� CNet[16]
� CTree
� Message-based
� Spin-lock-based

|

1
|

2
|

4
|

8
|

16
|

32
|

64

|4.0

|8.0

|16.0

|32.0

|64.0

|128.0

 Elapsed Times: 2048 Tasks, w = 100

 Processors

 T
im

e
(m

s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

� CNet[16]
� CTree
� Message-based
� Spin-lock-based

|

1
|

2
|

4
|

8
|

16
|

32
|

64

|4.0

|8.0

|16.0

|32.0
|64.0

|128.0

|256.0

 Elapsed Times: 2048 Tasks, w = 1000

 Processors

 T
im

e
(m

s)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

� CNet[16]
� CTree
� Message-based
� Spin-lock-based

|

1
|

2
|

4
|

8
|

16
|

32
|

64

|16.0

|32.0

|64.0

|128.0

|256.0

|512.0

 Elapsed Times: 2048 Tasks, w = 5000

 Processors

 T
im

e
(m

s) �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure ��� Elapsed time measurements of the job queue benchmark�

�

Concurrency w � ��� w � ���� w � ����

� ��� ��� ���
 ���� �� ���
� ��� ��� �
� ���� ���� ���
�� ���� ���� ����
� ���� ���� ����
�� ��� ���� ����
�� ���� ���� ����

Table � Combining rate �as a percentage� at combining tree nodes in the
index distribution benchmark

throughput measurements in Figure ��� To investigate this phenomenon�
we instrumented the simulation to monitor combining at the nodes of the
combining tree� For the counting benchmark� we measured combining rates
of close to ���� for �� processors� Tables and � summarize the results by
presenting the percentage of arrivals at combining tree nodes that combine
with some other arrival in the index distribution and job queue benchmarks�
From the data� we can see that as the rate of arrivals of increment

requests is reduced� so does the rate of combining� In the combining tree
algorithm� when a node misses a chance for combining� a request arriving
later at that node must wait for the earlier request to ascend the tree and
return before it can progress� We speculate that this sensitivity of combining
trees to the arrival rate of increment requests degrades performance relative
to counting networks�

��� Importance of Parallelism

Recall that counting networks and combining trees scale for two reasons�
��� distributing memory accesses reduces contention� and �� parallelism
increases throughput� To illustrate the relative importance of these two
properties� we now investigate a counter implementation that has low con�
tention� but does not attain a high degree of parallelism�
A counter is linearizable ��� if the values it returns are consistent with

the real�time order of the matching requests� For example� linearizability
ensures that if process p takes a value before process q requests a value�

�

Concurrency w � ��� w � ���� w � ����

� ��� ��� ���
 ��� ��� ���
� �� ��� ���
� ��� ��� ���
�� ��� ��� ��
� ���� ���� ����
�� ���� ��� ���
�� ���� ���� ����

Table �� Combining rate at combining tree nodes in the job queue bench�
mark

then p	s value will be less than q	s� The bitonic counting network is not
linearizable� but it can be made linearizable by adding a simple linearizing
�lter to the network	s output wires� The idea is simple� any token leaving
the network waits until the token taking the next lower value exits� Although
the solution introduces a sequential waiting chain� each processor will wait
on a separate location� thus avoiding memory contention� �The linearizing
�lter can also be used to implement a general Fetch�and�� operation as in
the combining tree��
We construct the linearizable counting network for P processors from

two component structures� One is the Bitonic counting network described
above� and the other is a linearizing �lter of width P � A linearizing �lter
is a P �element array of boolean values� called phase bits that are initially
�� De�ne the function phase�v� to be b�v�P �c mod � We construct the
linearizable network by having tokens �rst traverse the counting network
and then access the waiting �lter� When a token exits the counting network
with value v� it awaits its predecessor by waiting until location �v��� mod P
in the �lter is set to phase�v � ��� When this event occurs� it noti�es its
successor by setting location v to phase�v�� It then returns its value�
Figure �� demonstrates the importance of having both low contention

and parallelization� It clearly shows that the throughput of the linearized
counting network saturates beyond �� processors even though contention
in the linearized network is avoided� This emphasizes the importance of
avoiding serialization in the design of shared data structures�

�

� CNet[16]
� Linearized Cnet[16]
� Linearized Cnet[8]

|

0
|

10
|

20
|

30
|

40
|

50
|

60

|0

|200

|400

|600
|800

|1000

|1200

 Processors

 T
hr

ou
gh

pu
t (

In
cr

/m
s)

�
�

�

�

�

�

�

�

��

�
�

� �

�

��

� �

� � �

Figure ��� Throughput of a linearized counting network�

�

� Conclusions

We have analyzed the throughput of �ve distinct counting techniques� each
based on a technique proposed in the literature� We found that scalability
for concurrent counting requires two logically distinct properties� avoidance
of memory or interconnect contention� and allowing true concurrency among
increment operations� The observed behaviors fell into three categories� ���
techniques whose throughput degraded as concurrency increased� �� tech�
niques whose throughput did not degrade� but leveled out starting at a
low level of concurrency� and �� techniques where throughput continued to
increase with concurrency� The �rst category encompasses the lock�based
counters� which su�er from contention as concurrency increases� The second
category encompasses the message�based and queue�based counters� which
do not su�er from contention� but do not allow concurrent access� The
last category encompasses software combining trees and counting networks�
which are the only techniques we observed to be truly scalable� since they
avoid contention� and they permit concurrent access� Software combining
trees were observed to be more sensitive to �uctuations in the arrival rates
of requests� Both software combining trees and counting networks are sig�
ni�cantly more e
cient when implemented using message�passing instead of
shared memory�
Our results suggest that distributed data structures designed to alleviate

contention and enhance parallelism are the most promising approach to
scalable synchronization� It would be interesting to see similar experiments
for other problems� other benchmarks� and other architectures�

Acknowledgments

Our thanks to the members of the Alewife research group for ASIM and
for putting up with the time�consuming simulations on the group	s work�
stations� The Alewife project is funded by NSF grant MIP������� and
DARPA contract N���������K�����

References

��� A� Agarwal and M� Cherian� Adaptive backo� synchronization tech�
niques� In Proceedings of the ��th international symposium on computer
architecture� June �����

�

�� A� Agarwal et al� The MIT Alewife Machine� A Large�Scale
Distributed�Memory Multiprocessor� In Proceedings of Workshop on
Scalable Shared Memory Multiprocessors� Kluwer Academic Publishers�
����� An extended version of this paper has been submitted for publi�
cation� and appears as MIT�LCS Memo TM����� �����

��� Anant Agarwal� John Kubiatowicz� David Kranz� Beng�Hong Lim�
Donald Yeung� Godfrey D	Souza� and Mike Parkin� Sparcle� An Evolu�
tionary Processor Design for Multiprocessors� IEEE Micro� ��������!���
June �����

��� T�E� Anderson� The performance of spin lock alternatives for shared�
memory multiprocessors� IEEE Transactions on Parallel and Dis�
tributed Systems� ������!��� January �����

��� J� Aspnes� M�P� Herlihy� and N� Shavit� Counting networks and multi�
processor coordination� In Proceedings of the ��rd Annual Symposium
on Theory of Computing� May �����

��� K�E� Batcher� Sorting networks and their applications� In Proceedings
of AFIPS Joint Computer Conference� pages ���!���� �����

��� B� Bershad� Practical considerations for lock�free concurrent ob�
jects� Technical Report CMU�CS�������� School of Computer Science�
Carnegie Mellon University� Pittsburgh� PA� September �����

��� David Chaiken� John Kubiatowicz� and Anant Agarwal� LimitLESS Di�
rectories� A Scalable Cache Coherence Scheme� In Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems 	ASPLOS IV
� pages �!��� ACM� April �����

��� T�H� Cormen� C�E� Leiserson� and R� L� Rivest� Introduction to Algo�
rithms� MIT Press� Cambridge MA� �����

���� Thorsten von Eicken� David Culler� Seth Goldstein� and Klaus
Schauser� Active Messages� A Mechanism for Integrated Communica�
tion and Computation� In ��th International Symposium on Computer
Architecture� May ����

���� E� Freudenthal and A� Gottlieb� Processor coordination with fetch�and�
increment� In Proceedings of the �th ASPLOS� April ��� pages ��!���

�

��� J�R� Goodman� M�K� Vernon� and P�J� Woest� E
cient synchronization
primitives for large�scale cache�coherent multiprocessors� In Proceedings
of the �rd ASPLOS� pages ��!��� ACM� April �����

���� A� Gottlieb� R� Grishman� C�P� Kruskal� K�P� McAuli�e� L� Rudolph�
and M� Snir� The NYU Ultracomputer � designing an MIMD parallel
computer� IEEE Transactions on Computers� C��������!���� Febru�
ary �����

���� A� Gottlieb� B�D� Lubachevsky� and L� Rudolph� Basic techniques for
the e
cient coordination of very large numbers of cooperating sequen�
tial processors� ACM Transactions on Programming Languages and
Systems� �������!���� April �����

���� G� Graunke and S� Thakkar� Synchronization algorithms for shared�
memory multiprocessors� IEEE Computer� �������!��� June �����

���� M�P� Herlihy� B�H� Lim� and N� Shavit Low Contention Load Balancing
on Large�Scale Multiprocessors� In Proceedings of the �rd Annual ACM
Symposium on Parallel Algorithms and Architectures� July ���� San
Diego� CA�

���� John Kubiatowicz� David Chaiken� and Anant Agarwal� The Alewife
CMMU� Addressing the Multiprocessor Communications Gap� In
HOTCHIPS� August ����� To appear�

���� John Kubiatowicz and Anant Agarwal� Anatomy of a Message in the
Alewife Multiprocessor� In International Supercomputing Conference
	ICS
 ����� Tokyo� Japan� July ����� IEEE�

���� J�M� Mellor�Crummey and M�L� Scott� Algorithms for scalable syn�
chronization on shared�memory multiprocessors� ACM Transactions
on Computer Systems� ������!��� February �����

��� J�M� Mellor�Crummey and T�J� LeBlanc� A software instruction
counter� In Proceedings of the �rd ACM International Conference on
Architectural Support for Programming Languages and Operating Sys�
tems� pages ��!��� April ���

��� L� Rudolph and Z� Segall� Dynamic decentralized cache schemes for
MIMD parallel processors� In ��th Annual International Symposium
on Computer Architecture� pages ���!���� June �����

��

�� B�J� Smith� Architecture and Applications of the HEP Multiprocessor
Computer System� Society of Photooptical Instrumentation Engineers�
����� Vol ��� pages ������

��� M�P� Herlihy� N� Shavit� and O� Waarts� Linearizable Counting Net�
works In Proceedings of the �nd Annual Symposium on Foundations of
Computer Science San Juan� Puerto Rico� October ����� pp� �������

��� M�P� Herlihy and J�M� Wing� Linearizability� A correctness condition
for concurrent objects� ACM Transactions on Programming Languages
and Systems� ��������!��� July �����

��� P�C Yew� N�F� Tzeng� and D�H� Lawrie� Distributing hot�spot address�
ing in large�scale multiprocessors� IEEE Transactions on Computers�
pages ���!���� April �����

��

