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Abstract

The notion of counting is central to a number of basic multipro-
cessor coordination problems, such as dynamic load balancing, barrier
synchronization, and concurrent data structure design. In this paper,
we investigate the scalability of a variety of counting techniques for
large-scale multiprocessors. We compare counting techniques based
on: (1) spin locks, (2) message passing, (3) distributed queues, (4)
software combining trees, and (5) counting networks. Our comparison
is based on a series of simple benchmarks on a simulated 64-processor
Alewife machine, a distributed-memory multiprocessor currently under
development at MIT. Although locking techniques are known to per-
form well on small-scale, bus-based multiprocessors, serialization limits
performance and contention can degrade performance. Both count-
ing networks and combining trees substantially outperform the other
methods by avoiding serialization and alleviating contention, although
combining tree throughput is more sensitive to variations in load. A
comparison of shared-memory and message-passing implementations
of counting networks and combining trees shows that message-passing
implementations have substantially higher throughput.
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1 Introduction

The notion of counting is central to a number of basic multiprocessor coor-
dination problems, such as dynamic load balancing, barrier synchronization,
and concurrent data structure design. (See Freudenthal and Gottlieb [11]
for further examples.) For our purposes, a counter is an object that holds an
integer value, and provides a fetch-and-increment operation that increments
the counter’s value and returns its previous value. The values returned may
represent addresses in memory, loop or array indices, program counters, or
destinations on an interconnection network.

It is difficult to design software counting techniques that scale well. The
challenge is how to ensure that the counter’s throughput continues to in-
crease as the level of concurrency increases. There are two reasons why it is
difficult for throughput to keep up with concurrency: contention in memory
and interconnect, and unwanted serialization (i.e., absence of parallelism).
In this paper, we present the results of an experimental investigation of the
scalability of a variety of software counting techniques. We consider five
basic techniques:

1. Lock-based counters, encompassing both test-and-test-and-set [21] locks
with exponential backoff [1, 4, 15], and a version of the MCS queue
lock that relies only on atomic swaps [19].

2. A message-based counter, in which a single processor increments the
counter in response to messages.

3. A queue-based counter, which is a version of the MCS queue lock [19]
optimized for distributed counting.

4. Software combining trees [12, 25].

5. Counting networks [5].

For each technique, we ran a series of simple benchmarks on a simulated
64-processor Alewife machine [2], a cache-coherent distributed-memory ma-
chine currently under development at MIT. Our experiments were done on
the ASIM simulator, an accurate cycle-by-cycle simulator for the Alewife
architecture. ASIM is the principal simulator used by the Alewife research
group.

Each of the techniques we consider has been independently proposed
as a way to perform scalable synchronization in highly concurrent systems.



Here, for the first time, they are compared directly on a realistic large-scale
shared-memory multiprocessor.
Our results suggest the following:

e For a concurrent counting technique to be scalable, it must have two
distinct properties. First, it must avoid generating high levels of mem-
ory or interconnect contention, and second, it must permit concurrent
increment operations to proceed in parallel.

e For some techniques, such as the lock-based counters, contention causes
performance to degrade substantially at higher levels of concurrency.
Earlier experimental work on small-scale multiprocessors has shown
that spin locks with exponential backoff and queue locks both perform
well for certain kinds of problems on bus-based architectures [4, 15, 19].
Nevertheless, our results indicate that these techniques do not scale
well to large-scale distributed memory multiprocessors. As concur-
rency increases, both spin locks with exponential backoff and queue
locks are severely affected by contention.

e Other techniques, such as the message and queue-based counters, are
relatively impervious to contention, but nevertheless scale poorly be-
cause the absence of concurrency causes throughput to plateau at a
relatively low level.

e Software combining trees and counting networks are the only tech-
niques we found to be truly scalable. For both techniques, throughput
increases with concurrency for as far as our experiments were able
to measure. These techniques avoid contention in the same way: by
distributing synchronization operations across a data structure. They
support concurrency in different ways: combining trees merge incre-
ment requests, while counting networks allow multiple threads to tra-
verse the network at the same time.

e Although both counting networks and software combining trees have
similar scaling behavior, combining trees are more susceptible to vari-
ations in the inter-arrival times of increment requests because two
requests arriving at a node must arrive within a small time window
for combining to occur. Additionally, locks that are held for a signifi-
cant amount of time at the combining tree nodes may block progress
up the tree.



e Combining trees and counting networks can be implemented either in
distributed shared memory, or directly by message passing and inter-
processor interrupts. For both combining trees and counting networks,
message passing substantially outperforms shared memory.

We note that the combining tree can compute a general Fetch-and-®
operation. However, unlike counting networks, it is not lock-free: a stalled
process can inhibit other processes from making forward progress. In this
respect, counting networks have a substantial advantage over combining
trees in systems where individual processes might incur arbitrary delays, an
important property for concurrent data structure design.

A preliminary version of some of these results appeared in [16]. This
paper extends the earlier paper in the following ways.

o We revise the queue-lock-based counter to use the MCS queue lock
instead of the Anderson queue lock [4].

e We add an analysis of a centralized message-based counter.

o We add message-passing implementations of combining trees and count-
ing networks, which we have found to be the most scalable of all the
techniques considered.

e We show the importance of parallelism for scalable performance of
shared data structures. We do so by comparing two distributed data
structures: a counting network and a linearizable counting network.
The latter can compute a general Fetch-and-® but introduces a se-
quential waiting chain.

o We present statistics on the combining rates for the software combining
tree.

2 Techniques for Concurrent Counting

Table 1 summarizes the five techniques we consider for shared counting. It is
convenient to classify these techniques as either centralized or distributed,
and as either sequential or parallel. A counter is centralized if its value
is kept in a unique memory location, and distributed if it is kept across a
distributed data structure. Access to the counter is sequential if requests
must update the counter in a one-at-a-time order, and parallel if multiple
requests can update the counter simultaneously.



Method

Centralized

or Distributed

Sequential
or Parallel

Lock-based counter Centralized Sequential
Message-based counter || Centralized Sequential
Queue-based counter Distributed Sequential
Combining Tree Centralized Parallel
Counting Network Distributed Parallel

Table 1: Techniques for concurrent counting

Lock-based counter In this technique, the counter is represented by a
shared memory location protected by a spin lock. To increment the counter,
a processor must acquire the lock, read and increment the memory location,
and release the lock. We consider two spin lock algorithms: test-and-test-
and-set with exponential backoff [4, 15], and a version of the MCS queue

lock that relies only on atomic swaps [19].

Message-based counter In this technique, the shared counter is rep-
resented by a private memory location owned by a unique processor. To
increment the counter, a processor sends a request message to that unique
processor and waits for a reply. The processor receiving the request message
increments the counter and sends a reply message containing the value of
the counter. Request messages are handled atomically with respect to other
request messages.

Queue-based counter This technique is based on the MCS queue lock
algorithm, adapted for counting on a network-based multiprocessor. The
MCS queue lock maintains a pointer to the tail of a software queue of lock
waiters. The lock is free if it points to an empty queue, and is busy otherwise.
The process at the head of the queue owns the lock, and each process on the
queue has a pointer to its successor. To acquire a lock, a process appends
itself to the tail of the queue. If the queue was empty, the process owns the
lock; otherwise it waits for a signal from its predecessor. To release a lock,
a process checks to see if it has a waiting successor. If so, it signals that



successor, otherwise it empties the queue. See [19] for further details.

The queue-based counter improves on a simple lock-based counter in the
following way. Instead of keeping the counter value in a fixed memory loca-
tion, it is kept at the processor that currently holds the lock. On releasing
the lock, that processor passes ownership of the lock and the counter value
directly to the next processor in the queue. If there is no next processor, the
current value is stored in the lock. This technique combines synchroniza-
tion with data transfer and reduces communication requirements. Figure 1
shows the pseudocode for this counter following the style of [19].

Software combining tree In a combining tree, increment requests enter
at a leaf of the tree. When two requests simultaneously arrive at the same
node, they are combined; one process advances up the tree with the combined
request, while the other waits for the result. The combined requests are
applied to the counter when they reach the root, and the results are sent
back down the tree and distributed to the waiting processes. Hardware
combining trees were first proposed as a feature of the NYU Ultracomputer
[13].

For our experiments, we implemented the software combining tree algo-
rithm proposed by Goodman et al. in [12]. This algorithm can compute
a general Fetch-and-® operation, although we use it for the special case of
Fetch-and-Increment. A drawback of the algorithm (especially with respect
to the counting network algorithm to be presented below) is that delays in-
curred even by a single process in traversing the tree can inhibit the progress
of all others.

Our code for this algorithm is shown in Figures 2 and 3. Because Alewife
does not have a QOSB primitive, we have omitted all calls to QOSB. We also
mark in comments a change to enhance performance of the algorithm on
Alewife, and a fix to a bug in the original code. (The reader is referred to
the original paper [12] for a more complete description of the algorithm.) An
earlier software combining tree algorithm proposed by Yew et al. [25] is not
suitable for implementing a shared counter because it disallows asynchronous
combining of requests.

We investigated two ways to implement combining trees. In a shared-
memory implementation, each tree node is represented as a data structure in
shared memory. Simple test-and-set locks are used for atomically updating
the nodes. In a message-passing implementation, each tree node is private to
an individual processor that provides access to the node via message-passing.



type qnode = record
next : “qnode
value : int | nil

type counter = record
gnode : “gnode // initially nil
value : int

// parameter I, below, points to a qnode record allocated
// (in an enclosing scope) in locally-accessible shared memory
procedure fetch_and_add(C : “counter, I : “qnode, v : int) returns int
value : int := acquire_value(C, I)
release_value(C, I, value+v)
return value

procedure acquire_value(C : “counter, I : ~“qnode) returns int

I->next := nil
predecessor : “qnode := fetch_and_store(&C->gqnode, I)
if predecessor != nil

I->value := nil

predecessor—>next := I // queue self and

repeat while I->value = nil // wait for the value
return I->value

else
return C->value

procedure release_value(C : “counter, I : ~“qnode, value : int)
if I->next = nil
C->value := value
old_tail : “qnode := fetch_and_store(&C->qnode, nil)
if old_tail = I return
usurper : ~“qnode := fetch_and_store(&C->qnode, old_tail)
repeat while I->next = nil

if usurper != nil
usurper—>next := I->next
else
I->next->value := value
else
I->next->value := value

Figure 1: The MCS-queue-based counter
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function fetch_and_add(counter : tree, incr : int) returns int

// Part One
last_level, saved_result : int
node : tree_node

level : int := FIRST_LEVEL
going_up : boolean := TRUE

repeat
node := get_node(counter, level, pid)
lock(node)
if node.status = RESULT then
unlock(node)

repeat while node.status = RESULT // change: minimize locking
else if node.status = FREE then
node.status := COMBINE
unlock(node)
level := level+l
else // COMBINE or ROOT node
last_level := level
going_up := FALSE
while going_up

// Part Two
total : int := incr
level := FIRST_LEVEL
repeat
visited : tree_node := get_node(counter, level, pid)
lock(visited)
visited.first_incr := total
if visited.wait_flag then
total := total + visited.second_incr
level := level + 1

while level < last_level

Figure 2: Combining Tree Code: Parts One and Two



// Part Three
if node.status = COMBINE then

node.second_incr := total
node.wait_flag := TRUE
repeat

unlock(node)

repeat while node.status = COMBINE // change: minimize locking
lock (node)

while node.status = COMBINE

node.wait_flag := FALSE

node.status := FREE

saved_result := node.result
else
saved_result := node.result
node.result := node.result + total
unlock(node)

// Part Four
level := last_level - 1
repeat
visited : tree_node := get_node(counter, level, pid)
if visited.wait_flag then
visited.status := RESULT
visited.result :

saved_result + visited.first_incr
else
visited.status := FREE
unlock(visited) // bug fix: need an unlock here
level := level - 1
while level >= FIRST_LEVEL

return saved_result

Figure 3: Combining Tree Code: Parts Three and Four
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Figure 5: A sequential execution of an input sequence to a BITONIC[4] net-
work.

A Fetch-and-® traverses the tree as a series of relayed messages.

Counting network A counting network [5] is a highly concurrent data
structure used to implement a counter. An abstract counting network, like
a sorting network [9], is a directed graph whose nodes are simple computing
elements called balancers, and whose edges are called wires. Each token
(input item) enters on one of the network’s w < = input wires, traverses
a sequence of balancers, and leaves on an output wire. Unlike a sorting
network, a w input counting network can count any number N > w of
input tokens even if they arrive at arbitrary times, are distributed unevenly
among the input wires, and propagate through the network asynchronously.
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type balancer = record
type : [INTERNAL | OUTPUT]

up : "balancer
down : “balancer
state : boolean // initially 0

count : int
lock : “lock

// parameter B, below, points to an input balancer
// of a counting network
procedure traverse_cnet(B : ~“balancer)

next : “balancer := B
repeat
lock(next->lock)
next->state := 1 - next->state

unlock(next—->lock)
if state := 0
next := next->up
else
next := next->down
while next->type !'= OUTPUT
lock(next->lock)
count : int := next->count
next->count := count + WIDTH
unlock(next—>lock)
return count

Figure 6: Code for traversing a counting network using shared memory
operations.
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For example, Figure 5 shows a four-input four-output counting network.
Intuitively, a balancer (see Figure 4) is just a toggle mechanism that re-
peatedly forwards tokens to alternating output wires. Figure 5 shows an
example computation in which input tokens traverse the network sequen-
tially, one after the other. For notational convenience, tokens are labeled in
arrival order, although these numbers are not used by the network. In this
network, the first input (numbered 1) enters on wire 2 and leaves on wire
1, the second leaves on wire 2, and so on. (The reader is encouraged to try
this for him/herself.) Thus, if on the i-th output wire the network assigns
to consecutive output tokens the values 2,7+ 4,7+ 2 - 4,..., it is counting
the number of input tokens without ever passing them all through a shared
computing element.

Just as for combining trees, we investigated two ways to implement
counting networks in software.

e shared memory: Each balancer is implemented as a binary variable in
shared memory. The value of the variable indicates the output wire
on which the next token will exit. The network wiring is kept in ta-
bles local to each process. Each process “shepherds” a token through
the network by traversing balancers, one after the other, applying an
atomic complement operation to determine which balancer to visit
next. The atomic complement is implemented in software using sim-
ple test-and-set locks as in the combining tree implementation. An
atomic bit-complement operation would allow a lock-free implementa-
tion. The code for traversing a network is shown in Figure 6.

e message passing: Each balancer is implemented by variables private to
a particular processor. Balancers are assigned to processors at random
with a uniform distribution !. For balancers internal to the network,
two variables name the processors representing the destination bal-
ancers of the output wires, and the third, binary variable indicates on
which of the two output wires the next token will exit. For output bal-
ancers, the two variables hold counter values, and the the third, binary
variable indicates which counter will be advanced by the next arriving
token. A token is a message that carries the identity of the request-
ing processor. A process sends a token message to an input balancer,
which complements its binary variable and forwards the token. When

! Communication delays in Alewife are such that it is not worthwhile trying to place
nearby balancers on nearby processors in a 64-processor configuration.
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Alewife Machine
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Figure 7: An Alewife node.

the token reaches an output balancer, the processor implementing the
balancer complements its binary variable, advances the appropriate
counter, and sends the result to the original requester.

Counting networks achieve a high level of throughput by decomposing
interactions among processors into pieces that can be performed in parallel,
effectively reducing memory contention. Aspnes, Herlihy, and Shavit [5]
give two O(log?n) depth counting networks. In this paper, we use their
Bitonic counting network, whose layout is isomorphic to the Bitonic sorting
network of Batcher [6]. Henceforth, we use “counting network” to mean
“Bitonic counting network.”

3 Experimental Methodology

The MIT Alewife multiprocessor [2] is a cache-coherent, distributed-memory
multiprocessor that supports the shared-memory programming abstraction.
Figure 7 illustrates the high-level organization of an Alewife node. Each
node consists of a Sparcle processor [3], an FPU, 64KB of cache memory,
a 4MB portion of globally-addressable memory, the Caltech MRC network
router, and the Alewife Communications and Memory Management Unit
(CMMU) [17].

The CMMU implements a cache-coherent globally-shared address space
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with the LimitLESS cache-coherence protocol [8]. The LimitLESS cache-
coherence protocol maintains a small, fixed number of directory pointers in
hardware, and relies on software trap handlers to handle cache-coherence
actions when the number of read copies of a cache block exceeds the limited
number of hardware directory pointers. The current implementation of the
Alewife CMMU has 5 hardware directory pointers per cache line.

The CMMU also interfaces the Sparcle processor to the interconnec-
tion network, allowing the use of an efficient message-passing interface for
communication [18]. The LimitLESS protocol relies on this interface to han-
dle coherence operations in software. The message interface also allows us
to use message-passing operations to implement the synchronization opera-
tions. An incoming message traps the processor and invokes a user-defined
message handler. The message handler can be atomic with respect to other
message handlers in the style of Active Messages [10].

Our experiments were done on the ASIM simulator, an accurate cycle-by-
cycle simulator for the Alewife architecture. This is the principal simulator
used by the Alewife research group. In this section, we describe the three
synthetic benchmarks we use to compare counting techniques.

3.1 Counting Benchmark

In this benchmark (Figure 8), each processor executes a loop that increments
a counter as fast as it can. We measure the number of satisfied increment
requests during the interval when all threads are actively issuing requests,
and divide that by the length of the interval. From these measurements
we arrive at the average throughput of increment requests. This is the
simplest possible benchmark, producing the highest levels of concurrency
and contention.

3.2 Index Distribution Benchmark

Indez distribution is a load balancing technique in which processes dynami-
cally choose independent loop iterations to execute in parallel. (As a simple
example of index distribution, consider the problem of rendering the Man-
delbrot Set. Each loop iteration covers a rectangle in the screen. Because
rectangles are independent of one another, they can be rendered in parallel,
but because some rectangles take unpredictably longer than others, dynamic
load balancing is important for performance.) A similar application is a soft-
ware instruction counter [20].
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procedure do_counting(C : “counter, iters

i: int :=0

repeat
fetch_and_increment (counter)
i:=1i+1

while (i < iters)

int)

Figure 8: Counting Benchmark

procedure do_index(C : “counter, iters
repeat
i := fetch_and_increment (counter)
delay(random() mod w)
while (i < iters)

int, w : int)

Figure 9: Index Distribution Benchmark
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In this benchmark (Figure 9), n processes execute 2048 increments,
where n ranges from 1 to 64. Each process executes on one processor. Be-
tween each increment, each process pauses for a duration randomly chosen
from a uniform distribution between 0 and w, where w is 100, 1000, and
5000. The increment models a process taking an index, and the random
pause represents the execution of the loop iteration for that index. This
benchmark is similar to Bershad’s benchmark for lock-free synchronization

7).

3.3 Job Queue Benchmark

A job queue is a load balancing technique in which processes dynamically
insert and remove jobs from a shared queue. Each process alternates de-
queuing a job, working on the job for some duration, and enqueuing a job.
The queue itself consists of an array with a flag on each element that signi-
fies if the element is present or not. We use full/empty bits [22] on Alewife
to implement this flag. A head counter indicates the first full element, and
a tail counter indicating the first empty element. The elements of the array
are distributed across the machine.

A process dequeues an item by incrementing the head counter, and atom-
ically removing one job from the corresponding array position. Enqueues are
performed analogously. Note that multiple enqueue and dequeue operations
can proceed concurrently, since enqueues synchronize by incrementing the
head counter, and dequeues synchronize by incrementing the tail counter.

This benchmark (Figure 10) is structured as follows. For We vary the
number of processes, P from 1 to 64. Each process, executing on one pro-
cessor, repeatedly

1. obtains an index, m, from the head counter
2. dequeues a job from location m modulo P of an array of size P

3. pauses for a duration randomly chosen from a uniform distribution
between 0 and w, where w is 100, 1000, and 5000, and then

4. obtains an index, », from the tail counter

5. enqueues a new job at location n modulo P of the array of size P

The benchmark halts when a total of 2048 jobs have been dequeued and
executed by all the processes.
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type q_elem = record
value : int
not_empty : boolean // initially 0

job_array : distributed array[0 : P-1] of q_elem

procedure do_job_queue(enq : “counter, deq : “counter, njobs
eng_index, deq_index : int

repeat
eng_index := fetch_and_increment (enq_counter)
enq_job(enq_index mod P, generate_job())
deq_index := fetch_and_increment (deq_counter)

job := deq_job(deq_index mod P)
delay(random() mod w)
while (deq_index < njobs)

procedure enq_job(index : int, the_job : job)
repeat while (job_array[index].not_empty)
job_array[index] .value := the_job
job_array[index] .not_empty := true

procedure deq_job(index : int) returns job
repeat until (job_array[index].not_empty)
the_job : job := job_array[index].value
job_array[index] .not_empty := false
return job

: int)

Figure 10: Job Queue benchmark
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Figure 11: Comparing the throughput of the five counting techniques.

4 Experimental Results

In this section, we present the results of running the benchmarks on various
implementations of shared counters on the Alewife simulator. All timings
assume a 33 MHz processor clock. In all experiments, we use a radix-2
combining tree with 64 leaves and a counting network of width 16, unless
otherwise stated. We first present the results for the counting benchmark.
This benchmark gives a sense of the scalability and the peak throughput
of each of the counters at different levels of concurrency. We then present
the throughput results for the index distribution and job queue benchmarks,
which illustrate how the counters would perform under more realistic work-
loads.

4.1 Counting Benchmark

Figure 11 presents the throughput attained by each of the counting algo-
rithms. We measure the throughput during the interval when all processors
are actively incrementing the counter, thereby ignoring startup and wind-
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down effects.

The results show that when concurrency is low, the spin-lock-based
counter gives the highest throughput due to the simplicity of the spin lock
algorithm. Nevertheless, when concurrency increases, throughput drops off
dramatically, even for locking with exponential backoff. The MCS lock
counter, the queue lock counter, and the message-based counter maintain
essentially constant throughput as concurrency increases. This scalability
can be attributed to queuing. In both the MCS-lock-based counter and
the queue-based counter, queuing is explicitly performed in software. In
the message-based counter, queuing occurs automatically in the processors’
input message queues.

Because the queue-based counter combines transfer of the counter with
transfer of the lock, it produces less network traffic, and outperforms the
original MCS-lock counter by a factor of more than 2.5.

Finally, we observe that throughput increases with concurrency only for
combining trees and for counting networks. This increase can be attributed
to two factors: both techniques reduce contention, and both techniques
permit parallel increments.

Optimizing combining trees and counting networks. We imple-
ment the combining tree and counting network counters using both shared-
memory operations and message-passing. Figure 12 contrasts their per-
formance, showing that the message-passing implementations have roughly
twice the throughput.

There are two reasons for this performance difference. First, the message-
passing implementation requires less communication because each balancer
is always local to the processor that accesses it, and because traversing a data
structure with messages is more efficient. Second, in the message-passing
implementation, message receipt causes an interrupt whose handler is itself
UN-interruptible by other messages, and therefore the interrupt handler
does not require locks to ensure atomicity.

Saturation of counting networks. Figure 11 shows that the throughput
of the 16-wide counting network dips at 64 processors. To determine whether
this dip indicates that the counting network is saturating, we extended the
simulation to 80 processors and tested counting networks with widths of
4, 8 and 16. Figure 13 shows that the 16-wide counting network does not
saturate at 64 processors. We think the dip at 64 processors occurs because
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Figure 12: Comparing the throughput of combining trees (CTree) and count-
ing networks (CNet) implemented with shared-memory and message-passing
operations.
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Figure 13: Throughput of various sizes of counting networks.

the 16-wide counting network contains 80 nodes, requiring more than one
network node to be mapped onto a processor on a 64-processor machine.
Figure 13 also shows the concurrency levels at which the smaller counting
networks saturate.

4.2 Index Distribution Benchmark

We now look at the throughput of the shared counters when applied to
index distribution. Compared to the counting benchmark, this benchmark
provides a more varied load on the counters since each thread performs some
computation in between increment requests. The amount of computation
is varied by the parameter w: a higher w results in more computation.
The effect of increasing w is to reduce concurrency (and contention) at the
counter.

Figure 14 presents the results for a spin-lock-based counter, a message-
based counter, a combining tree, and a counting network for various values
of w. The elapsed times are plotted in a log-log graph so that linear speedups
will show up as a straight line. Since the queue-based and MCS-lock-based
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Figure 14: Elapsed time measurements of the index distribution benchmark.
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counters have the same scaling behavior as the message-based counter, we
omit them here.

For the spin-lock-based counter, performance degrades beyond a small
number of processors. This degradation is worst when w is small. For
the message-based counter, performance peaks and then degrades slightly
beyond 16 processors when w = 100 and 48 processors when w = 1000. In
contrast, both the combining tree and counting network sustain speedups
on the benchmark all the way up to 64 processors.

Performance degrades drastically with the spin-lock-based counter be-
cause of contention, as can be expected from the throughput results pre-
sented earlier. While queuing reduces contention and prevents a major
degradation of performance, sequential access to the message-based counter
limits speedup when w, and thus computation grain size, is small. The only
way to sustain speedups as more processors are added is to allow counting
to occur in parallel, as in the combining tree and counting network.

4.3 Job Queue Benchmark

We now look at the performance of the shared counters when applied to a
parallel job queue. Like the index distribution benchmark, this benchmark
provides a varied load on the counters since each thread performs some
computation in between accesses to the job queue. However, there are now
two counters, one for enqueuing and one for dequeuing, and the operation
includes an access to a shared data structure representing the job queue.
Thus, this benchmark places less contention on the counters compared to
the index distribution benchmark.

Figure 15 presents the results for a spin-lock-based counter, a message-
based counter, a combining tree, and a counting network for various values
of w. As before, the elapsed times are plotted in a log-log graph. Again,
performance degrades drastically with the spin-lock-based counter and is
limited with the message-based counter, reaffirming the observation it is
necessary both to avoid contention and to permit parallelism to sustain
speedups as more processors are added.

4.4 Combining Rates

When we compare the performance of the combining tree and the counting
network in the index distribution and job queue benchmarks, we find that
the counting network performs much better than can be expected from the
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Figure 15: Elapsed time measurements of the job queue benchmark.
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‘ Concurrency H w =100 | w = 1000 | w = 5000

1 0.0 0.0 0.0
2 10.3 2.0 0.3
4 26.1 8.5 2.2
8 40.3 19.9 4.8
16 50.4 31.7 10.6
32 55.3 39.1 18.5
48 54.2 40.0 15.6
64 56.5 39.8 18.7

Table 2: Combining rate (as a percentage) at combining tree nodes in the
index distribution benchmark

throughput measurements in Figure 11. To investigate this phenomenon,
we instrumented the simulation to monitor combining at the nodes of the
combining tree. For the counting benchmark, we measured combining rates
of close to 100% for 64 processors. Tables 2 and 3 summarize the results by
presenting the percentage of arrivals at combining tree nodes that combine
with some other arrival in the index distribution and job queue benchmarks.

From the data, we can see that as the rate of arrivals of increment
requests is reduced, so does the rate of combining. In the combining tree
algorithm, when a node misses a chance for combining, a request arriving
later at that node must wait for the earlier request to ascend the tree and
return before it can progress. We speculate that this sensitivity of combining
trees to the arrival rate of increment requests degrades performance relative
to counting networks.

4.5 Importance of Parallelism

Recall that counting networks and combining trees scale for two reasons:
(1) distributing memory accesses reduces contention, and (2) parallelism
increases throughput. To illustrate the relative importance of these two
properties, we now investigate a counter implementation that has low con-
tention, but does not attain a high degree of parallelism.

A counter is linearizable [23] if the values it returns are consistent with
the real-time order of the matching requests. For example, linearizability
ensures that if process p takes a value before process g requests a value,
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‘ Concurrency H w =100 | w = 1000 | w = 5000

1 0.0 0.0 0.0
2 0.3 1.4 0.3
4 7.2 5.5 1.7
8 21.1 12.8 4.6
16 33.2 23.0 9.2
32 40.9 30.5 16.3
48 37.4 27.7 14.2
64 39.8 30.6 16.6

Table 3: Combining rate at combining tree nodes in the job queue bench-
mark

then p’s value will be less than ¢’s. The bitonic counting network is not
linearizable, but it can be made linearizable by adding a simple linearizing
filter to the network’s output wires. The idea is simple: any token leaving
the network waits until the token taking the next lower value exits. Although
the solution introduces a sequential waiting chain, each processor will wait
on a separate location, thus avoiding memory contention. (The linearizing
filter can also be used to implement a general Fetch-and-® operation as in
the combining tree.)

We construct the linearizable counting network for P processors from
two component structures. One is the Bitonic counting network described
above, and the other is a linearizing filter of width P. A linearizing filter
is a P-element array of boolean values, called phase bits that are initially
0. Define the function phase(v) to be |[(v/P)| mod 2. We construct the
linearizable network by having tokens first traverse the counting network
and then access the waiting filter. When a token exits the counting network
with value v, it awaits its predecessor by waiting until location (v—1) mod P
in the filter is set to phase(v — 1). When this event occurs, it notifies its
successor by setting location v to phase(v). It then returns its value.

Figure 16 demonstrates the importance of having both low contention
and parallelization. It clearly shows that the throughput of the linearized
counting network saturates beyond 16 processors even though contention
in the linearized network is avoided. This emphasizes the importance of
avoiding serialization in the design of shared data structures.
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Figure 16: Throughput of a linearized counting network.
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5 Conclusions

We have analyzed the throughput of five distinct counting techniques, each
based on a technique proposed in the literature. We found that scalability
for concurrent counting requires two logically distinct properties: avoidance
of memory or interconnect contention, and allowing true concurrency among
increment operations. The observed behaviors fell into three categories: (1)
techniques whose throughput degraded as concurrency increased, (2) tech-
niques whose throughput did not degrade, but leveled out starting at a
low level of concurrency, and (2) techniques where throughput continued to
increase with concurrency. The first category encompasses the lock-based
counters, which suffer from contention as concurrency increases. The second
category encompasses the message-based and queue-based counters, which
do not suffer from contention, but do not allow concurrent access. The
last category encompasses software combining trees and counting networks,
which are the only techniques we observed to be truly scalable, since they
avoid contention, and they permit concurrent access. Software combining
trees were observed to be more sensitive to fluctuations in the arrival rates
of requests. Both software combining trees and counting networks are sig-
nificantly more efficient when implemented using message-passing instead of
shared memory.

Our results suggest that distributed data structures designed to alleviate
contention and enhance parallelism are the most promising approach to
scalable synchronization. It would be interesting to see similar experiments
for other problems, other benchmarks, and other architectures.
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