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Abstract

We give necessary and su�cient combinatorial conditions charac�
terizing the class of decision tasks that can be solved in a wait�free
manner by asynchronous processes that communicate by reading and
writing a shared memory�

We introduce a new formalism for tasks� based on notions from
classical algebraic and combinatorial topology� in which a task�s possi�
ble input and output values are each associated with high�dimensional
geometric structures called simplicial complexes� We characterize com�
putability in terms of the topological properties of these complexes�
This characterization has a surprising geometric interpretation� a task
is solvable if and only if the complex representing the task�s allowable
inputs can be mapped to the complex representing the task�s allowable
outputs by a function satisfying certain simple regularity properties�

Our formalism thus replaces the �operational	 notion of a wait�free
decision task� expressed in terms of interleaved computations unfolding
in time� by a static �combinatorial	 description expressed in terms of
relations among topological spaces� This allows us to exploit power�
ful theorems from the classic literature on algebraic and combinatorial
topology� The approach yields the 
rst impossibility results for sev�
eral long�standing open problems in distributed computing� such as
the �renaming	 problem of Attiya et al�� and the �k�set agreement	
problem of Chaudhuri�

Preliminary versions of these results appeared in the ���
 and ����
Symposiums on Theory of Computing ���� ����

Keywords� Asynchronous Distributed Computation� Algebraic Topol�
ogy� Homology� Wait�free Algorithms� Decision Tasks�
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� Introduction

Modern multiprocessors� whether they communicate by message�passing or
through shared memory� are inherently asynchronous� processes can be
halted or delayed without warning by cache misses� interrupts� or sched�
uler pre�emption� A task in an asynchronous system is a problem where
each process starts with a private input value� communicates with the oth�
ers� and halts with a private output value� A protocol is a program that
solves the task� In asynchronous systems� it is desirable to design protocols
that are wait�free� any process that continues to run will halt with an out�
put value in a �xed number of steps� regardless of delays or failures by other
processes�

Under what circumstances does a task have a wait�free protocol� In this
paper� we give the �rst completely combinatorial characterization of the cir�
cumstances under which tasks have wait�free protocols in shared read	write
memory� We show that any task and any protocol can be associated with a
pair of high�dimensional geometric structures called simplicial complexes� A
protocol solves a task if and only if their simplicial complexes can be mapped
to one another by a function satisfying certain simple regularity properties�
Our main theorem gives necessary and su
cient conditions for such a map
to exist�

Although our characterization is quite general� it has concrete applica�
tions� In particular� it yields the �rst impossibility results for several long�
standing open problems in distributed computing� including the renaming
problem of Attiya et� al� ��
 with a small number of names� and the set
agreement problem of Chaudhuri ���
� It is also a building block in other
characterizations such as Afek and Stupp�s characterization of the e�ect of
register size on the power of multiprocessor synchronization operations ��
�

Informally speaking� impossibility is demonstrated as follows� Our the�
orem implies that there exists a map from the protocol complex to the task
complex that preserves certain topological properties� We can establish that
no map exists by showing that the complexes are topologically �incompat�
ible�� in much the same way that classical algebraic topology uses topo�
logical invariants to prove that two spaces cannot be homeomorphic� that
is� cannot be continuously deformed from one to the other� In particular�
we show that the simplicial complex associated with any wait�free protocol
using read	write memory has a remarkable topological property� it has no
�holes� in any dimension� We exploit this simple property to derive our
impossibility results�

In a fundamental paper in ����� Fischer� Lynch� and Paterson ���
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showed that there exists a simple task that cannot be solved in a message�
passing system if even one process may fail by halting �or may be in�nitely
slow�� This result showed that the notion of �asynchronous computability�
di�ers in important ways from conventional notions of computability �such
as sequential �Turing� computability�� It led to the creation of a highly
active research area� the full scope of which is surveyed in recent book by
Lynch ���
�

A �rst step toward a systematic characterization of asynchronous com�
putability was taken in ���� by Biran� Moran� and Zaks ��
� who gave
a graph�theoretic characterization of the tasks that could be solved by a
message�passing system in the presence of a single failure� Although the
problem subsequently received considerable attention� it proved di
cult to
extend such graph�theoretic approaches to encompass more than a single
failure� Even the problem of fully characterizing speci�c tasks like renaming
��
 and set agreement ���
 remained unresolved� Chor and Moscovici ���

later provided a graph�theoretic characterization of tasks solvable in a sys�
tem where the n � � processes can solve �n � ���process consensus �either
deterministically or randomized��

In ����� three research teams�Borowsky and Gafni ���
� Saks and Za�
haroglou ���
� and the current authors ���
� independently derived lower
bounds for the k�set agreement problem of Chaudhuri� The proof of Borowsky
and Gafni ���
 is based on a powerful simulation method that allows N �
process protocols to be executed by fewer processes in a resilient way� Both
Saks and Zaharoglou ���
 and the current authors ���
 apply notions and
techniques from mainstream combinatorial topology� Saks and Zaharoglou
construct an elegant model that casts processors� collective knowledge of
the unfolding computation as a topological space� and apply a variant of
the Brouwer �xed point theorem ���
 to derive impossibility of wait�free set
agreement� This technique appears to be speci�c to set agreement�

In contrast� our work ���� ��
 focused on general properties of the model
of computation rather than on properties of speci�c tasks� We introduced a
new formalism based on simplicial complexes and homology� notions taken
from undergraduate�level algebraic topology� The new formalism replaces
the popular �operational� notion of a wait�free decision task� expressed in
terms of interleaved computations unfolding in time� by a static �combinato�
rial� description expressed in terms of relations among simplicial complexes�
Simplicial complexes are a natural generalization of graphs� They provide
a notion of dimensionality� absent in earlier graph�theoretic models� that
captures in a natural way the e�ects of multiple failures� A further advan�
tage of this model is that it becomes possible to apply standard results from
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mainstream mathematics to distributed computation�
The paper is organized as follows� Section � provides the details of

our new topological framework for asynchronous computation� Section �
presents the statement of our main theorem and a collection of example re�
sults derived from it� including the impossibility of wait�free set agreement �
Sections � and � respectively provide the proofs of the �if� and �only if�
parts of our theorem� We conclude the paper with a proof of the impossi�
bility of solving the renaming problem with a small number of names�

� Model

We begin with an informal synopsis of our model� in which N � n � �
sequential threads of control� called processes� cooperate to solve a decision
task� In a decision task� each process starts with a private input value� and
halts with a private output value� For example� in the well�known binary
consensus task� the processes have binary inputs� and must agree on some
process�s input as their common output ���
� A protocol is a program that
solves a decision task� A protocol is wait�free if it guarantees that every
non�faulty process will �nish in a bounded number of steps� no matter how
many processes fail�

This paper considers protocols in which processes communicate by read�
ing and writing variables in shared memory� The literature encompasses
a variety of shared�memory models� fortunately they are all equivalent in
the sense that any one can be implemented in a wait�free manner from
any other� From the simplest single�bit� single�reader� and single�writer
variables� one can construct multi�bit� multi�reader variables �see Lynch�s
survey ���
�� From these variables� in turn� one can implement an atomic
snapshot memory � an array where each Pi updates �writes� array element
i� and any process can instantaneously scan �atomically read� the entire ar�
ray ��� �
� It is thus convenient to assume that processes communicate via
atomic snapshot memory�

In the remainder of this section� we restate the model in more formal
terms� and introduce the mathematical concepts underlying our main theo�
rem and its proof�

��� Decision Tasks

We now de�ne decision tasks more precisely� We start with the notion of a
vector� which describes the input	output behavior of �nite executions� Let
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DI and DO be data types� possibly the same� called the input and output
data types�

De�nition ��� An �n����process input vector �I �respectively output vec�
tor �O� is an �n � ���component vector� each component of which is either
a value of type DI �respectively DO�� or the distinguished value �� At least
one component of �I �respectively �O� must be di�erent from ��

We denote the i�th component of input vector �I by �I�i
� and similarly for
output vectors� An input vector �I represents a possible assignment of input
values to processes� if �I�i
 is an input value v� then v is Pi�s input at the
start of the execution� while if �I�i
 is �� then Pi does not participate in that
execution� it has no input and takes no steps� Similarly� an output vector
�O represents a possible choice of output values by processes� if �O�i
 is an
output value v� then v is Pi�s output chosen during that execution� while
if �I�i
 is �� then Pi does not choose an output in that execution� Vectors
thus describe the input	output behavior of �nite executions in which some
subset of processes participate�

De�nition ��� A participating index �process� in an input vector is one
whose value is distinct from ��

De�nition ��� Vector �U matches �V if� for � � i � n� �U �i
 � � if and only
if �V �i
 � ��

Matching vectors have the same set of participating indexes� We are often
concerned with executions that are pre�xes of a given execution�

De�nition ��� Vector �U is a pre�x of �V if� for � � i � n� either �U �i
 �
�V �i
 or �U �i
 � ��

If a pre�x has an entry distinct from�� then it agrees with the corresponding
entry in the original�

De�nition ��� A set V of vectors is pre�x�closed if for all �V � V � every
pre�x �U of �V is in V �

We use pre�x�closed sets of vectors to characterize the legitimate sets of
input and output value assignments� If the set of input vectors is pre�x�
closed� then any legitimate assignment of input values remains legitimate if
fewer processes participate� If the set of output vectors is pre�x�closed� then
any legitimate choice of output values remains legitimate if fewer processes
decide�
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De�nition ��	 Let I and O be pre�x�closed sets of input and output vec�
tors� A task speci�cation is a relation � � I�O� carrying each input vector
to a non�empty subset of matching output vectors�

Let ���I� denote the set of vectors �O in O such that ��I� �O� � �� For a
given input vector �I � the set ���I� is just the set of legitimate output vectors
corresponding to the inputs �I� Because task speci�cations are typically non�
deterministic� ���I� typically contains multiple vectors�

We are now ready to give a precise de�nition of decision tasks�

De�nition ��
 A decision task hI�O��i is a tuple consisting of a set I of
input vectors� a set O of output vectors� and a task speci�cation � relating
these two sets�

�I ���I�

������� �������� �������� �������
��� ���� ��� ����� ��� ����� ��� ����
����� �� ����� ��� ����� ��� ����� ��
��� ���� ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� ��� ����
����� �� ����� ��� ����� ��� ����� ��� ����� ��� ����� ��� ����� ��
��� �� �� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��
��� �� �� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��

Figure �� The Unique�Id task

�I ���I�

������� �������
��� ���� ��� ����
����� �� ����� ��
��� ���� ��� ����� ��� ����
����� �� ����� ��� ����� ��
��� �� �� ��� �� ��� ��� �� ��
��� �� �� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��

Figure �� The Fetch�And�Inc task

This class of decision tasks includes all linearizable one�time objects� that
is linearizable objects ���
 that permit at most one operation per process�
The model captures the intuitive notion of �order of events in time� through
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the use of participating processes� For example� although the following tasks
have the same sets of input and output vectors� they have a very di�erent
structure�

Unique�id Each participating process Pi � f�� ��� ng has an input xi � �
and chooses an output yi � f�� ��� ng such that for any pair Pi �� Pj �
yi �� yj�

Fetch�And�Increment Each participating process Pi � f�� ��� ng has an
input xi � � and chooses a unique output yi � f�� ��� ng such that ���
for some participating index i� yi � �� and ��� for � � k � n� if yi � k
then for some j �� i� yj � k � ��

The tables in Figure � show the task speci�cations for Unique�id and Fetch�
And�Increment� Notice that Unique�Id allows identi�ers to be assigned stat�
ically� while Fetch�And�Increment e�ectively requires that they be assigned
dynamically in increasing order� We will see that �rst task has a trivial
wait�free solution� while the second has no solution in read	write memory if
one or more processes can fail�

��� Objects� Processes� and Protocols

Formally� we model objects� processes� and protocols using a simpli�ed form
of the I	O automaton formalism of Lynch and Tuttle ���
� An I	O automa�
ton is a non�deterministic automaton with a �nite or in�nite set of states�
a set of input events� a set of output events� and a transition relation given
by a set of steps� each de�ning a state transition following a given event�
An execution of an I	O automaton is an alternating sequence of states and
enabled events� starting from some initial state� An execution fragment is
a subsequence of consecutive states and events occurring in an execution�
For simplicity we will use the term execution to mean either execution or
execution fragment� the appropriate term being clear from context� All ex�
ecutions considered in this paper are �nite� An automaton history is the
subsequence of events occurring in an execution� Automata can be com�
posed by identifying input and output events in the natural way �details
can be found in ���
��

An object X is an automaton with input events call�P� v�X� T � and
output event return�P� v�X� T � where P is a process id� v is a value� and X
an object� and T is a type� A process P is an automaton with output events
call�P� v�X� T �� and finish�P� v� and input events return�P� v�X� T � and
start�P� v�� A return event matches an earlier call event in a history if
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the two events have the same type� name� and process id� An operation is a
matching pair of call and return events�

A read	write memory object M is an automaton with input events
read�P� a� andwrite�P� a� v�� and output event return�P� v�� The read	write
memory model we use in this paper is the standard atomic snapshot mem�
ory � an array a where each write�P� a� v� is an update of array element
a�P 
 to the value v� and each read�P� a� is an instantaneous scan operation
returning the contents of the entire array a �see ��� �
 for details and ���

for a survey of why read	write memory models are all equivalent to atomic
snapshot memory��

A history is sequential if each call event is immediately followed by a
matching response� �A sequential execution permits process steps to be
interleaved� but at the granularity of complete operations�� If we restrict our
attention to sequential histories� then the behavior of the atomic snapshot
memory is straightforward� any scan operation of array a returns for each
element a�P 
 the value of the last preceding update by process P � or � if
no such update existed� Each history H induces a partial �real�time� order
�H on its operations� op� �H op� if the output event for op� precedes the
input event for op�� Operations unrelated by �H are said to be concurrent�
If H is sequential� �H is a total order� A concurrent protocol or object is
linearizable if for every history H� there exists a sequential history G with
the same events as H� where �H��G� Informally� a history is linearizable if
it can be mapped to a sequential history by making each operation appear
to take e�ect instantaneously at some point between its call and its response
�see Herlihy and Wing ���
 for details�� An atomic snapshot memory object
is one that is linearizable to the sequential object speci�ed above�

A protocol fP�� � � � � Pn�Mg is the automaton composed by identifying
in the obvious way the events for processes P�� � � � � Pn and the memory M �
At any point in the execution of a protocol� the state of each process is
called its local state� The set of local states together with the state of the
memory is called the protocol�s global state� To capture the notion that a
process represents a single thread of control� a protocol execution is well�
formed if every process history �the projection of the history onto the actions
of Pi� has a unique start event �generated externally to the protocol��
which precedes any call or return events� it alternates matching call

and return events� and has at most one finish event� We restrict our
attention to well�formed executions�

�Strictly speaking
 read�P� a� is short for call�P�read�M� a�
 and similarly for
write�
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De�nition ��� Operations p and q of object X commute if� for all sequen�
tial histories H and G� H 	 p 	 q 	 G is also a history of X if and only if
H 	 q 	 p 	G is a history of X �where 
	� is the concatenation operator��

In this paper we use atomic snapshot memory� where scan �read� operations
commute with one another� as do memory update �write� operations� This
property will be shown as fundamental in determining the computational
power of read	write memory�

For brevity� we express protocols using pseudo�code� although it is straight�
forward to translate this notation into automaton de�nitions�

��� Solvability

We are interested in characterizing when tasks can be solved by processes
that are individually equivalent to Turing machines� A process is active at a
point in an execution if it does not yet have a finish event� An active process
is faulty at that point if it has no output events later in that execution� An
execution is t�faulty if up to t processes become faulty�

De�nition ��
 A protocol solves a decision task in an execution if the fol�
lowing condition holds� Let fPiji � Ug be the set of processes that have
start events� and let fuiji � Ug be their arguments� Let fPj jj � V g� V �
U � be the processes that execute finish events� and let fvj jj � V g be their

output values� Let �I be the input vector with ui in component i� and � else�
where� and let �O be the corresponding output vector for the vj� We require
that

�� no process takes an in�nite number of steps without a finish event�
and


� �O is a pre�x of some vector in ���I��

Informally� the second condition implies that if a protocol solves a task in
an execution� the outputs of the non�faulty processes in any pre�x of the
execution are consistent with the allowable outputs of the possibly larger
set of inputs to the execution as a whole� A protocol for N processes wait�
free solves a decision task if it solves it in every t�faulty execution where
� � t � N � We will call such a protocol wait�free and henceforth use the
term solves to mean wait�free solves�

It is convenient to assume that any wait�free protocol using read	write
memory is expressed in the following normal form� The processes share an
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atomic snapshot memory array a whose N � n�� elements are all initially
�� Each process has a local state� consisting of its input value and the history
of values it has so far read from the shared memory� Computation proceeds
in a sequence of asynchronous rounds� from � to some �xed r� In round ��
each process writes its input value to its local variable� In any subsequent
round� each Pi executes a sequence of steps� ��� it updates a�i
 to its current
local state� and ��� it atomically scans the elements of a� appending them to
its local state� After r rounds� Pi computes its output value by applying a
task�speci�c decision map � to its �nal local state� Figure � shows a generic
protocol in normal form�

Because the set I of input vectors is �nite� any kind of wait�free atomic
snapshot memory protocol can be expressed in normal form�� The memory
locations a�i
 need only be of bounded size� though for our lower bound
proofs we allow them to be unbounded� Without loss of generality� we may
assume that each time a process performs an update operation it writes a
unique value�

� Code for process i

update�i�a�input�value� � a�i� �	 input�value

for round in 
 �� r do

local�state �	 scan�a�

update�i�a�local�state� � a�i� �	 local�state

return ��local�state�

Figure �� A Wait�Free Protocol in Normal Form

��� Simplicial Complexes

We start with a number of standard technical de�nitions taken mostly from
standard undergraduate textbooks ���� ��
�

A vertex �v is a point in a high dimensional Euclidean space� A set
f�v�� � � � � �vng of vertexes is a�nely independent if and only if the vectors
�v� � �v�� 	 	 	 � �vn � �v� are linearly independent�

De�nition ���� Let f�v�� � � � � �vng be an a�nely independent set of n � �
vertexes� We de�ne the �geometric� n�simplex S spanned by �v�� � � � � �vn to

�If the number of input vectors were unbounded
 then the protocol would need an
explicit termination test since it could be that there is no bound r on the maximal number
of rounds necessary to complete a task�
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be the set of all points x such that x �
Pn

i�� ti�vi where
Pn

i�� ti � � and
ti 
 � for all i�

For example� a ��simplex is a vertex� a ��simplex a line segment� a ��
simplex a solid triangle� and a ��simplex a solid tetrahedron� For an example
of vertexes� and simplexes see Figure �� For simplicity� we often denote the
simplex spanned by a set f�v�� � � � � �vng of a
nely independent vertexes as
��v�� � � � � �vn�� The number n is called the dimension of the simplex S� and
is often denoted by dim�S�� For clarity� we often indicate the dimension of
simplex as a superscript� Sn denotes to the simplex spanned by the vertexes
in f�v�� � � � � �vng�

Any simplex T spanned by a subset of f�v�� � � � � �vng is called a face of S�
denoted T � S� The faces of S di�erent from S itself are called the proper
faces of S� In Figure � the ��simplex spanned by the vertexes fP�� Q�g is
a proper face of the ��simplex fP�� Q�� R�g� The union of the proper faces
of S is called the boundary of S� and is denoted Bd�S�� The interior of S�
denoted Int�S�� is de�ned by the set equation Int�S� � S �Bd�S��

De�nition ���� Let Sd � ��s�� � � � �sd� be a d�simplex� De�ne facei�S
d��

the ith face of Sd� to be the �d � ���simplex ��s�� � � � �  si� � � � � �sd�� where the
circum�ex denotes omission�

As will soon become clear� we will use vertexes to model local process
states� and simplexes to model consistent states of multiple processes in�
volved in solving a decision task or in running a protocol in the atomic
snapshot model� To model a collection of such states we need the concept
of a geometric simplicial complex� or complex for short�

De�nition ���� A geometric simplicial complex K in a Euclidean space is
a collection of geometric simplexes such that

� Every face of every simplex of K is also a simplex of K�

� The intersection of any two simplexes of K is also a simplex of K�

We consider only �nite complexes� The dimension of a complex K�
denoted dim�K�� is the highest dimension of any of its simplexes� and is
sometimes indicated explicitly by a superscript� An n�dimensional complex
�or n�complex� is pure if every simplex is a face of some n�simplex� Except
when noted� all complexes considered in this paper are pure� A simplex S
in K with dimension dim�S� � dim�K� is called a principal simplex�

�In the example we name vertexes with names like P� and Q� using a combination of
process id �such as P or Q� and a �value� �such as � or ��� The reason will become clear
in the sequel�
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2-simplex (triangle):

0-simplex (vertex)

1-simplex (edge)

P �Q �

P �

P�Q�R choose �
�
�

process id and value

��simplex �triangle
� P�Q�R choose �
�
�

P�R choose �
�

R �

Figure �� Vertexes and Simplexes

Figure � shows an example of a pure ��dimensional complex consisting
of the union of the faces of the ��simplexes �P�� Q�� R�� and �P�� Q�� R���
Both ��simplexes are principal simplexes in this example�

If L is a subcollection of simplexes in K closed under containment and
intersection� then L is a complex in its own right� called a subcomplex of
K� For example� !S� the set of proper faces of S� is a subcomplex of K in
Figure ��

The set of simplexes of K of dimension at most � is a subcomplex of
K� called the ��skeleton of K� denoted skel ��K�� The elements of skel��K�
are the vertexes of K� For example the ��skeleton of K in Figure � is just
fP�� P�� Q�� R�g� Similarly� the ��skeleton of K is the union of the ��skeleton
and the set of ��simplexes f�P�� Q��� �P�� R���R�� Q���P �� Q���P�� R��g�
We now de�ne a way of �adding� simplexes� known as joining�

De�nition ���� Let S � �s�� � � � � sp� and T � �t�� � � � � tq� be simplexes
whose combined sets of vertexes are a�nely independent� Then the join of
S and T � denoted S 	 T is the simplex �s�� � � � � sp� t�� � � � � tq��

We may extend the notion of joining to complexes as well�

De�nition ���� If K and L are simplicial complexes� not necessarily of the
same dimension� then their join� denoted K	L� is the collection of simplexes
K � L � fS 	 T j S � K� T � Lg�

The join of two complexes K and L is a complex in its own right ���
� One
useful complex derived using the join operator is the cone over K� de�ned

��



as �v 	 K for some vertex �v a
nely independent of K� Let jKj be the subsetS
S�K S of a high�dimensional Euclidean space R�� that is� the union of the

simplexes of K� Giving each simplex its natural topology as a subspace of
R�� we topologize jKj by declaring a subset A of jKj to be closed if and
only if A 
 S is closed for all S � K� This space is called the polyhedron of
K� Conversely� K is called a triangulation of jKj� We de�ne the diameter
of a simplex S to be the maximum Euclidean distance between any pair of
points of jSj�

De�nition ���� Two topological subspaces A and B are homeomorphic if
there exists a one�to�one continuous map f � A � B with a continuous
inverse�

We say that a complex C is an n�disk if jCj is homeomorphic to jSnj� and it
is an �n� ���sphere if jCj is homeomorphic to j !Sn��j�

��� Abstract Simplexes and Complexes

The geometric representations we have given for simplexes and complexes
are not always convenient� and we therefore� introduce the �complementary�
notions of abstract simplexes and abstract complexes�

De�nition ���	 An abstract simplex S is a �nite� non�empty set�

The dimension of S is one less than its cardinality� Each non�empty
subset T of S is called a face of S� Each element of S is called a vertex
of S� Geometric and abstract simplexes are closely related� any a
nely�
independent set of vectors f�v�� � � � � �vng span both a geometric and abstract
simplex�

De�nition ���
 An abstract complex K is a collection of abstract simplexes
closed under containment� that is� if S is in K� so is any face of S�

The notions of dimension� join� and subcomplex are de�ned for abstract
simplexes and complexes in the obvious way�

De�nition ���� Let G be a geometric complex� and let V be the vertex set
of K� If A is the abstract complex that of all subsets S of V such that S
spans a simplex in G� then A is called the vertex scheme of G�
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De�nition ���
 Two abstract complexes K and L are isomorphic if there
is a bijective correspondence � between their vertex sets such that a set S of
vertexes is in K if and only if ��S� � L� The bijective correspondence � is
called an isomorphism�

The proof of the following theorem can be found in most standard text�
book on algebraic topology ���� ��
�

Theorem ���� Every abstract complex A is isomorphic to the vertex scheme
of some geometric complex G in R� dim�A����

��� Simplicial Maps and Subdivisions

In the rest of this paper� it is convenient to use abstract and geometric
simplexes and complexes more or less interchangeably� The remainder of
this section� however� focuses on geometric complexes� We �rst de�ne the
notions of vertex maps and simplicial maps�

De�nition ���� Let K and L be complexes� possibly of di�erent dimen�
sions� A vertex map 	 � skel��K� � skel��L� carries vertexes of K to
vertexes of L� The map is a simplicial map if it also carries simplexes of
K to simplexes of L� Any simplicial map 	 induces a piece�wise linear map
j	j � jKj � jLj as follows� Every point �k of jKj has a unique representation
as

�k �
X

ki 	 �ki

where the �ki span a simplex in K� � � ki � �� and
P

ki � �� The ki are
called the barycentric coordinates of �k� De�ne

j	j��k� �
X

ki 	 	��ki�

μ

Figure �� A Simplicial Map

Henceforth� unless stated otherwise� all maps between complexes are
assumed to be simplicial� An example of a simplicial map is given in Figure ��
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De�nition ���� Let A � B� and 
 � A � C� A simplicial map � � B � C
extends 
 if they agree on A�

We note that a simplex and its image under a simplicial map need not
have the same dimension� As seen in Figure �� the simplicial map may
�collapse� some simplexes�

De�nition ���� A simplicial map 
 � B � C collapses a simplex Tm�
m � �� if dim�
�Tm�� � ��

A simplicial map 	 � K � L is non�collapsing if it preserves dimension� that
is� for all S � K� dim�	�S�� � dim�S��

De�nition ���� A coloring of an n�dimensional complex K is a non�collapsing
simplicial map � � K � S� where S is an n�simplex�

Intuitively� a coloring corresponds to a labeling of the vertexes of the
complex such that no two neighboring vertexes �vertexes connected by a
��simplex� have the same label� A chromatic complex or colored complex
�K� �� is a complex K together with a coloring � of K� An example of a
chromatic complex is given in Figure ��� where the colors are the letters
fP�Q�Rg� When it is clear from the context� we specify the chromatic
complex �K� �� simply as the complex K� omitting explicit mention of the
coloring ��

De�nition ���� Let �K� �K� and �L� �L� be chromatic complexes� and let
	 � K � L be a simplicial map� We say that 	 is color�preserving �or
chromatic� if� for every vertex �v � K� �K��v� � �L�	��v���

In other words� 	 is color�preserving if it maps each vertex in K to a
vertex in L of the same color� Except when otherwise noted� all simplicial
maps considered in this paper are color�preserving�

De�nition ���	 Let K be a complex in R�� A complex 
�K� is a subdivi�
sion of K if�

� Each simplex in 
�K� is contained in a simplex in K�

� Each simplex of K is the union of �nitely many simplexes in 
�K��
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Figure �� A Barycentric Subdivision of a ��simplex

One type of subdivision of particular interest in our proof is the barycen�
tric subdivision from classical algebraic topology ���
� Let Sn � f�s�� � � � � �sng
be an n�simplex of some complex K� The point

�b �
nX
i��

��si��n� ���

is the barycenter of Sn� In particular� if Sn is a vertex� then �b � Sn�

De�nition ���
 The barycentric subdivision of a complex K� denoted ��K�
is de�ned as follows� Its vertexes are the barycenters of the simplexes of K�
For each ordered sequence S�� � � � � Sm of simplexes of K where Si is a face
of Si�� �i � �� � � � �m� ��� the sequence of corresponding barycenters is the
set of vertexes of a simplex of ��K�� Only simplexes obtained in this manner
are in ��K��

Figure � shows ��S� de�ned on a ��complex S�

De�nition ���� If S is a simplex of 
�K� or a point in jKj� the carrier of
S� denoted carrier �S�K� is the unique smallest T � K such that S � jT j�

Figure � illustrates the notions of subdivisions and carriers� It shows a
complex on the right� and a subdivision on the left� and highlights a simplex
S in the subdivision together with its carrier�

One drawback of the barycentric subdivision is that a barycentric sub�
division of a chromatic complex is typically not chromatic�

De�nition ���
 A chromatic subdivision of �K� �K� is a chromatic com�
plex �
�K�� ���K�� such that 
�K� is a subdivision of K� and for all S in

�K�� ���K��S� � �K�carrier �S�K���
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Figure �� A simplex and its carrier

Figure �� shows a chromatic subdivision of a complex S de�ned on a ��
simplex S� We call this speci�c type of subdivision the standard chromatic
subdivision and will use it extensively later in the paper� All subdivisions
we consider will be chromatic unless� as in the case of the barycentric sub�
division� we explicitly state otherwise�

De�nition ���� A simplicial map 	 � 
��K� � 
��K� between chromatic
subdivisions of K is carrier�preserving if for all S � 
��K�� carrier �S�K� �
carrier �	�S��K��

��	 Simplicial Complexes and Tasks

Earlier in this section� we de�ned the notion of a decision task in terms of
input and output vectors� That de�nition was intended to help the reader
understand what a decision task is� but it lacks the mathematical structure
necessary to prove interesting results� We now reformulate this de�nition in
terms of simplicial complexes� We present a topological speci�cation that
replaces the vector�based task speci�cation of Section ���� A formal proof
of the correspondence among the two representations is beyond the scope of
this paper and can be found in ���
�

We will construct the topological speci�cation using abstract simplexes
and complexes� The reader should note that it follows from Theorem ����
that there exists a representation using geometric simplexes and complexes�
for which the vertex scheme is isomorphic to the abstract representation�
To illustrate our constructions� we accompany the formal de�nitions with
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Figure �� Output Complex for ��Process Renaming with � Names

examples of how they are used to represent the following variant	 of the
well�known Renaming decision task �rst introduced and studied by Attiya
et� al ��
�

Renaming The input to each process is a unique input name in the range
f�� � � � �M � �g Each participating process chooses a unique output
name taken from a strictly smaller range �� � � � �K�

De�nition ���� Let �I � I be an input vector� The input simplex corre�
sponding to �I� denoted S��I �� is the abstract colored simplex whose vertexes
hPi� vii correspond to the participating entries in �I� for which �I�i
 � vi �� ��

The output simplex corresponding to �O� denoted S� �O�� is de�ned accord�
ingly� The process id labeling of a vertex �v is denoted by id��v�� and the
value by val��v�� We use ids�S� to denote the set of process ids of vertexes
in a simplex S� and vals�S� to denote the multiset of values� Figure � shows
two triangles ���simplexes� corresponding to two distinct �nal states for the
��process renaming task� one in which process P chooses �� Q chooses ��

�The full renaming problem is treated in the sequel� It assumes an additional symmetry
property�
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Figure �� Some output complexes for the renaming task

and R chooses �� and another in which P chooses �� and Q and R choose
the same values� Notice that the vertexes of each simplex are colored by the
process ids�

This simplicial representation gives a geometric interpretation to the
notion of �similar� system states� The vertexes on the common boundary of
the two simplexes are local process states that cannot distinguish between
the two global states� Unlike graph�theoretic models �e�g�� ��
�� simplicial
complexes capture in a natural way the notion of the degree of similarity
between two states� it is the dimension of the intersection of the two n�
simplexes�

Since the sets of input vectors we consider are pre�x�closed� we can
collect input and output vectors into abstract chromatic complexes �i�e� sets
of simplexes closed under containment��

De�nition ���� The input complex corresponding to I� denoted I� is the
collection of input simplexes S��I� corresponding to the input vectors of I�
The output complex corresponding to O� denoted O� is the collection of
output simplexes S� �O� corresponding to the output vectors of O�

For example� Figure � shows the output complexes for renaming with two
processes fP�Qg using three names f�� �� �g� three processes fP�Q�Rg with
three names f�� �� �g� and three processes using the four names f�� �� �� �g�
The four�name output complex�s polyhedron is homeomorphic �topologically
equivalent� to a torus� To see why� notice in Figure � that the vertexes on
edges of the complex are the same� so the edges can be �glued together� in
the direction of the arrows�
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We now construct a topological equivalent of the task speci�cation map
� � I �O�

De�nition ���� The topological task speci�cation corresponding to the
task speci�cation �� denoted � � I � O� is de�ned to contain all pairs
�S��I��S� �O�� where ��I� �O� are in the task speci�cation ��

Note that the topological task speci�cation � is not a simplicial map�

Input Simplex Set of legal output simplexes

Input Complex Output Complex

�

Figure ��� A Decision Task

We can now put these de�nitions together� as shown schematically in
Figure ���

De�nition ���� Given an �n����process decision task hI�O��i� the corre�
sponding topological representation of the task� denoted hI�O��i� consists
of an input complex I corresponding to I� and output complex O corre�
sponding to O� and a topological task speci�cation � corresponding to the
task speci�cation ��

Usually� we simply refer to a topological task speci�cation as a �task
speci�cation��

De�nition ���� Let U be a set of processes� A solo execution by U is one in
which all processes in U complete the protocol before any other process takes
a step� ��Sm� for m � n is the set of possible outputs of solo executions by
the processes in ids�Sm��
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��
 Links� Manifolds� and Connectivity

The de�nitions given so far should su
ce to understand the statement �and
implications� of our main theorem� The remainder of this section consists
of de�nitions needed to understand the proofs of our theorems� and some of
the theorem�s applications�

The star of a simplex S � C� written st�S� C�� is the union of all jT j such
that S � T �see Figure ���� Although stars are de�ned as polyhedrons� we
sometimes treat them as simplicial complexes� relying on context to clarify
the precise meaning� The open star� written st��S� C�� is the interior of the
star� The link� written lk�S� C�� is the complex consisting of all simplexes
in st�S� C� that contain no vertex of S� These concepts are illustrated in
Figure ��� The notion of a link has a simple interpretation� In the re�
naming complex shown in Figure �� consider the node labeled P �� This
node indicates that � is a correct output for P � The link of this node is
a one�dimensional complex �a hexagon� in which each ��simplex represents
a possible combination of legal outputs for the remaining processes Q and
R� In general� in any chromatic complex C� lk�S� C� is a colored complex
with the following interpretation� if we �x the values assigned to processes
in ids�S�� then lk�S� C� represents all possible legal ways to assign values to
the remaining processes�

A complex A is an n�manifold with boundary if

�� for every pair of n�simplexes T n
� � T

n
� in A� there exists a sequence of

simplexes Sn� � � � � � S
n
� such that T n

� � Sn� � T
n
� � Sn� � and Sni 
 Sni�� is

an �n� ���simplex� and

�� every �n� ���simplex is contained in either one or two n�simplexes�

The boundary complex of a manifold with boundary is the subcomplex of
�n� ���simplexes contained in exactly one n�simplex� If the boundary com�
plex is empty� we refer to the complex simply as a manifold�

Some� but not all� the complexes we consider are manifolds� Manifolds
satisfy the following property ���� Theorem II��
�

Lemma ���	 If M is an n�manifold with boundary� and Tm an interior
simplex� then lk�Tm�M� is an �n�m� ���sphere�

Many complexes of interest have a simple but important topological
property� they have no �holes� in certain dimensions� There are several
ways to formalize this notion� but the following is the most convenient for
our purposes�
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Figure ��� st���v�� st��v�� and lk��v��

De�nition ���
 For k � �� a non�empty complex C is k�connected ����
p���� if� for m � k� any continuous map of the m�sphere into jCj can be
extended to a continuous map over the �m � ���disk� It is convenient to
de�ne a complex to be �����connected if it is non�empty� and any complex
to be k�connected for k � ���

A ��connected complex is usually called connected � there is a path link�
ing every pair of vertices� A ��connected complex is usually called simply
connected � any loop �closed path� can be continuously deformed to a point�

To illustrate how this formal de�nition captures the informal notion of
a �hole� in a complex� Figure �� shows a complex �rendered as a surface for
simplicity� together with images of a ��sphere �circle� under continuous maps
f and g� The image under f can be contracted to a point� while the image
under g circumnavigates a �hole� and cannot be contracted� We will be
concerned with proving that certain complexes are k�connected� Although
the de�nition of k�connectivity is topological in nature� we can reason about
connectivity in a purely combinatorial way� using the following elementary
theorem� proved in the appendix�

Theorem ���� If K and L are complexes such that K and L are k�connected�
and K 
L is �k � ���connected� then K � L is k�connected�

Before continuing� we note some examples of useful k�connected complexes�

Lemma ���
 The following complexes are k�connected� ��� the complex
Sk consisting of a k�simplex and its faces� and �
� a cone over an arbitrary
�k � ���dimensional complex�

This completes the topological concepts necessary to prove our main theo�
rem�
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Figure ��� Contractible and Non�Contractible Loops

� The Main Theorem

We are now ready to state our main theorem�

Theorem ��� �Asynchronous Computability Theorem� A decision task
hI�O��i has a wait�free protocol using read�write memory if and only if
there exists a chromatic subdivision 
 of I and a color�preserving simplicial
map

	 � 
�I�� O

such that for each vertex �s in 
�I�� 	��s� � ��carrier ��s�I���

This theorem establishes that task solvability can be characterized in
terms of purely topological properties of the task speci�cation� without ex�
plicit mention of protocols and executions� A task is solvable if and only if
one can subdivide the input complex and map that subdivided complex to
the outputs in a way that agrees with �� In one direction� we will see that
any protocol induces a subdivision� and the structure of that subdivision
re"ects in a natural way the structure of the protocol�

The theorem is depicted schematically in Figure ��� The �gure�s top
half shows how the task speci�cation � takes input simplexes to allowed
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Figure ��� Simplicial representation of a one�round execution

output simplexes� The bottom half shows how 	 maps the subdivided input
complex to the output complex in a way consistent with ��

In Figure ��� we give a simple example illustrating how the subdivision
mentioned in the theorem re"ects the unfolding of a protocol execution�
Consider the following ��process task �I�O���� solved by a single�round
normal�form protocol� P and Q have respective inputs p and q� They share
a two�element array� both elements initialized to �� P writes its value to
the �rst array element� and then scans the array� while Q writes its value to
the second element� and then scans the array� De�ne a process�s view to be
the sequence of values it read at the end of the protocol� A one�round� two�
process normal�form protocol has only three possible executions� ��� If P
reads before Q writes� then P �s view is �p���� and Q�s is �p� q�� ��� If P and
Q each reads after the other writes� then both have view �p� q�� ��� Q reads
before P writes� then P �s view is �p� q�� and Q�s is ��� q�� These executions
de�ne a protocol complex P as follows� There are three ��simplexes� one for
each execution� Each vertex is labeled with a process id and that process�s
view in that execution� If P reads �p� q�� then it cannot �tell� from its
view whether P executed before Q or concurrently with Q� The complex
P captures this ambiguity in a geometric way by placing hP� pqi in the
intersection of the two ��simplexes representing these two executions� If we
identify vertexes hP� pi and hQ� qi of I with vertexes hP� p�i and hQ��qi of
P� we can see that P is a subdivision of I� dividing the single edge of I into
three edges�

When a process �nishes executing the protocol� it chooses an output
value based only on its local state� Formally� this choice is captured by
a decision map � carrying vertexes of P to vertexes of O� Recall that a
�xed execution corresponds to a single simplex of P� At the end of this
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execution� the processes must choose vertexes that lie on a common sim�
plex of O� implying that the vertex map � � P � O is a simplicial map�
Moreover� because the protocol solves the task� for every vertex �s in P�
���s� � ��carrier ��s�I��� satisfying the theorem�s conditions� In summary�
the one�round normal�form protocol de�nes a protocol complex P which is
the desired subdivision of I� and the decision map de�nes the desired map
to the output complex�

Although this construction of a subdivision and map for a two�process
one�round protocol is only an example� the proof of the �if� part of the
theorem is based on the same notions� the protocol itself de�nes a protocol
complex which encompasses a subdivision of the input complex having the
desired properties�

The proof of the asynchronous computability theorem appears in Section
� and �� In the remainder of this section we give examples of applications
of the asynchronous computability theorem�

��� Binary Consensus

Perhaps the simplest decision task is binary consensus ���
� As speci�ed in
Figure ��� each process starts with a binary input� and eventually chooses
a binary output� All output values must agree� and each output must be
some process�s input�

The input complex for this task is the complex Bn constructed by as�
signing independent binary values to n� � processes� We call this complex
the binary n�sphere �Figure ����


The output complex consists of two disjoint n�simplexes� corresponding
to decision values � and �� Figure �� shows the input and output complexes
for ��process binary consensus� In general� the input complex is �n � ���
connected� while the output complex is disconnected� Consensus is the
generalization of binary consensus to allow input values from an arbitrary
range� not only f�� �g�

It is well�known that binary consensus has no wait�free read�write proto�
col ���� ��� ��
� Nevertheless� it is instructive to see how this result follows
from the asynchronous computability theorem� To keep our presentation
simple� we focus on the two�process task�

�Informally
 to see why this complex is homeomorphic to an n�sphere
 note that it
consists of two subcomplexes� En� is the set of n�simplexes containing hPn� �i
 and En� the
set containing hPn� �i� Each of these is an n�disk
 a cone over the binary �n � ���sphere
Bn��� These two n�disks are joined at their boundaries
 forming an n�sphere�
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Figure ��� Asynchronous Computability Theorem

Processes P and Q are given private binary inputs� and they must agree
on one of their inputs� In a solo execution� where P runs alone� it observes
only its own input� say �� Since P must choose a value even if Q never
takes a step� P must eventually choose �� The same is true if Q runs solo
with input �� If� However� P and Q run together� then one of them� say P �
must change its tentative decision� while preventing Q from doing the same�
At the heart of the published impossibility results for this task is a case
analysis of a �bad� execution showing that the commuting and overwriting
properties of read and write operations make this kind of synchronization
impossible�

The asynchronous computability theorem captures this impossibility in
a geometric rather than operational way� Figure �� shows the input and
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Figure ��� The Consensus task
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Figure ��� Binary �� �� and ��spheres

output complexes for the two�process consensus task� Assume by way of
contradiction that a protocol exists� The input complex I is connected�
and so is the subdivision 
�I�� Simplicial maps preserve connectivity� so
	�
�I�� is also connected� Let Iij and Oij denote the input and output
simplexes where P has value i and Q has value j� Because ��I��� � O��� 	
carries input vertex hP� �i to output vertex hP� �i� Symmetrically� it carries
input hQ� �i to output hQ� �i� However� these output vertexes lie in distinct
connected components of the output complex� so 	 cannot be a simplicial

Input Complex Output Complex

Q 0P 0

Q 1 P 1

Δ

Q 1

P 0 Q 0

P 1

Figure ��� Simplicial Complexes for ��Process Consensus
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Figure ��� The Quasi�Consensus task

map� and by Theorem ��� ��process consensus is not solvable� �Generalizing
this argument to n processes yields a simple geometric restatement of the
impossibility of wait�free consensus in read	write memory ���� ��� ��
��

��� Quasi�Consensus

We introduce the following �toy� problem to illustrate further the implica�
tions of the theorem� Let us relax the conditions of the consensus task as
follows�

Quasi�Consensus Each of P and Q is given a binary input� If both have
input v� then both must decide v� If they have mixed inputs� then
either they agree� or Q may decide � and P may decide � �but not
vice�versa��

Figure �� shows the input and output complexes for the quasi�consensus
task� Is quasi�consensus solvable�

It is easily seen that there is no simplicial map directly from the input
complex to the output complex� Just as for consensus� the vertexes of input
simplex I�� must map to output vertexes hP� �i and hQ� �i� but there is
no single output simplex containing both vertexes� Nevertheless� there is a
map satisfying the conditions of the theorem from a subdivision of the input
complex� If input simplex I�� is subdivided as shown in Figure ��� then it
can be �folded� around the output complex� allowing input vertexes hP� �i
and hQ� �i to be mapped to their counterparts in the output complex�

Figure �� shows a simple protocol for quasi�consensus� Recall our earlier
explanation that the subdivisions of an input simplex correspond to execu�
tions of the protocol� If P has input � and Q has input �� then this protocol
admits three distinct executions� one in which both decide �� one in which
both decide �� and one in which Q decides � and P decides �� These three
executions correspond to the three simplexes in the subdivision of I��� which
are carried to O��� O��� and O���
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Figure ��� Input and Output Complexes for ��Process Quasi�Consensus
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Figure ��� Subdivided Input and Output Complexes for ��Process Quasi�
Consensus

This approach can be extended to tasks involving more than two pro�
cesses� Recall that in the two�process �one�dimensional� case� the impos�
sibility of consensus follows from the observation that a simplicial map
cannot carry a connected component of the subdivided input complex to
disconnected components of the output complex� In the �n � ���process
�n�dimensional� case� the impossibility of the k�set agreement task follows
from an similar observation� a simplicial map cannot carry the boundary of
a �solid� disk to the boundary of a �hole��

��� Set Agreement

The k�set agreement task ���
 is a natural generalization of consensus�

k�Set Agreement Like consensus� each process starts with an input value
from some domain� and must choose some some process�s input as its
output� Unlike consensus� all processes together may choose no more
than k distinct output values�
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	 � then decide 


decide 
 decide �

Figure ��� Quasi�Consensus Protocols for P and Q

Consensus is just ��set agreement� all processes together may choose no
more than k � � distinct values� When n � � and k � �� the three pro�
cesses must return at most two distinct values� As illustrated in Figure ���
the output complex for three�process two�set agreement consists of three
binary ��spheres linked in a ring� This complex is ��connected �any rubber
band embedded in the complex could be contracted to a point�� but not ��
connected �a balloon embedded in one of the spheres cannot be contracted
to a point�� Note the �hole� created by the missing simplexes colored with
all three values�

The set agreement problem was �rst proposed by Chaudhuri ���
 in �����
along with a conjecture that it could not be solved when k � n� This
problem remained open until ����� when three independent research teams�
Borowsky and Gafni ���
� Herlihy and Shavit ���
� and Saks and Zaharoglou
���
 proved this conjecture correct�

We now show that the k�set agreement task of Chaudhuri has no wait�free
read�write protocol when k � n� The proof we present is short and rather
simple since most of the complexity is hidden in the use of the asynchronous
computability theorem� Our proof uses Sperner�s Lemma ���� Lemma ���
�
a standard tool from algebraic topology�

Lemma ��� �Sperner�s Lemma� Let 
�T � be a subdivision of an n�simplex
T � If F � 
�T �� T is a map sending each vertex of 
�T � to a vertex in its
carrier� then there is at least one n�simplex S � ��s�� � � � � �sn� in 
�T � such
that the F ��si� are distinct�

We begin with an informal sketch of the three�process case� where k � ��
and input and output values taken from f�� �� �g� Figure �� shows the output
complex�

Figure �� shows a subcomplex of the input complex consisting of a sim�
plex T with vertexes hP� �i� hQ� �i and hR� �i �P�� P�� and R� for short��
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Figure ��� Output Complex for ������Set Agreement

and a collection of ��simplexes that intersect it along its proper faces� In
simplex S�� all processes have input value �� and similarly for S� and S�� In
simplex S��� all processes have input value � or �� and similarly for S�� and
S���

Now assume by way of contradiction that a protocol exists� Recall that
the task speci�cation requires each process to decide some process�s input�
By the asynchronous computability theorem� there exist subdivision 
 and
color�preserving simplicial map 	 consistent with the task speci�cation�

For S�� the task speci�cation requires each process to decide �� so for
every vertex of �s� val�	��s�� � �� As a result� 	 sends the vertex P� of T
to an output vertex also labeled with �� Similarly� 	�Q�� and 	�R�� are
respectively labeled with � and ��

For S��� the task speci�cation requires each process to decide � or �� so
for every vertex of �s� val�	��s�� � f�� �g� As a result� 	 sends every vertex
in the subdivided edge 
�P�� Q�� to an output vertex labeled with � or ��
Similarly� the vertexes of 	�
�Q�� R��� and 	�
�P�� R��� are respectively
labeled with values from f�� �g and f�� �g�

As a result� 	 carries each vertex in each subdivided proper face of T to
a value in its carrier�s set of inputs� as depicted in Figure ��� The map 	
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Figure ��� Sperner�s Lemma� at least one simplex has all colors
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Figure ��� Part of the set agreement input complex�

thus satis�es the preconditions of Sperner�s Lemma� and therefore it carries
some ��simplex in the subdivision 
�T � to an output simplex labeled with
all three values� The output simplex� however� contains no such three�
colored simplex� because there is no execution in which three distinct output
values are chosen� �Even less formally� it maps to the �hole� in the output
complex��

Here is the full proof�

Theorem ��� The k�set agreement task has no wait�free read�write protocol
for k � n�

Proof� It su
ces to prove that there is no solution for k � n� Assume by
way of contradiction that there is such a protocol� From the k�set agreement
task speci�cation� there is an input n�simplex T n in In with n� � distinct
inputs �jvals�T n�j � n���� For every proper face Tm � T n� there exists an
input simplex Sn � In such that Tm � Sn and vals�Tm� � vals�Sn�� For
example� if Tm is a single vertex hP� �i� then Sn is the input simplex with
vals�Sn� � f�g� By Theorem ��� there exists a color�preserving simplicial
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map 	 � 
�In� � On� and by de�nition� 	�
�T m�� must be consistent
with ��Sn� for any Sn � In containing Tm� By the task speci�cation
vals���Sn� � vals�Sn� and it follows that the simplicial map 	 carries every
vertex v of 
�Tm� to a vertex in its carrier� hence by Lemma ���� there exists
a simplex in 
�T n� whose vertexes are mapped to n�� distinct inputs� that
is� to a simplex in O with n� � distinct values� a contradiction�

� Necessity

In this section� we show that the conditions of our theorem are necessary�
any decision task hI�O��i has a wait�free protocol using read	write memory
only if there exists a chromatic subdivision 
�I� and a color�preserving
simplicial map

	 � 
�I�� O

such that for each vertex �s in 
�I�� 	��s� � ��carrier ��s�I���
In our informal discussion of Figure ��� we represented the three possible

executions of a one�round normal form protocol as a simplicial complex
which we called the �protocol complex�� We observed that this protocol
complex induces a subdivision of an input simplex� and that the decision
map � from the protocol complex to the output complex is a simplicial map
satisfying the conditions of the theorem�

Our lower�bound proof is just a formalization of the same argument� We
�rst de�ne the protocol complex for a normal�form protocol with multiple
processes and multiple rounds� We then show that the protocol complex
encompasses a subdivided image of the input complex� and that the decision
map induces the desired simplicial map�

First� a note about notational conventions� Some of the results presented
here concern properties of arbitrary complexes� while others concern prop�
erties of complexes that arise in the context of asynchronous computation�
To highlight this distinction� we use symbols such as p and q for dimensions
of arbitrary simplexes� while n� as usual� is one less than the number of
processes� and m typically ranges between � and n�

��� Protocol Complexes

At each step in a protocol� the local state of a process consists of its input
value together with the sequences of values it scanned� The protocol�s global
state is just the set of local states� together with the state of the shared
atomic snapshot memory a����n
� It is useful to treat any protocol as an
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�uninterpreted� protocol in which each process�s decision value is just its
�nal local state �bypassing the decision map ���

We model protocols just like decision tasks� The inputs and outputs for
any execution of a protocol P are given by sets of �n � ���process input
and output vectors� respectively denoted by I and O� As noted in Section ��
because the protocols solve decision tasks� the set I of possible input vectors
is pre�x�closed� For any protocol� the set O of possible output vectors from
all executions of the protocol must also be pre�x�closed� for the following
reason� Let �O be an output vector produced by an execution of the protocol�
and �P any pre�x� For each i such that �O�i
 �� � and �P �i
 � �� we can create
a new execution in which process i fails just before the finish event� that
is� just before deciding� Clearly� this execution is a possible execution of P
with output vector �P �

Because the sets of input and output vectors I and O associated with
a protocol P are pre�x�closed� there exist corresponding input and output
complexes� respectively denoted I and P�I��

De�nition ��� The complex P�I� is called a protocol complex over I�
Similarly� for a subcomplex C of the input complex I� P�C� denotes the
set of possible outputs when the protocol is given inputs corresponding to C�

An important special case occurs when C is Sm� where � � m � n� The
complex P�Sm� is the set of output simplexes when the processes in ids�Sm�
start with their corresponding values in vals�Sm��

The protocol complex satis�es some useful functorial properties� which
follow immediately from the de�nitions� Let C�� � � � � Ck be subcomplexes of
I�

Lemma ��� P�
Tk
i�� Ci� �

Tk
i�� P�Ci��

Lemma ��� P�
Sk
i�� Ci� �

Sk
i�� P�Ci��

What does it mean for a protocol to solve a decision task� Recall that
a process chooses a decision value by applying a decision map � to its local
state� We reformulate our main theorem to say that a protocol P solves a
decision task hI�O��i if and only if there exists a simplicial� color�preserving
decision map

� � P�I�� O�

such that for every simplex Sm � I� and every simplex Tm � P�Sm�� where
� � m � n� ��Tm� � ��Sm�� This de�nition is just a formal way of stating
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that every execution of the protocol must yield an output value assignment
permitted by the decision problem speci�cation� Though this might seem
like a roundabout formulation� it has an important and useful advantage� we
have moved from an operational notion of a decision task� expressed in terms
of computations unfolding in time� to a purely combinatorial description
expressed in terms of relations among topological spaces�

��� Our Proof Strategy

P and Q
run alone

Q runs alone

P ,Q, and R
run together

P and R
run alone

R runs alone

P 100

Q 010

P runs alone

R 001

R 111

R 011

R 101Q 110

Q 011

Q 111

P 110

P 111

P 101

Figure ��� A one�round protocol complex
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Figure �� shows the protocol complex for a simple one�round wait�free
normal�form protocol� The processes share a three�element atomic snapshot
memory array with each entry initialized to �� Each process P � Q� and R
writes � to its entry in the array� scans the array�s values� and halts� This
complex has a simple inductive structure� The vertex at the top �corner�
represents a solo execution by P � it writes �� scans the array� and observes
only its own value� The vertexes along the left�hand edge represent solo
executions by P and Q together� as in Figure ��� The three vertexes in the
interior of the complex represent executions in which all processes� opera�
tions are interleaved� each process observes each of the others� values�

Our proof strategy is as follows� For each input simplex Sm� where
� � m � n� we identify a subdivision 
�Sm� with a subcomplex of the
protocol complex P�Sm�� and construct the simplicial map 	 in terms of
the decision map �� The construction is based on the following notion�

De�nition ��� A span for a protocol complex P�I� is a subdivision 
�I�
and a color�preserving simplicial map 
 � 
�I�� P�I�� such that for every
vertex �s � 
�I��


��s� � P�carrier ��s� 
�I���� ���

A span 
 is thus a subdivision of the input complex with the property
that for each input simplex Sm� � � m � n� the subdivision 
�Sm� is
mapped to a subcomplex of the protocol complex P�Sm� by a color and
carrier�preserving map 
� This construction is illustrated in Figure ��� The
left�hand side shows a three�process input simplex �oval vertexes� which is
subdivided �round vertexes� and mapped to a subcomplex of the protocol
complex�

The �only if� direction of our main theorem will follow from showing
that �if there is a protocol complex then there is a span�� The required
subdivision 
 is the chromatic subdivision of I induced by the span� and
the simplicial map 	��v� is just ��
��v��� the composition of the span map
and the task decision map�

We need to construct the span because the protocol complex itself is not
necessarily a subdivision of the input complex �unlike the simple example
presented in Figure ���� For example� the one�round three�process protocol
complex of Figure �� is a not subdivided ��simplex� although it does contain
the subdivided ��simplex shown on the right�hand side of Figure ���

We construct a span for a given protocol inductively by dimension� suc�
cessively extending a span de�ned over the k�skeleton to the �k����skeleton�
as in Figure ���
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Here are the principal steps of our construction�

� We show that there are no topological �obstructions� to extending 

from the k�skeleton to the �k � ���skeleton� Section ��� provides this
�rst step� showing that for each input simplex Sm� � � m � n� P�Sm�
is m�connected�

� To maintain the color�preserving nature of 
 and 
� we check that

 can be extended in a way that does not �collapse� simplexes� that
is� it does not map higher�dimensional simplexes to lower�dimensional
simplexes�

� The key to showing this �non�collapsing� property is the following local
topological property� for every input simplex Sm� � � m � n� the link
of any k�simplex in P�Sm� is �m � k � ���connected� a property we
call link�connectivity� We address this issue in Section ����

� We complete the proof in Section ��� by using connectivity and link�
connectivity properties to show that any protocol has a span�

Bothm�connectivity and link�connectivity are topological properties of com�
plexes�

��� Basic Lemmas

We begin with some general lemmas about simplicial complexes�

De�nition ��� Complexes C�� � � � � Cq cover C if C � �qi��Ci� For any index
set U � de�ne CU � 
i�UCi�

Lemma ��	 If C�� 	 	 	 � Cq cover C� then for any index sets U and V �

CU 
 CV � CU�V �

Proof� CU 
 CV � �
T
i�U Ci�

T
�
T
i�V Ci� �

T
i�U�V Ci � CU�V �

We will need the following inductive generalization of Theorem �����

Lemma ��
 Let C�� � � � � Cq cover C� and k � � be such that for all U �
CU is �k � jU j��connected� If U�� � � � � U� are index sets of a given size u�
�� u � q � �� such that for each distinct i and j� fig � Ui � Uj� then

��
i��

CUi
is �k � u��connected�
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Proof� If k � u� �� then this lemma simply states that the union of non�
empty complexes is non�empty� Let k � u� �� We argue by induction on ��
The base case� when � � �� is just the hypothesis� For the induction step�
when � � �� assume that every

A �

����
i��

CUi

is �k � u��connected� By the hypothesis�

B � CU�

is �k � u��connected� Their intersection is

A
B �

�
����
i��

CUi

�

 CU�

�

����
i��

CUi�U�
�

Let Vi � Ui � U�� for � � i � �� Notice that each jVij � u� �� and for each
distinct i and j� fig � Vi � Vj �

A
 B �
����
i��

CVi �

The CVi satisfy the conditions of the induction hypothesis� so A
B is �k �
u� ���connected� and the claim now follows from Theorem �����

��� Connectivity

We now prove a remarkable property of wait�free read	write protocol com�
plexes� for any input simplex Sm� � � m � n� the protocol complex P�Sm�
is m�connected� In other words� every protocol complex in this model has
no �holes��

����� The Reachable Complex

We start with some de�nitions capturing the way in which the set of execu�
tions starting in any global state de�ne a reachable complex�

De�nition ��� Let Sm be an input simplex� � � m � n� and let s be
a global state reached by executing P from the initial state given by Sm� A
simplex Rm of P�Sm� is reachable from s if there is some execution starting
from s in which each process in ids�Rm� completes the protocol with the local
state speci�ed in Rm� The reachable complex from s� written R�s�� is the
complex of reachable simplexes from s�
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Notice that the reachable complex from the initial state with participating
processes and their inputs given by Sm is just P�Sm�� For brevity� we say a
state is reachable from an input simplex Sn if it is reachable from the initial
state whose process ids and inputs are given by Sn�

If s is a global state in which not all processes have decided� then pro�
cesses fall into two categories� ��� a pending process is about to execute an
operation� and ��� a decided process has completed its protocol and halted�

De�nition ��
 For a pending process Pi in state s� de�ne the reachable
complex Ri�s� to be the subcomplex of the protocol complex that is reachable
after Pi executes its pending operation�

As i ranges over the pending processes� the Ri�s� cover R�s�� A pending
index set is a set of indexes of pending processes� If U is a pending index set�
de�ne RU �s� � 
i�URi�s�� Lemma ��� applies� Informally� each simplex in
RU �s� corresponds to an execution starting in s in which no process can tell
which process in U went �rst�

����� Evolving Connectivity

We now give an informal example showing how the connectivity of the reach�
able complex evolves as an execution unfolds� Consider the one�round exe�
cution of Figure ��� illustrated in Figure ���

The input complex consists of the single simplex S� � fhP� pi� hQ� qig�
and the protocol�s initial state is s� The reachable complex P�S�� encom�
passes three ��simplexes� There are two pending operations in s� an update
by P and an update by Q� If P goes �rst� the reachable complex RP �s�
encompasses the simplexes fhP� �p���i� hQ� �p� q�ig� fhP� �p� q�i� hQ� �p� q�ig�
and their faces� The reachable complex RQ�s� is de�ned symmetrically� Let
U � fP�Qg� the set of participating processes� Clearly� fRi�s�ji � Ug cover
R�s�� RU �s� � RP �s� 
RQ�s� is the single simplex fhP� �p� q�i� hQ� �p� q�ig
reached in the execution in which both updates occurred before either scan
�since updates commute� their order does not matter�� RU �s� is ��connected�
To show that P�S�� is ��connected� Theorem ���� implies that it is enough
to show that both RP �s� and RQ�s� are ��connected �connected in the
graph�theoretic sense��

First� let us check that RP �s� is connected �a symmetric argument holds
for RQ�s��� Let s� be the global state if P updates a�P 
 in s� and s�� the
global state if Q updates a�Q
� There are two pending operations in s��
Q�s update changing a�Q
 to q� and P �s scan� If P goes �rst in s�� the
reachable complex consists of the ��simplex fhP� �p���i� hQ� �p� q�ig� If Q
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Figure ��� Connectivity of reachable complexes

goes �rst� the reachable complex consists of fhP� �p� q�i� hQ� �p� q�ig� Their
intersection RU �s

�� � RP �s
�� 
 RQ�s

�� cannot contain vertexes of P since
in RQ�s

��� Q�s update of a�Q
 to q must be re"ected in the view returned
by P �s scan� Thus� this intersection is non�empty� containing the ��simplex
hQ� �p� q�ig of Q� which is ��connected� The ��connectivity of RP �s� follows
from Theorem ����� since each outcome ��simplex is connected and their
intersection is ��connected�

����� Proof of Connectivity

We now present the complete proof� Instead of exhaustively considering all
executions� as in the example above� we concentrate on a speci�c �critical�
state and argue by contradiction�

De�nition ���� A global state s is critical for a property � if � does not
hold in s� and a step by any pending process will bring the protocol�s execution
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to a state where � henceforth holds�

Lemma ���� If � is a property that does not hold in some state s but does
hold in every �nal state of an execution� then � has a critical state�

Proof� A process is non�critical if its next step will not make � henceforth
hold� Starting from state s� repeatedly pick a non�critical pending process
and run it until it is no longer non�critical� Because the protocol must even�
tually terminate in a state where � holds� advancing non�critical processes
in this way will eventually leave the protocol in a state where � does not
hold� but all processes are either decided or about to make � henceforth
true� This state is the desired critical state�

We will now show that in any state reachable from any input simplex Sn�
P�Sn� satis�es the conditions of Lemma ���� Informally� our proof strat�
egy proceeds by contradiction� Assume the claim is initially false� Since
the reachable complex eventually shrinks to a single simplex� it eventually
satis�es the desired properties� so by Lemma ���� we can run the protocol
to a critical state� We then analyze the possible interactions of the pending
operations to show that the reachable complex must have satis�ed the con�
ditions to begin with� yielding a contradiction� A similar strategy was used
by Fischer� Lynch� and Paterson to prove the impossibility of asynchronous
consensus ���
�

Lemma ���� For any input simplex Sn� P�Sn� is n�connected�

Proof� By way of contradiction� let P be an �n � ���process protocol for
which the claim is false� Pick P so that n is minimal� Let � be the property
�R�s� is n�connected�� If s is any �nal state of P� then R�s� is a single
simplex� which is n�connected �Lemma ����� Because � holds in every �nal
state� Lemma ���� implies that � has a critical state s�

We claim that for every pending set U � RU �s� is �n�jU j����connected�
We proceed by a case analysis� Since � is true in any �nal state� we can
restrict our attention to non�empty pending sets�

Suppose U consists entirely of scans� In every execution leading to a
simplex in RU �s�� each pending scan is ordered before any update� Be�
cause scans commute� each such execution is equivalent to one in which all
processes in U perform their scans before any other operation occurs� If
s� is the state reached from s by executing all pending scans in U � then
R�s�� � RU �s�� Because s is critical� R�s�� � RU �s� is n�connected� Be�
cause jU j � �� RU �s� is �n� jU j� ���connected�
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Suppose U consists entirely of updates� Recall that in normal form
protocols� processes update an atomic snapshot memory a� where each new
value is distinct from any earlier value� In every execution leading to a
simplex in RU �s�� each pending update must be ordered before any scan�
Because updates commute� each such execution is equivalent to one in which
all processes in U perform their updates before any other operation occurs�
If s� is the state reached from s by executing all pending updates in U �
then R�s�� � RU �s�� Because s is critical� R�s�� � RU �s� is n�connected�
Because jU j � �� RU �s� is �n� jU j� ���connected�

Finally� suppose both scans and updates appear in U � Let U � R �W �
where R �respectively W � is the set of processes with pending preserving
scans �updates�� Suppose Pi � R is about to scan� and Pj � W is about
to update a�j
 from v to v�� In every simplex in Ri�s�� Pi�s scan returns v�
while in every simplex in Rj�s�� it returns v

�� As a result� Pi has no vertexes
in Ri�s� 
 Rj�s�� More generally� RU �s� contains no vertex of any process
in R� In every execution leading to a simplex in RU �s�� each update in
W is ordered before any scan by a process in ids�RU �s��� Conversely� any
execution from s by processes not in R in which all updates in W precede
any other operation is in RU �s�� Let s� be the state reached from s by
executing all pending updates in W � Since updates commute� their order is
unimportant�

Let P � be the �n�jRj����process protocol with initial state s� identical
to P except that the processes in R do not participate� Let R��s�� be the
reachable complex for P � from s�� We have just argued that RU �s� � P ��s���
Because jRj � �� and P was chosen to be minimal� R��s� is �n � jRj � ���
connected� and because jU j � jRj� it is also �n� jU j� ���connected�

In all cases� we have shown that RU �s� is �n � jU j � ���connected� By
Lemma ���� R�s� � �Ri�s� is n�connected� It follows that � holds in s�
contradicting our assumption that s is a critical state for �� We have shown
that R�s� is n�connected for every state s� If s is the initial state given by
Sn� then R�s� � P�Sn� is n�connected for every input simplex Sn�

For any input simplex Sm� � � m � n� P�Sm� can be considered the
protocol complex for an �m� ���process protocol�

Corollary ���� For any input simplex Sm� � � m � n� P�Sm� is m�
connected�

Note that for any input n�complex I� P�I� is not necessarily n�connected�
since I itself may not be n�connected�
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��� Link Connectivity
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Figure ��� Complexes A �left� and B �right�

Given Corollary ����� it is not hard to construct a subdivision 
�I� and
a carrier�preserving simplicial map 	 � 
�I� � P�I�� This construc�
tion su
ces to show this paper�s principal impossibility results �such as the
impossibility of k�set agreement�� but it is not yet enough to construct an
algorithm�

The missing property is that 	 must be color preserving � for every vertex
�v� id�	��v�� must equal id��v�� This property cannot be taken for granted� the
existence of a simplicial map does not always guarantee the existence of a
color�preserving simplicial map� Consider the following simple example� Let
A and B be the colored complexes shown in Figure ��� and 
 the simplicial
map carrying vertexes �a� �b and �c to 
��a�� 
��b�� and 
��c�� respectively� Does
there exist a chromatic subdivision 
 of A and a simplicial map � � 
�A��
B extending 
� It is not di
cult to construct a chromatic subdivision 

and a non color�preserving simplicial map satisfying these conditions� but it
turns out that no color�preserving map is possible� For any subdivision 
�
one can show that lk��b� 
�A�� must be connected� By contrast� lk�
��b��B�
is not connected� Some vertex �x in lk��b� 
�A�� must map to 
��a�� and some
�y to 
��c�� and the path between �x and �y in lk��b� 
�A�� must map to a path
linking the disconnected components of lk�
��b��B�� a contradiction�

To ensure that 	 is color preserving� we must prove one more property of
each protocol complex P�Sm�� � � m � n� In addition to beingm�connected
�Corollary ������ P�Sm� is also link�connected �

De�nition ���� A p�complex C is link�connected if for all simplexes T q �
C� � � q � p� lk�T q� C� is �p� q � ���connected�

A p�complex can be p�connected without being link�connected� and vice�
versa�

��



Lemma ���� If C is link�connected� so is lk�T� C� for any simplex T � C�

Proof� For every simplex S of C and T of lk�S� C��

lk�T� lk �S� C�� � lk�T 	 S� C��

Lemma ���	 For every input simplex Sn� and simplex Tm � P�Sn�� lk�Tm�P�Sn��
is �n�m� ���connected�

Proof� The proof resembles the proof of Lemma �����
By way of contradiction� let P be an �n� ���process protocol for which

the claim is false� Pick P so that n is minimal� For a global state s� let R�s�
be the reachable complex from s� and Q�s� � lk�Tm�R�s�� �empty if Tm is
not in R�s��� Let � be the property

Tm � R�s�� Q�s� is �n�m� ���connected�

Initially� � is false by assumption� In every �nal state s� either Tm is not in
R�s�� or Q�s� is a single �n�m����simplex �which is �n�m����connected��
Either way� � holds in every �nal state� By Lemma ����� � has a critical
state s� Notice that because � is false in s� Tm is in R�s��

As usual� for each Pi pending in s�Ri�s� is the reachable complex after Pi
executes its operation� and for each set U of pending processes in s� RU �s� �

i�URi�s�� De�ne Qi�s� � lk�Tm�Ri�s��� and QU �s� � lk�Tm�RU �s��� The
Qi�s� cover Q�s�� and Lemma ��� applies�

De�ne a pending operation to be preserving if it leaves Tm within the
reachable complex� There must be a preserving operation pending in s�
because otherwise Tm would not be reachable� and � would be true� Let U
be any non�empty set of pending preserving operations in s� For each Pi in
U � that process�s pending operation is preserving� so Tm is in each Ri�s��
and therefore in RU �s�� We now show� by case analysis� that any QU �s� is
�n�m� jU j � ���connected�

Suppose U consists entirely of scans� In every execution leading to a
simplex in RU �s�� each pending scan is ordered before any update� Be�
cause scans commute� each such execution is equivalent to one in which all
processes in U perform their scans before any other operation occurs� If
s� is the state reached from s by executing all pending scans in U � then
R�s�� � RU �s� and Q�s�� � QU �s�� Because s is critical� � holds in s��
Since Tm is in RU �s� � R�s��� Q�s�� � QU �s� is �n � m � ���connected�
Because jU j � �� QU �s� is �n�m� jU j � ���connected�
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Suppose U consists entirely of updates� Recall that in normal form
protocols� processes update an atomic snapshot memory a� where each new
value is distinct from any earlier value� In every execution leading to a
simplex in RU �s�� each pending update must be ordered before any scan�
Because updates commute� each such execution is equivalent to one in which
all processes in U perform their updates before any other operation occurs�
If s� is the state reached from s by executing all pending updates in U � then
R�s�� � RU �s� and QU �s� � Q�s��� Because s is critical� Q�s�� � QU �s� is
�n �m � ���connected� and because jU j � �� QU �s� is �n �m � jU j � ���
connected�

Finally� suppose both scans and updates appear in U � Let U � R �W �
where R �W � is the set of processes with pending preserving scans �updates��
Suppose Pi � R is about to scan� and Pj �W is about to update a�j
 from v
to v�� In every simplex in Ri�s�� Pi�s scan returns v� while in every simplex
inRj�s�� it returns v

�� As a result� Pi has no vertexes inRi�s�
Rj�s�� More
generally� RU �s� contains no vertex of any process in R� In every execution
leading to a simplex in RU �s�� each update in W is ordered before any scan
by a process in ids�RU �s��� Conversely� any execution from s by processes
not in R in which all updates in W precede any other operation is in RU �s��
Let s� be the state reached from s by executing all pending updates in W �
Since updates commute� their order is unimportant�

Let P � be the �n�jRj����process protocol with initial state s� identical
to P except that the processes in R do not participate� Let R��s�� be the
reachable complex for P � from s�� and Q��s�� � lk�Tm�R��s���� We have just
argued that RU �s� � P ��s��� and QU �s� � Q��s��� Because jRj � �� and P
was chosen to be minimal� Q��s� � QU �s� is �n �m � jRj � ���connected�
Because jU j � jRj� QU �s� is also �n�m� jU j � ���connected�

In all cases� we have shown that QU �s� is �n�m� jU j � ���connected�
By Lemma ���� Q�s� � �Qi�s� is �n � m � ���connected� It follows that
� holds in s� contradicting our assumption that s is a critical state for ��
We have shown that � must hold in every state� and that every Q�s� is
�n�m� ���connected� In particular� for every input simplex Sn� P�Sn� is
link�connected�

For any input simplex Sm� � � m � n� P�Sm� can be considered the protocol
complex for an �m� ���process protocol�

Corollary ���
 For any input simplex Sm� � � m � n� P�Sm� is link�
connected�

��



��� Every Protocol Has A Span

For our inductive construction� we will need to show that any color and
carrier�preserving map from a subdivision of the i�skeleton of I to P�I� can
be extended up one dimension� to a color and carrier�preserving map of the
�i� ���skeleton�

Recall that a simplicial map collapses a simplex if it maps that simplex
to a simplex of lower dimension� A map is non�collapsing if it collapses no
simplexes� Clearly� color�preserving maps are non�collapsing� Conversely�
if a color�preserving map 
�skel i�A�� � B has a non�collapsing exten�
sion 
�skel i���A�� � B� then that extension is also color�preserving�
Consequently� we focus on the circumstances under which maps have non�
collapsing extensions�

The following lemma appears in Glaser ���� Theorem IV��
�

Lemma ���� Let A� B� and C be complexes such that A � B� and g � jBj �
jCj a continuous map such that the vertex map induced by f restricted to jAj
is simplicial� There exists a subdivision � of B such that ��A� � A� and a
simplicial map 
 � ��B� � C extending the restriction of f to jAj�

De�nition ���
 Let 
 be a subdivision of skelp���C�� for some complex C�
The subdivision of Sp obtained by starring 
 ���� p� ��� is de�ned as follows�
Let Sp� � � � � � S

p
L be the p�simplexes of skelp�C�� For � � i � L� let �wi be the

barycenter of jSpi j� Each �wi 	 
�S
p
i � is a subdivision of Spi � and the union

of these complexes as i ranges from � to L is a subdivision of skelp�C� that
agrees with 
 on the �p� ���skeleton

If 
 is the trivial subdivision� we can apply this construction to the boundary
complex of a single simplex Sp in C� in which case we speak of starring Sp

in C�

Lemma ���� Let A be a �p� ���sphere� B a p�disk having A as boundary�
and C a complex that is �p� ���connected and link�connected� If � � A � C
is a simplicial map� then

�� there exists a subdivision � of B such that ��A� � A�


� a simplicial map 
 � ��B� � C that agrees with � on A� and

�� 
 collapses no internal simplexes of ��B��
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Figure ��� Eliminating simplex collapse� top dimension

Proof� Because C is �p����connected� the continuous map j�j on A can be
extended to a continuous f � jA�j � jCj whose restriction to A is simplicial�
Conditions � and � follow immediately from Lemma �����

If Condition � does not hold� choose � and 
 to minimize ��� the di�
mension of C� ��� the largest dimension of any collapsed simplex� and ���
the number of collapsing simplexes of that dimension� We will demonstrate
a contradiction by �adjusting� � and 
 to collapse one fewer simplex of
maximal dimension� To adjust 
� we subdivide the collapsed simplex T by
inserting a new vertex at the barycenter� and then extending 
 to send that
new vertex to an vertex adjacent to 
�T �� resulting in a new subdivision
and map that collapses one fewer simplex of maximal dimension�

Suppose 
 collapses a simplex T p� where p is the maximal dimension
of any simplex in B� As illustrated in Figure ��� where T p is a triangle�
starring T p yields a new subdivision � ��B� Let 
�T p� � �v� and let �t be
the barycenter of T p� If T p��

� � � � � � T p��
p are the �p � ���faces of T p� then

starring T p �De�nition ����� yields a new subdivision � ��B�� Pick �u such
that ��v� �u� is a ��simplex in C� De�ne 
� � � ��B� � C such that 
���t� � �u�
and elsewhere 
� � 
� We have constructed a subdivision � � and simplicial
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map 
� satisfying Conditions � and �� but collapsing one fewer p�simplex� a
contradiction�

Suppose 
 collapses an internal simplex T q � ��B� to �v� where � � q � p�
but collapses no internal simplexes of higher dimension� Our approach is
illustrated in Figure ��� where T q is an edge� De�ne the subdivision � ��T q�
b starring T q in ��B��

Because q � p� then lk�T q�B� is non�empty� The vertexes of any Lm�q�� �
lk�T q�B� are a
nely independent of the vertexes of T q� so �t is a
nely in�
dependent of each Lp�q��� Moreover� each �t 	 Lp�q�� is a simplex� and
�t 	 lk�T q�B� is a complex� Because B is a manifold with boundary� Lemma
���� implies that lk�T q�B� is a �p� q� ���sphere� and hence �t 	 lk�T q�B� is a
�p� q��disk� Because 
 does not collapse any �q � ���simplexes� 
 does not
send any vertex of lk�T q�B� to �v� so 
 � lk�T q�B�� lk��v� C��

We have a simplicial map 
 carrying the �p� q � ���sphere lk�T q�B� to
lk��v� C�� which is �p� ���connected by Lemma ����� Recall that the dimen�
sion of C is the smallest for which Condition � fails� and dim�lk ��v� C�� �
dim�C�� so all three conditions are satis�ed� ��� there is a subdivision � of
�t	lk �T q�B�� ��� a simplicialmap � � ���t	lk�T q�B��� lk��v� C� that agrees with

 on lk�T q�B�� and ��� � collapses no internal simplexes of ���t 	 lk�T q�B���

The complex ���t	lk�T q�B��	 !T q�� is a subdivision of st�T q�B� that leaves
its boundary unchanged� Replacing st�T q�B� in ��B� by this subdivision
yields a subdivision � ��B�� De�ne 
� to agree with � on ���t 	 lk�T q�B��� and
with 
 elsewhere� Condition � ensures that 
 and � agree on lk�T q�B�� so
this map is well�de�ned� The complex � ��B� and map 
� satisfy Conditions
� and �� but the map collapses one fewer q�simplex� a contradiction�

Lemma ���� Let Sp be a p�simplex� !Sp�� its boundary complex� and 
 a
chromatic subdivision of !Sp��� Let C be a p�colored complex that is �p� ���
connected and link�connected� and


 � 
� !Sp���� C

a color�preserving simplicial map� There exist a subdivision  
 of Sp� and a
color�preserving simplicial map

 
 �  
�Sp�� C

such that  
 agrees with 
 on !Sp��� and  
 agrees with 
 on 
� !Sp����

Proof� The complex 
� !Sp��� is a �p � ���sphere� and the subdivision of
Sp constructed by starring 
� !Sp��� is a p�disk having 
� !Sp��� as boundary�
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Figure ��� Eliminating simplex collapse� intermediate dimensions

By Lemma ����� 
 and 
 can be extended to  
 and  
 such that  
 agrees
with 
 on !Sp��� and  
 is a simplicial map that agrees with 
 on 
� !Sp����
and collapses no internal simplexes of  
�Sp��

It remains to check that  
 is color�preserving� Say that T p is a boundary
simplex if it can be expressed as �t 	 T p��� where T p�� is in 
� !Sp���� Because

 is chromatic on 
� !Sp���� it carries the face T p�� to a vertex labeled with
�p � �� out of the p colors labeling C� Because 
 does not collapse T p� it
must carry �t to a vertex labeled with the only remaining color� Therefore�
 
 is color�preserving on the boundary complex T p�

Because  
�Sp� is a p�manifold with boundary� for every simplex T p in
 
�Sp�� there is a sequence of simplexes Sp� � � � � � S

p
� such that Sp� is a boundary

simplex� Sp� � T p� and Spi 
S
p
i�� is an �n����simplex� The claim now follows

by inductively extending the same argument along the sequence�

We now have the tools needed to construct a span�

Lemma ���� Every wait�free protocol complex has a span�
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Figure ��� Inductive span construction
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Proof� We build up 
 and 
 by induction on the skeleton of I as depicted
in Figure ��� For each �v � I� de�ne 
���v� � P��v�� the unique vertex
in the protocol complex corresponding to a solo execution of process id��v�
with input val��v�� This map is color�preserving� and satis�es Equation � of
De�nition ����

Assume inductively that we have a subdivision 
k�� and a color�preserving
simplicial map


k�� � 
k���skel
k���I��� P�I�

satisfying Equation �� Let � be the subdivision of skelk�I� obtained by
starring 
k��� Let Sk� � � � � � S

k
K be all the k�simplexes in skelk�I�� For each

Ski � � � i � K� let Ai be the complex ��skelk���Ski ��� and Bi the complex
��Ski �� and Ci the complex P�Ski �� Lemma ����� there exists a chromatic
subdivision �i of Bi such that �i�Ai� � Ai� a color�preserving simplicial map
�i � ��Bi� � Ci that agrees with 
k�� on the Ai� Because the �i agree
on skelk���I�� they induce a subdivision 
k�skel

k�I��� Because the �i also
agree on 
k���skel

k���I��� they induce a color�preserving simplicial map

k � 
k�skel

k�I�� � P�I�� Finally� it is immediate from the construction
that 
k and 
k satisfy Equation ��

The desired subdivision 
 is 
n� and the desired map 
 is 
n� �Notice
that skeln�I� � I��

Theorem ���� If a decision task hI�O��i has a wait�free read	write pro�
tocol� then there exists a chromatic subdivision 
�I� and a color�preserving
simplicial map 	 � 
�I� � O such that for each vertex �s in 
�I�� 	��s� �
��carrier ��s�I���

Proof� Suppose a protocol exists� By Lemma ����� the protocol has a
span� Let 
 be the chromatic subdivision of I induced by the span� and let
	��s� � ��
��s��� the composition of the span map and the decision map�

� Su�ciency

In this section we show how to construct an algorithm for any task satisfying
the conditions of the asynchronous computability theorem� We now give an
overview of this construction�

We introduce the standard chromatic subdivision of a complex I� de�
noted ��I�� the chromatic analogue of the classical barycentric subdivision�
This subdivision is illustrated in Figure ��� We also introduce the iter�
ated standard chromatic subdivision �K�I�� and the notion of a chromatic
subdivision holding a subcomplex �xed�
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We will show that we can assume without loss of generality� that the span
subdivision 
�I� has the form �K�I�� for some su
ciently large K� To solve
the task� each process Pi begins by placing a token on an input vertex �si�
As vertexes of I� they are �close�� since they span a simplex S� As vertexes
of �K�I�� however� they are �far apart�� since they lie on the boundary of
the subcomplex �K�S�� The key insight is that we can construct a protocol
for this task by reduction to a variation on approximate agreement ��� ��
�
in which the processes start out at the vertexes of S� and after a process of
negotiation eventually converge to the vertexes of a single simplex in �K�S��
Once Pi has converged on a vertex �ti of matching color� it solves the original
task by choosing 	��ti��

We call this process simplex agreement� Simplex agreement on ��I� is
solved by the elegant �participating set� protocol of Borowsky and Gafni
���
� Simplex agreement on �K�I� is solved by iterating that protocol K
times�

Our construction relies on the following theorem� proved below�

Let Sn be a colored n�simplex� � the standard chromatic subdivi�
sion� and 
 an arbitrary chromatic subdivision� For su
ciently
large K� there exists a color and carrier�preserving simplicial
map


 � �K�Sn�� 
�Sn��

This theorem implies that any algorithm for simplex agreement on �K�Sn�
yields an algorithm for simplex agreement on an arbitrary 
�Sn�� Note that
this theorem is expressed entirely in terms of combinatorial topology�

��� Proof Strategy

To establish the intuition underlying our proof� we give an informal outline
of a proof that for su
ciently large K� there exists a carrier�preserving �but
not necessarily color�preserving� simplicial map 
 � �K�Sn� � 
�Sn��
This claim is a special case of the well�known �nite simplicial approximation
theorem ���� p���
�

Here are some useful notions from classical point�set topology�

De�nition ��� An open cover for a geometric complex C is a �nite collec�
tion of open sets U�� � � � � Uk such that C � �ki��Ui�

The following result is standard ���� p���
�
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Lemma ��� Let C be a complex�� and U�� � � � � Uk an open cover for C�
There exists a � � � �called a Lebesgue number� such that any set of diam�
eter less than � lies in a single Ui�

The open stars around vertexes of 
�Sn� form an open cover for 
�Sn� with
Lebesgue number �� By choosing K su
ciently large� we can ensure that
the diameter of any vertex�s star in �K�Sn� is less than �� It follows that
for each vertex �x in �K�Sn�� there is an �s in 
�Sn� such that

st��x� �K�Sn�� � st���s� 
�Sn��� ���

Let 
��x� � �s� It is easily shown that 
 is the desired carrier�preserving
simplicial map� Unfortunately� 
 is not necessarily color�preserving� id��x�
may not equal id�
��x���

ε

Figure ��� An ��perturbation

Our goal is to extend Equation � to require that �x and �s have matching
colors� for each vertex �x in �K�Sn�� there is an �s in 
�Sn� such that

st��x� �K�Sn�� � st���s� 
�Sn�� and id��x� � id��s�� ���

An immediate di
culty is that �x itself may not lie in the open star of any �s
of matching color� This situation occurs exactly when �x lies in lk��s� 
�Sn���
for �s of matching color� In such a case� however� we can displace �x by some
small distance � within its carrier to bring it within the open star of �s� We
refer to such a process as an ��perturbation �Figure ���� By applying a
suitable ��perturbation� we can ensure that every �x lies within an open star
of matching color�

The extended star of a simplex S is the union of the stars of its vertices�
For a su
ciently large K� we can ensure that for every n�simplex Xn in

�In fact
 C could be any compact space�
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�K�Sn�� the extended star of Xn lies within some open star st���s� 
�Sn���
Since the vertexes of Xn are labeled with all n colors� Xn must include one
vertex �x whose color matches that of �s� By construction� �x and �s satisfy
Equation �� The vertex map 
��x� � �s is color and carrier�preserving� and
it is de�ned on one vertex of each simplex of �K�Sn��

The remaining vertexes for which 
 is not de�ned span an �n � ���
dimensional subcomplex of �K�Sn�� We repeat essentially the same con�
struction in a sequence of rounds� In each round� by applying a perturbation
and further subdivision� we extend 
 to one more vertex of each remaining
simplex� and the dimension of the subcomplex on which 
 remains unde�
�ned drops by one� After n � � rounds� we have constructed a color and
carrier�preserving vertex map 
� Finally� we check that 
 is simplicial�

Our proof proceeds as follows� In Section ���� we de�ne the standard
chromatic subdivision� In Section ���� we de�ne the simplex agreement task
and give an algorithm for solving it on the standard chromatic subdivision�
In Section ���� if we iterate the standard chromatic subdivision a su
cient
number of times� then there is a color and carrier�preserving map from
the iterated standard chromatic subdivision to any chromatic subdivision�
This claim implies that any simplex agreement protocol for the iterated
chromatic subdivision yields a simplex agreement protocol for any chromatic
subdivision�

PP

Q

Q R

R

R Q

P

RQ

P

Figure ��� Standard chromatic subdivision

��� The Chromatic Subdivision

We start with a purely combinatorial de�nition of the standard chromatic
subdivision� This de�nition is analogous to the combinatorial de�nition of
the standard barycentric subdivision in De�nition ����� Let Sn � ��s�� � � � � �sn��
where id��si� � Pi�
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De�nition ��� In the standard chromatic subdivision of Sn� denoted ��Sn��
each n�simplex has the form �hP�� S�i� � � � � hPn� Sni�� where Si is a face of
Sn� such that ��� Pi � ids�Si�� �
� for all Si and Sj� one is a face of the
other� and ��� if Pj � ids�Si�� then Sj � Si�

We refer to the �xi � hPi� Sni as the central vertexes of the subdivision� The
standard chromatic subdivision of S� is illustrated in Figure ���

De�nition ��� The iterated standard chromatic subdivision �K�Sn� is the
result of iterating the standard chromatic subdivision K times�

It is sometimes useful to restrict subdivisions to a subcomplex�

De�nition ��� Let C be a complex with subcomplexes A and B such that
every simplex C of C can be written as A 	 B �the join of A and B�� where
A is a simplex of A� and B of B� �Either A or B could be empty�� Any
subdivision � of A induces a subdivision ��C�B� of C� called �� of C holding
B �xed�� de�ned to be the complex of all joins A� 	 B where A� � ��A��
B � B� and carrier �A��A� 	B a simplex of C�

For the standard chromatic subdivision� the process can be repeated� ���C�B� �
����C�B��B�� and so on�

Lemma ��	 There is a color and carrier�preserving simplicial map


 � �K�C�� �K�C�B��

Proof� The map 
 sends each vertex �v of �K�C� to the unique vertex �u in
�K�A�B� such that id��v� � id��u��

We now give an equivalent geometric de�nition of of the standard chro�
matic subdivision� A proof that the two de�nitions are equivalent is given
by Hoest ���
� To avoid notational clutter� we use fhP� vi as shorthand for
f�hP� vi��

De�nition ��
 We construct the following homeomorphism � � j��S�j � jSj
inductively by dimension� Assume inductively that there exist homeomor�
phisms

�i � j��facei�S��j � jface i�S�j�

Let �b �
Pm

i����si��m���� be the barycenter of S� where m � dim�S�� and �
any value such that � � � � ���m� ��� De�ne for id Pi and simplex R�

�hPi� Ri �

�
�ihPi� Ri if R � facei�S��

�� � ���b� ��si if R � S�

See Figure ���
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For any value of � such that � � � � ���m � ��� this de�nition gives an
exact geometric construction for the chromatic subdivision� We will use
this construction for the remainder of this section�

De�nition ��� The mesh of a complex is the maximum diameter of any
simplex�

Lemma ��
 mesh���Sn�� � n
n��diam�Sn��

Proof� We argue by induction on n� When n is zero� the claim is trivial�
Let !Sn�� be the boundary complex of Sn� ��Sn� the barycentric subdivi�
sion� and �b and �bi the respective barycenters of Sn and facei�S

n�� Assume
inductively that the claim holds for simplexes in �� !Sn���� From De�ni�
tion ���� each remaining central vertex �xi has the form �xi � �� � ���b � ��si�
which lies on the line joining �b to �bi� If �x � ��facei�S

n��� then the edge
��x� �xi� lies inside the triangle ��x��b��bi�� which lies inside a simplex in ��Sn��
Since mesh���Sn�� � �n��n � ���diam�Sn� ���� Theorem ����
� j�x � �xij �
�n��n����diam�Sn�� Finally� for any central vertex �xj � j�xi��xjj � �j�si��sjj�
and the claim follows because � � ���n� ���

Lemma ��� implies that by taking su
ciently large K� mesh��K�I�� can be
made arbitrarily small�

��� Simplex Agreement

Consider a task hI�O��i together with a subdivision 
 and map 	 � 
�I��
O satisfying the conditions of the theorem� As described above� we will
reduce any protocol to a �simplex agreement� protocol in which processes
converge to the vertexes of a single simplex in 
�S�� More precisely�

De�nition ���� Let I be an �n � ���colored complex� and 
 a chromatic
subdivision of I� The simplex agreement task hI� 
�I�� 
i has input complex
I� output complex 
�I�� and a task speci�cation


 � f�Sm� Tm�jTm � 
�Sm�g �

For brevity��simplex agreement on 
�I�� means hI� 
�I�� 
i�
Given a task hI�O��i satisfying the conditions of Theorem ���� let 
�I�

and 	 � 
�I�� O be the subdivision and simplicial map guaranteed by the
theorem� Any protocol that solves the simplex agreement task hI� 
�I�� 
i
can be adapted to solve hI�O��i simply by applying 	 to the result of the
simplex agreement protocol�

��



Combining these observations yields a protocol for any task hI�O��i
that satis�es the conditions of Theorem ���� each process executes the sim�
plex agreement protocol for �K�I�� and applies 
 and then 	 to the result�

procedure ParticipatingSet�int me� array F�

array view�F����n� 	 �null� ���� null�

repeat

F�me� �	 F�me��
�

for i in � �� n do

view�F�i� �	 F�i�

S 	 �i � view�F�i� �	 F�i��

until �S� �	 F�me�

return S�

Figure ��� The Participating Set Protocol

shared

array F�
��k�����n� 	 �n��� ���� n���� �� all n��

array vertex����k�����n� 	 �null� ���� null� �� all null

SimplexAgree�int me� vertex input� int k�

array S�
��k� 	 ���� ���� ����

vertex����me� 	 input�

for i in 
 �� k do

S�i� 	 ParticipatingSet�me� F�i���

vertex�i��me� 	 �i� �vertex�i�
��j� � j in S�i���

return vertex�k��me��

Figure ��� The Iterated Participating Set Protocol

Lemma ���� There exists a wait�free protocol for simplex agreement on
��I��

Proof� Each process Pi must choose a face of Si of S
n such that ��� Pi �

ids�Si�� ��� for all Si and Sj� one is a subset of the other� and ��� if Pj �
ids�Si�� then Sj � Si� This is exactly the participating set problem of
Borowsky and Gafni ���
� developed as part of their �immediate snapshot�

��



algorithm� Their elegant wait�free solution appears in Figure ��� Borowsky
���
 gives a proof of this algorithm�

Lemma ���� There is a wait�free solution for simplex agreement on �K�I��
for any K � ��

Proof� Iterate the participating set algorithm ���
 K times�

��� Mapping Subdivisions

In this section we prove a number of lemmas about subdivisions� Recall
from De�nition ���� that any point �s in jIj has a barycentric representation

�s �
nX
i��

si 	 �si

where each � � si � ��
P

i si � �� and the �si span a simplex I� The si are
called the barycentric coordinates of �s with respect to I� and carrier ��s�I�
is the simplex of I spanned by the �si for which si � ��

Recall that a sequence of vertexes �s�� � � � � �sk is a�nely independent if
�s���s�� � � � � �sk��s� are linearly independent� �The vertexes of a simplex are
a
nely independent by de�nition�� Any sequence of vertexes �s�� �s�� � � � � �sk
determines a hyperplane� denoted hyper ��s�� �s�� � � � � �sk�� de�ned to be the set
of points expressible as

�s �

kX
i��

si 	 �si

where
Pk

i�� si � �� A hyperplane�s dimension is the size of the smallest set
of vertexes that determines that hyperplane� If �s is a vertex of any chro�
matic subdivision of Sn� and �si the vertex of Sn such that id��s� � id��si��
then �si � carrier ��s� Sn�� This terminology extends to simplexes in a natural
way� Simplexes A � ��a�� � � � ��ak� and B � ��b�� � � � ��b�� are a�nely indepen�
dent if the sequence �a�� � � � ��ak��b�� � � � ��b� is a
nely independent� De�ne the
hyperplane hyper �A� to be hyper ��a�� � � � ��ak�� If H is a hyperplane� and �a a
point of H� the open ��ball around �a in H is the set of points �b in H such
that j�a��bj � ��

Lemma ���� Let H and K be hyperplanes� and �a a point in H but not in
K� For some � � �� the open ��ball around �a does not intersect K�
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Proof� H 
K is a closed subset of H� and its complement H �K is open
and non�empty� so there exists � � � such that H � K contains the open
��ball around �a in H�

Informally� an ��perturbation of a subdivision is a new subdivision con�
structed by slightly displacing some set of vertexes within their respective
carriers �Figure ���� Formally�

De�nition ���� Let � be a subdivision of I� and � � �� A subdivision ��
of I is an ��perturbation of � if there is an isomorphism � � ��I� � ���I�
such that for every vertex �a of ��I�� carrier ��a�I� � carrier ����a�� I� and
j�a� ���a�j � ��

For brevity� when we speak of perturbing a vertex �a by � in a subdivision
��I�� we mean constructing a new subdivision ���I� by replacing �a with a
�b that lies in the open ��ball around �a in carrier ��a� I��

We now show that any vertex of a subdivision can be perturbed by a
su
ciently small amount� We exploit the following lemma from Munkres
���� Lemma ����
�

Lemma ���� If fKig is a collection of complexes in Euclidean space� and
if every jKij 
 jKj j is the polyhedron of a subcomplex of both Ki and Kj�
then �Ki is a complex�

Lemma ���	 Let � be a subdivision of I� and �a a vertex of ��I�� There ex�
ists �� � � such that any perturbation of �a by �� in � yields an ���perturbation
�� of ��I��

Proof� We �rst check that we can replace �a in I by a su
ciently nearby
point without changing the complex�s polyhedron� If C � carrier ��a�I��
then lk��a� ��I�� � lk��a� ��C��� Because ��C� is a manifold with bound�
ary� by Lemma ����� lk��a� ��C�� is a sphere� and �a is an interior point of
st���a� ��C��� There thus exists � � � such that the open ��ball around �a in
jCj lies in st���a� ��C��� It follows that for any �b in that open ball�

j�a 	 lk��a� ��C��j � j�b 	 lk��a� ��C��j�

Let An��
� � � � � � An��

N be the �n� ���simplexes of lk��a� ��C��� For � � i � N �
each �a 	An��

i is a simplex of ��C�� hence �a is a
nely independent of An��
i �

and �a does not lie on hyper �An��
i �� By Lemma ����� there exists �i � � such

that every point �b of hyper �C� within �i of �a does not lie on hyper �An��
i ��

Let �� � min��� ��� � � � � �N �� It follows that every �b within �� of �a in ��C�
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lies within st���a� ��C��� and is a
nely independent of An��
� � � � � � An��

N � Each
�b 	An��

i is thus a simplex� and �b 	 lk��a� ��C�� is a complex with polyhedron
identical to the polyhedron of �a 	 lk��a� ��C�� � st��a� ��I���

Let A be the complex consisting of all simplexes in ��I� that do not
contain �a� and let B � �b 	 lk��a� ��C��� The intersection jAj 
 jBj is the
polyhedron of the complex lk��a� ��C��� so by Lemma ����� A�B is a complex�
Since jA � Bj � jIj� this complex is the desired subdivision ���I��

Lemma ���
 If � is a subdivision of I� �x a point of j��I�j� A � carrier ��x� ��I���
and �a a vertex of A� then �x � st���a� ��I���

Proof� If not� then �x lies on a proper face of A that does not contain �a�
contradicting the hypothesis that A � carrier ��x� ��I���

In the remainder of this section� let ��I� and ��I� be two possible sub�
divisions of a complex I� and B a subcomplex of ��I�� We focus on the
relation between � and B�

De�nition ���� Subdivision � is a chromatic cover for B if every simplex
B of B is covered by the open stars of vertexes of ��I� labeled with process
ids from ids�B��

��B � B� B �
�

id ��a��ids�B�

st���a� ��I���

De�nition ���
 Simplexes A in ��I� and B in B are mismatched if ids�A�
and ids�B� are disjoint� but jAj intersects jBj�

Lemma ���� Subdivision � is a chromatic cover for B if and only if ��I�
and B contain no mismatched simplexes�

Proof� Assume there are no mismatched simplexes� for all A � ��I� and
B � B� if ids�A� and ids�B� are disjoint� so are jAj and jBj� Let �x be a
point of jBj� A � carrier ��x� ��I��� and B � carrier ��x�B�� Since jAj and
jBj intersect at �x� ids�A� and ids�B� must also intersect� and therefore
A contains a vertex �a such that id��a� � ids�B�� By Lemma ����� �x �
st���a� ��I��� It follows that � is a chromatic cover for B�

Assume that � is a chromatic cover for B� If A is a simplex of ��I��
then for any vertex �a of ��I� where id��a� �� ids�A�� A does not intersect
st���a� ��I��� Because � is a chromatic cover for B� if ids�A� and ids�B� are
disjoint� then every point of jBj lies in such an open star st���a� ��I��� so jAj
and jBj are disjoint�

��



Next we show that we can perturb any vertex of any subdivision of B
without introducing any additional mismatches�

Lemma ���� Let � be a subdivision of B� and �g a vertex of ��B�� There
exists �� � � such that any perturbation of �g by �� yields an ���perturbation
�� of � such that the number of mismatched simplexes between ��I� and
���B� is no greater than between ��I� and ��B��

Proof� Lemma ���� states that there exists �� � � such that � remains a
subdivision if we perturb �g by ��� Let fGig be the set of simplexes of ��B�
that have �g as a vertex� and let fAijg be the set of simplexes of ��I� that
are not mismatched with Gi� ids�Gi� 
 ids�Aij� � � and jGij 
 jAij j � ��
Let �ij be the minimum distance from any point of jGij to any point of jAij j
�well�de�ned because both are closed sets�� De�ne

�� � min����min
ij

��ij��

This minimum is well�de�ned and positive because �ij ranges over a �nite
number of positive distances� Perturbing �g by �� yields a new subdivision
�� with no additional mismatched simplexes�

Lemma ���� If � is a chromatic cover for B� then for all � � �� � is a
chromatic cover for an ��perturbation of ��B��

Proof� If ��I� is not a chromatic cover for ��B�� then by Lemma ���� there
exist mismatched simplexes C � ��c�� � � � ��cc� of ��B�� and A � ��a�� � � � ��aa�
of ��I�� Pick C and A to have minimal dimensions a and c in the sense that
no proper face of C intersects A� and vice�versa� and let B � carrier �C�B�
of dimension b� Because B is covered by open stars of the form st���a� ��I���
where id��a� � ids�B�� and because A has minimal dimension� ids�A� �
ids�B�� ids�C�� or a � b� c� ��

Because C is a simplex of ��B�� C includes a central vertex of B whose
carrier in B is B� By reindexing� let this vertex be �cc� By Lemma ����� there
exists �� � � such that any perturbation of �cc by �� introduces no additional
mismatches� Let �� � min��� ����

Let H � hyper ��a�� � � � ��aa��c�� � � � ��cc���� H has dimension at most a� c�
which is strictly less than b� so B contains a point �b not in H� Let

� � j�b� �ccj���

�c � ��� �� 	 �cc � � 	�b
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Because �c � carrier ��cc�B� � B� replacing �cc by �c in ��B� yields an ���
perturbation ���B� with no additional mismatches� Let C � � ��c�� � � � ��cc����c��
We claim that C � does not intersect A� Consider the barycentric coordi�
nates of points of jC �j with respect to C� Because C has minimal dimension�
��c�� � � � ��cc��� does not intersect A� so any point of jC �j whose c�th barycen�
tric coordinate is zero does not lie in jAj� By construction� �c does not lie in
the hyperplaneH �or in jAj� and neither does any point whose c�th barycen�
tric coordinate is positive� P We have constructed an ��perturbation ���B�
of ��B� with strictly fewer mismatches with ��I�� The claim now follows
from a simple inductive argument�

Lemma ���� If � is a chromatic cover for B� then for all � � �� and K 
 ��
��I� is a chromatic cover for an ��perturbation of �K�B��

Proof� Let �i � �� � �
�i
��� We show inductively that for any � � i � K�

� is a chromatic cover for an �i�perturbation of �i�B�� For the base case�
��I� is a chromatic cover for B by construction� As induction hypothesis�
assume ��I� is a chromatic cover for �i��B�� an �i�perturbation of �i�B��
Lemma ���� states that ��I� is a chromatic cover for an �

�i��
�perturbation

�i��� �B� of ���i��B��� Every vertex of �i��B� is displaced by at most �i from
its corresponding vertex in �i�B�� and the last perturbation adds at most
���i��� yielding a �nal maximal displacement of �i � ���i�� � �i��� which
is an ��i � ����K��perturbation of �i���B�� We have shown that � is a
chromatic cover for an �i�perturbation of �i� and the lemma follows because
�i � �� for all i 
 ��

De�nition ���� De�ne the extended star st��S� I� of a simplex S in I to
be

st��S�I� �
�
�s�S

st��s�I��

The next two lemmas are left as an exercise for the reader�

Lemma ���� If � is a subdivision of I� and A a simplex of ��I��

diam�st��A���I��� � � 	 mesh���I���

Lemma ���	 If � is a subdivision of B� and �� an ��perturbation of �� then
mesh����B�� � mesh���B�� � ���

We will need the following lemma from Spanier�
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Lemma ���
 ���
� �������� A set of vertexes �v�� � � � � �vm belong to a com�
mon m�simplex of I if and only if

m�
i��

st���vi� I� �� ��

The next lemma is technical� but it encompasses most of the work needed
to prove our main theorem�

Lemma ���� If � is a chromatic cover for B� then there exist K 
 �� a
subdivision � of B� and color and carrier�preserving simplicial maps � and
�� where

�K�B�
�
� ��B�

�
� ��I� ���

such that every simplex X in ��B� includes a vertex �y where

�y �
�
�x�X

st�����x�� ��I��� ���

Proof� We argue by induction on the dimension of B� In the base case�
this dimension is zero� Because � is a chromatic cover for B� each vertex �b
of B lies in st���a� ��I��� for a unique �a where id��b� � id��a�� De�ne K � �� �
the identity map� � the trivial subdivision that introduces no new vertexes�
and ���b� � �a�

For the induction hypothesis� assume the claim for subcomplexes of di�
mension less than i� Consider B of dimension i� Because � is a chromatic
cover for B� each i�simplex B of B has a covering by open sets st���a� ��I���
where id��a� � ids�B��

Let � be the minimum Lebesgue number of any such covering �well�
de�ned because B is �nite�� By Lemma ���� we can pickK� large enough that
mesh��K��B�� � ���� By Lemma ����� �K��B� has a ������perturbation
�K�
� �B� for which � is a chromatic cover� By Lemma ����� this perturbation

adds at most ���� to the diameter of any simplex in the subdivision� so
mesh��K�

� �B�� � ���� By Lemma ����� for every Xi � �K�
� �B��

diam�st��Xi� �K�
� �B��� � � 	mesh��K�

� �B�� � ��

so st��Xi� �K�
� �B�� � st���a� ��I�� for some vertex �a in ��I� where id��a� �

ids�Xi�� Xi has at least one vertex �x such that

st��x� �K�
� �B�� � st���a� ��I�� ���

��



for some �a in ��I� where id��a� � ids�Xi�� De�ne ���x� � �a� Let B� be the
subcomplex of �K�

� �B� spanned by vertexes that satisfy Equation �� and B�
the subcomplex spanned by vertexes that do not� B� has dimension at most
i� � because each i�simplex of �K�

� �B� includes at least one vertex in B��
By the induction hypothesis� there exist K� 
 �� a subdivision �� of B��

and color and carrier�preserving simplicial maps �� and �

�K��B��
��

� ���B��
�
� ��I� ���

such that every simplex X� in ���B�� includes a vertex �y that

�y �
�
�x�X�

st�����x�� ��I��� ���

Let ��B� � ���B��B��� the subdivision of B constructed by subdivid�
ing B� by �� while leaving B� �xed� We have de�ned a color and carrier�
preserving vertex map � � ��B�� ��I�� We now prove that � is simplicial�
Every simplex X in ��B� is a join X� 	X�� where X� is a simplex in B� and
X� in ���B��� For every vertex �x� of X��

�y � X� � st��x�� �
K�

� �B���

By Equation ��
st��x�� �

K�
� �B� � st�����x��� ��I���

Combining these equations with Equation ��

�y �
�
�x�X

st�����x�� ��I���

By Lemma ����� the ���x� span a vertex of ��I�� so � is a simplicial map�
So far we have shown that there exists a simplicial map

��B�
�
� ��I�

such that every simplex X in ��B� includes a vertex �y that

�y �
�
�x�X

st�����x�� ��I���

To complete the proof� we show that

�� � �K��B��� ���B��
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can be extended to
��� � �K��B�B��� ��B�

by making ��� the identity on vertexes of B�� If X� is a simplex of B��
and X� in �K��B��� then the join X� 	 X� is in �K��B�B�� if and only if
carrier �X�� �

K�
� �B�� 	X� is a simplex of �K�

� �B�� Similarly� if Y� is a simplex
of ���B��� X� 	Y� is in ��B� � ���B�B�� if and only if carrier �Y�� �

K�
� �B�� 	X�

is a simplex of �K�
� �B�� By the induction hypothesis� �� is carrier�preserving�

so carrier �X�� �
K�
� �B�� � carrier ����X��� �

K�
� �B��� and therefore ��� is a sim�

plicial map�
By Lemma ���� there is a color and carrier�preserving simplicial map

�K���K�
� �B��� �K��B�B��

and an isomorphism

�K��K��B�� �K���K�
� �B��

Composing these maps yields a color and carrier�preserving simplicial map

� � �K��K��B�� ��B��

completing the proof of Equation ��

Theorem ���
 If 
 is a chromatic subdivision of a complex I� then there
exists K 
 � and a color and carrier�preserving simplicial map


 � �K�I�� 
�I��

Proof� Note that 
�I� is a chromatic cover for I� so by Lemma ����� there
exists K � � and a color and carrier�preserving simplicial maps

�K�I�
�
� ��I�

�
� 
�I�

De�ne 
 � �K�I� � 
�I� to be the composition of � and �� The map 
 is
simplicial� color�preserving� and carrier�preserving�

Theorem ���� A decision task hI�O��i has a wait�free protocol using
read�write memory if there exists a chromatic subdivision 
�I� and a color�
preserving simplicial map

	 � 
�I�� O

such that for each vertex �s in 
�I�� 	��s� � ��carrier ��s�I���
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Proof� Suppose the participating processes start with inputs given by sim�
plex Sm� By Theorem ����� there exists a color and carrier�preserving map


 � �K�Sm� � 
�Sm��

By hypothesis� there exists a simplicial map�

	 � 
�Sm�� ��Sm��

The protocol has the following steps�

�� Use the iterated participating set protocol to agree on a simplex in
�K�Sm��

�� A process that chooses vertex �x � �K�Sm� then chooses as its output
the value labeling 	�
��x���

This completes the proof of the Asynchronous Computability Theorem�
Our construction shows that we can assume without loss of generality

that the span 
 is an iterated chromatic subdivision�

Corollary ���� A decision task hI�O��i has a wait�free protocol using
read�write memory if and only if there exists a K 
 � and a color�preserving
simplicial map

	 � �K�I�� O

such that for each vertex �s in �K�I�� 	��s� � ��carrier ��s�I���

� Renaming with a Small Number of Names

In the renaming task of Attiya et al� ��� �
� processes are issued unique input
names from a large name space� and must choose unique output names taken
from a smaller name space� To rule out trivial solutions� protocols must be
anonymous ��� Section ����
� meaning that the value any process chooses
does not depend in any way on the value of any participant�s process id
�including its own�� Informally� a process may choose its output value based
only on the input name it received� and on how its memory accesses are
interleaved with the memory accesses of the other processes� �We give a
formal de�nition of anonymity below��

In the message�passing model� Attiya et al� ��
 showed that renaming
has a wait�free solution when K 
 �n � �� and none when K � n � ��
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Bar�Noy and Dolev ��
 extended their upper bound solution to the shared
read�write memory model� Whether a protocol exists for n � � � K � �n
names remained open until ����� when Herlihy and Shavit ���
 showed that
no such protocol exists� Henceforth� by renaming� we mean the renaming
task where K � �n�

The restriction to anonymous protocols implies that the asynchronous
computability theorem does not apply� Nevertheless� a variant of this theo�
rem can be devised for anonymous protocols� In this section we show how to
adapt the asynchronous computability theorem to prove that the renaming
task has no anonymous wait�free read	write protocol� This section di�ers
from previous sections in the level of technical detail� we make explicit use of
elementary homology theory �as presented by ���
�� Our original proof ap�
peared in ���� ���
� Here we present a simpli�ed version of that proof� based
on the chain map proof methodology developed by Herlihy and Rajsbaum
���
�

��� Proof Outline

The key insight underlying our proof is that the anonymity requirement
makes it impossible to break symmetry among certain input con�gurations�
We capture and formalize this intuition through the following sequence of
steps�

� We begin by giving a formal statement of the notion of anonymity
��
� We prove a variant of the asynchronous computability theorem
for anonymous protocols� This theorem states that the map from a
subdivision of the input complex to the output complex must satisfy
certain symmetry properties� The theorem statement exploits the ob�
servation of Corollary ���� that we can restrict our attention to the
iterated standard chromatic subdivision�

� We reduce the renaming task itself to a reduced renaming task in
which processes choose boolean values instead of names� The resulting
output complex is smaller and easier to work with� In particular� the
complex has a single �hole� which will act as an obstruction to any
protocol� For a larger number of names� the corresponding output
complex has no hole� so the existence of this hole characterizes the
boundary between solvable and unsolvable instances of renaming�

� We identify a subcomplex of the input complex satisfying two prop�
erties� the subcomplex itself is �solid�� with no holes� and the inputs
along its boundary are symmetric�
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� We then apply the anonymous computability theorem to show that
the simplicial map guaranteed by the theorem wraps the symmetric
boundary of the solid subcomplex around the output complex�s hole
a non�zero number of times� a contradiction�

��� Anonymity

We now give a formal de�nition of the notion of anonymity used by Attiya
and Welch ��
 to de�ne the renaming task� Let � be any permutation of
�� � � � � n� The permutation � acts on any labeled simplex by replacing each
occurrence of a process id P in the label with the process id ��P �� Here are
some examples�

� For an input or output simplex Sn� � sends each vertex hP� vi to
h��P �� vi�

� For the chromatic subdivision ��Sn�� � sends each vertex hP� Si to
h��P �� ��S�i� where S is a face of Sn� The reader is invited to check
that ����S�� � ����S���

� For a protocol complex P�I�� � sends each vertex hP� ei to h��P �� ��e�i�
where ��e� denotes the execution view in which each process id Q is
replaced by ��Q��

De�nition 	�� A complex C is symmetric if � induces a simplicial map
from C to itself� denoted � � C � C� If A and B are symmetric complexes�
then 
 � A � B is symmetric under permutation if ��
��v�� � 
����v�� for
any permutation �� A task speci�cation hI�O��i is symmetric if I and O
are symmetric� and for all Sn � I� ����Sn�� � ����Sn���

In short� the problem speci�cation depends only on input values� not process
ids� This restriction is weak� all tasks considered in this paper �excluding
our contrived quasi�consensus example of Section ���� have symmetric spec�
i�cations�

In Section �� we showed that any protocol can be expressed as an iter�
ated �immediate snapshot� algorithm� This kind of protocol has the prop�
erty that in any valid execution� replacing each process id P with ��P �
yields another valid execution� As a result� we can assume without loss of
generality that any protocol complex is symmetric�

De�nition 	�� A protocol P is anonymous if the decision map � is symmet�
ric under permutation� for every simplex T in P�Sn�� ����T �� � ����T ���
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We now give the anonymous variant of the asynchronous computability
theorem� The proof appears in the appendix� but it is essentially the same as
the proof of the original� except that we use a speci�c symmetric subdivision
based on the standard chromatic subdivision�

Theorem 	�� �Anonymous Computability Theorem� A symmetric de�
cision task hIn�On��i has a wait�free anonymous protocol using read�write
memory if and only if there exists an integer K and a color�preserving sim�
plicial map

	 � �K�I�� O

symmetric under permutation� such that for each vertex �x in �K�I�� 	��x� �
��carrier ��x�I���

��� Reduced Renaming

We now simplify the task by reducing the size of the output complex� Con�
sider the following reduced renaming task�

Reduced Renaming Each process chooses a binary value� and in every
execution where all n�� processes choose a value� at least one chooses
�� and at least one chooses ��

Lemma 	�� If an anonymous renaming protocol exists� then so does an
anonymous reduced renaming protocol�

Proof� Any renaming protocol �anonymous or not� can be transformed
into a reduced renaming protocol simply by taking the parity of the names
chosen� If the original protocol was anonymous� so is the reduced protocol�

For example� the annulus of Figure �� is the reduced output for the original
three�process torus�shaped output complex of Figure ��

��� A Three�Process Example

The full proof of the renaming lower bound is unavoidably technical� due to
the need to reason formally about the structure of high�dimensional com�
plexes� Nevertheless� the need for formal rigor should not be allowed to
obscure the inherent geometric simplicity of the proof�s essence� In this
section� we describe a three�process example that illustrates the basic ideas
underlying the full proof�
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Figure ��� Reduced Renaming Output Complex O�

The output complex O� for three�process reduced renaming� shown in
Figure ��� is the annulus constructed by taking the binary ��sphere over
P � Q� and R� and removing the all�zero and all�one simplexes� As we will
explain� the resulting hole will act as an �obstruction� to any anonymous
protocol� The boundary between four and �ve names is exactly the bound�
ary between a reduced renaming task whose output complex has a hole
�impossible� and one that does not �possible�� For notational convenience�
we will use P� as shorthand for hP� �i� and so on�

Assume we have an anonymous protocol for three�process reduced re�
naming� Consider the subcomplex T of the input complex shown in Figure
��� This subcomplex is isomorphic to ��S��� the standard chromatic sub�
division of a ��simplex� The anonymous computability theorem states that
there is a simplicial map 	 carrying a subdivision of T � to the reduced re�
naming output complex O�� We will argue that any such map must wrap
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Figure ��� Mapping the boundary of the input complex

the boundary of T � around the hole in O� a non�zero number of times� As
stated formally in Section ���� no continuous map can carry the boundary of
a �solid� region �T �� to the boundary of a hole� so we have a contradiction�

The inputs along the boundary of T � are symmetric in the following
sense� Let TP � TQ� and TR denote the subdivided edges opposite the �corner�
vertexes P�� Q�� and R�� Informally� traversing any TX from the smaller
id toward the larger id� we encounter the same sequence of input values��
More precisely� let �P and �Q be the following permutations�

P Q R

�P Q R P
�Q P R Q

The symmetry property is that �P �TR� � TP and �Q�TR� � TQ�

	Note that vertex labels in T � are not necessarily unique�
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The anonymous computability theorem guarantees a simplicial map 	 �
�K���S��� � O� symmetric under permutation� Assume� without loss of
generality� that if P runs solo� it chooses an even name� 	�P�� � P��
Because the protocol is anonymous� 	�Q�� � Q�� The map 	 carries the
subdivided edge �K�TR� to a path linking P� to Q� in O�� For the sake of
this example� let us assume that

	�TR� � �P�� Q�� P�� Q��� ���

as illustrated in Figure ���
Because the protocol is anonymous� 	 maps TP and TR to O in a sym�

metric way� More precisely�

	�TP � � 	��P �TR��

� �P �	�TR���

� �P �P�� Q�� P�� Q��

� �Q�� R�� Q�� R���

����

By similar reasoning�

	�TQ� � �R�� P�� R�� P��� ����

Combining Equations �� ��� and �� shows that 	 wraps the boundary com�
plex of T � around the hole in O� twice in the counter�clockwise direction�
as illustrated in Figure ���

No matter what path we choose for 	�TR�� we will see that 	 wraps the
boundary of T � around the hole �k � � times� for some integer value k� �A
positive k corresponds to a clockwise orientation� and a negative value is
counter�clockwise�� In this example� k � ���

Although this example does not constitute a proof� all the key elements
of the full proof are represented� The reduced renaming protocol for n� �
processes and �n names also has a hole� corresponding to the �missing� all�
zero simplex �n� �As before� the boundary between �n and �n � � names
is the boundary between an output complex with a hole� and one without��
We construct an input subcomplex T n� isomorphic to ��Sn�� such that input
names are symmetric on the boundary of T n� We formalize the claim that
	 cannot wrap the boundary of T around the hole in On a non�zero number
of times� We then exploit the symmetry of T n and 	 to prove that 	 does
indeed map the boundary of T n around the hole �n � ��k � � times� for
some integer value k �again� positive and negative values indicate distinct
orientations�� The value �n � ��k � � is non�zero for any k� yielding the
desired contradiction�
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��� A Symmetric Input Subcomplex

We now formalize the construction of the �symmetric input subcomplex�
T n illustrated �for n � �� in Figure ���

De�nition 	�� For � � m � n� and � � i � m� de�ne the permutation �mi
to be

�mi �k� �

��	�

k if � � k � i

k � � if i � k � m

i if k � m

The permutations �ni are just the generalizations of �P and �Q de�ned over
T � in the previous section�

Lemma 	�	 For i � j� � � k � m� ��

�mi ��m��j�� �k�� � �mj ��m��i �k���

Proof� Both composite permutations map �� � � � �m�� to �� � � � � �� � � � �  �� � � � �m�
respectively�

The symmetric input subcomplex T n is isomorphic to the standard chro�
matic subdivision of an n�simplex by a color�preserving isomorphism de�
noted by

� � ��Sn�� T n

Let T n��
i be the subcomplex ��facei�S

n��� which we call the i�th face of T n�
We require that the faces of T n satisfy the following symmetry property�

�ni �T
n��
n � � T n��

i � ����

The subcomplex T n is constructed inductively� Complex T � is the single
vertex hP�� �i� Assume inductively that we have constructed Tm��� for � �
m � n� colored with process ids P�� � � � � Pm��� satisfying Equation ��� using
m�m����� distinct input values� We construct T m by assigning input values
to ��Sm�� As an operator� each permutation �mi de�nes an isomorphism

�mi � T m�� � T m��
i �

Assign each vertex in T m��
i the value of its matching vertex in T m��� and

assign each central vertex of T m labeled with Pi the input value m�m �
���� �m� i � m�m� ���� � i�
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To show that this assignment of values is well�de�ned� we must check
that the value assigned to a face vertex does not depend on the choice of
�mi �

When m � �� all face vertexes are assigned �� Assume m � �� For
permutations �mi and �mj � where i � j�

�mi �Tm��� 
 �mj �Tm��� � �mi �Tm��
j�� �

� �mi ��m��j�� �Tm�����

By a similar argument�

�mi �Tm��� 
 �mj �Tm��� � �mj ��m��i �Tm�����

By Lemma ���� �mi ��m��j�� �Tm���� � �mj ��m��i �Tm����� so the value assigned
is independent of �i�

��� Orientation� Cycles� and Boundaries

This section reviews some standard technical de�nitions needed for our
proof� Our discussion closely follows that of Munkres ���� Section ����
�
which the reader is encouraged to consult for more detail�

Let Sn � ��s�� � � � � �sn� be an n�simplex� An orientation for Sn is an equiv�
alence class of orderings on �s�� � � � � �sn� consisting of one particular ordering
and all even permutations of it� For example� an orientation of a ��simplex
��s�� �s�� is just a direction� either from �s� to �s�� or vice�versa� An orientation
of a ��simplex ��s�� �s�� �s�� can either be clockwise� as in ��s�� �s�� �s��� or coun�
terclockwise ��s�� �s�� �s��� Any orientation of a simplex induces orientations
on its faces� An n�manifold with boundary is oriented if each n�simplex is
oriented in a way that each internal �n� ���simplex inherits opposite orien�
tations from its two containing n�simplexes� Any n�sphere can be oriented
in this way� Given a simplex whose vertexes are colored by process ids� the
standard orientation orders them by increasing process id�

A d�chain is a formal sum of oriented d�simplexes�
P�

i�� �i 	 S
d
i � where

�i is an integer� When writing chains� we typically omit d�simplexes with
zero coe
cients� unless they are all zero� when we simply write �� We write
� 	 Sd as Sd� �� 	 Sd as �Sd� and Sd � � � � � Sd �k times� as k 	 Sd� It is
convenient to identify �Sd with Sd having the opposite orientation� The
q�chains of K form a free Abelian group Cq�K�� called the q�th chain group
of K�

Let Sd � ��s�� � � � �sd� be an oriented d�simplex� De�ne facei�S
d�� the ith

face of Sd� to be the �d����simplex ��s�� � � � �  si� � � � � �sd�� where the circum"ex
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denotes omission� The boundary operator �q � Cq�K� � Cq���K�� q � �� is
de�ned on simplexes�

�qS
q �

qX
i��

����i 	 facei�S
q��

and extends additively to chains� �q������� � �q����q��� The boundary
operator has the important property that applying it twice causes chains to
vanish�

�q���q� � �� ����

�Henceforth� we omit subscripts from boundary operators�� A q�chain � is
a boundary if � � �� for some �q � ���chain �� and it is a cycle if �� � ��
Equation �� implies that that every boundary is a cycle�

De�nition 	�
 Two d�cycles � and � are homologous� written � � �� if
�� � is a boundary�

The chain complex C�K� is the sequence of groups and homomorphisms
fCq�K�� �g� Let C�K� � fCq�K�� �g and C�L� � fCq�L�� �

�g be chain com�
plexes for simplicial complexes K and L� A chain map 
 � C�K� � C�L� is
a family of homomorphisms


q � Cq�K� � Cq�L��

that preserve cycles and boundaries� �� � 
q � 
q�� � �� Any subdivision 

of K induces a chain map in the obvious way�

C�K�� C�
�K���

as does any simplicial map 
 � K � L

C�K�� C�L��

or permutation operator � � K � K

C�K�� C�K��

We use the following facts ����� Th����
� about chain groups of spheres�
Let the complex Bn�� be an �n����sphere� and letB be the cycle constructed
by orienting the simplexes of Bn���
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Lemma 	�� Every �n� ���cycle of Bn�� is homologous to k 	 B� for some
integer k� and every q�cycle is a boundary� for q � n� ��

We refer to B as a generator for Bn���
Let A � K be complexes�

De�nition 	�
 A deformation retraction of K onto A is a continuous map
F � jKj � I � jKj such that F �x� �� � x for x � jKj� F �x� �� � A for x �
jKj� and F �a� t� � a for a � jAj� If such an F exists� we say that A is a
deformation retract of K� Every cycle of K is homologous to a cycle of A�

Lemma 	��� If the �n � ���sphere B is a deformation retract of K� then
every q�cycle of K is a boundary� and every �n����cycle of K is homologous
to k 	B� for some integer k�

We also refer to B as a generator of K� If B and B� are both generators of
K� then B � �B��

This paragraph is an aside for readers familiar with standard algebraic
topology� The q�th simplicial homology group Hq�K� for a complex K is the
quotient group of the q�dimensional group of cycles by the q�dimensional
group of boundaries� Lemma ��� states the well�known fact that the homol�
ogy groups of the �n� ���sphere Bn�� are trivial below �n� ��� and in�nite
cyclic in dimension n� generated by B� Lemma ���� is a special case of the
classical theorem ���� P����
 that any complex has the same homology as its
deformation retracts�

��	 Impossibility of Renaming
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Figure ��� Generators BQ and ���
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Recall that reduced renaming requires each processes to choose a binary
value� but n�� processes may not all choose �� or all choose �� The output
complex On is thus constructed by taking a binary n�sphere and removing
the all�zero simplex �n and the all�one simplex �n� Let !�n�� be the boundary
complex of �n with the orientation induced by the standard orientation of
�n� This complex is an �n� ���sphere with generator �Sn� Because !�n�� is
a deformation retract of On� �Sn is also a generator for On�

LetOn��
i be the subcomplex ofOn colored with process ids P�� � � � � bPi� � � � � Pn�

This complex is a binary �n����sphere� Let Bi denote the chain constructed
by orienting each �n � ���simplex of On��

i so that the all�zero simplex has
standard orientation� Because On��

i is a deformation retract of On� Bi is
also a generator of On� These generators are shown in Figure ���

Algebraically� these generators are related as follows�

Lemma 	��� Bi � ����i��n�

Proof� Since Bi and ��n are both generators for On� Bi � ���n� The
simplex facei��

n� is common to both Bi and ��n� It has the standard ori�
entation in Bi� and ����i times the standard orientation in ��n�

Recall that subdivisions� permutation operators� and simplicial maps all
induce chain maps� The standard chromatic subdivision � induces a chain
map

C�Sn�� C���Sn���

The isomorphism � � ��Sn� � T n �where T n is the symmetric input sub�
complex constructed in Section ���� induces a chain map

C���Sn��� C�T n��

Assume by way of contradiction that there exists an anonymous protocol for
reduced renaming� The anonymous computability theorem �Theorem ����
gives a simplicial map 	 � �K�T n�� On inducing chain maps

C�T n�� C��K�T n��

C��K�T n��� C�On�

Let
a � C�Sn�� C�On�

be the result of composing these maps�
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The chain �Sn is a boundary in C�Sn�� and therefore a��Sn� must also
be a boundary in C�On�� We will exploit the symmetry properties of the
subdivisions and maps used to construct a� together with the annulus struc�
ture of the reduced renaming output complex On� to show that a��Sn�
cannot be a boundary chain in C�On�� As a result of this contradiction� we
must conclude that there is no anonymous reduced renaming protocol�

Because T n is symmetric on its boundary� and because 	 is symmetric
under permutation� the chain maps induced by the permutation operators
�ni � for � � i � n� satisfy the following commutative property� for every
chain � of C�facen�S

n��� �ni �a���� � a��ni ����� The conventional way to
represent such relations is by a commutative diagram�

C�facen�S
n��

a
���� C�On��

n ���y�ni ��y�ni
C�facei�S

n��
a

���� C�On��
i �

Let !Sn�� be the boundary complex of Sn� the complex consisting of all
proper faces of Sn� The color�preserving isomorphism !Sn�� � !�n�� induces
a chain map

z � C� !Sn���� C�On��

Note that ��n � z��Sn�� This map also commutes with �ni �

C�facen�S
n��

z
���� C�On��

n ���y�ni ��y�ni
C�facei�S

n��
z

���� C�On��
i �

Lemma 	��� For � � i � n� there is a chain map

d � Ci�S
n�� Ci���O

n�

such that for every face Sm of Sn� � � m � n

a�Sm�� z�Sm�� d��Sm�

is an m�cycle of On� Moreover� for every � � m � n� the following diagram
commutes�

C�facen�S
n��

d
���� C�On��

n ���y�ni ��y�ni
C�facei�S

n��
d

���� C�On��
i �
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Proof� We argue by induction on m� When m � �� ids�S�� � fi� jg�
The ��chains a�S�� and z�S�� have the same boundary� hPi� �i � hPj � �i� so
a�S��� z�S�� is a cycle� and d�hPi� �i� � ��

Assume the claim for m� � � m � n� �� By Lemma ����� every m�cycle
of On is a boundary �for m � n� ��� so there exists an �m����chain d�Sm�
such that

�d�Sm� � a�Sm�� z�Sm�� d��Sm�

Because Sm � facem���S
m����

�d�facem���S
m���� �

a�facem���S
m����� z�facem���S

m����� d��facem���S
m�����

Applying �ni to both sides�

�ni ��d�facem���S
m����� �

�ni
�
a�facem���S

m����� z�facem���S
m����� d��facem���S

m����


�

By the induction hypothesis� �ni commutes with d� a� and z� and it commutes
with the boundary operator because it is a chain map�

�d��ni �facem���S
m����� �

a��ni �facem���S
m����� z��ni �facem���S

m�����

� d���ni �facem���S
m������

Because �ni �facem���S
m���� � face i�S

m�����

�d�face i�S
m���� � a�facei�S

m���� z�face i�S
m����� d��face i�S

m�����

Taking the alternating sum over the faces of Sm�� yields

�d��Sm��� � a��Sm���� z��Sm���� d���Sm���

� a��Sm���� z��Sm����

Rearranging terms yields

� � �
�
a�Sm���� z�Sm���� d��Sm���



�

implying that
C � a�Sm���� z�Sm���� d��Sm���

is an �m� ���cycle�
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Theorem 	��� There is no wait�free reduced renaming protocol�

Proof� As noted above� it su
ces to prove that the chain a��Sn� is not a
boundary in C�On�� By Lemma �����

a�facen�S
n����� z�facen�S

n����� d���facen�S
n�����

is an �n� ���cycle of On� Lemma ���� implies that this cycle is homologous
to k 	 �Bn� for some integer k� Recall that �ni �Bn� � Bi�

�ni �a�facen�S
n��� z�facen�S

n��� d���facen�S
n���� � k 	 �ni �Bn� � k 	 Bi�

Recall that �ni �facen�S
n�� � facei�Sn�� Taking the alternating sum over the

�n� ���dimensional faces of Sn yields�

a��Sn�� z��Sn�� d���Sn� � k

nX
i��

����iBi

Because ��Sn � �� z��Sn� � �n� and Bi � ����i��n �Lemma ������

a��Sn� � �� � �n� ��k� 	 ��n�

Since there is no value of k for which ����n���k� is zero� the cycle a��Sn�
is not a boundary� yielding the desired contradiction�

Corollary 	��� There is no wait�free �n� ���process read	write renaming
protocol with �n or fewer names�

� Discussion

Since the conference version of this paper appeared� our topological model
has yielded a variety of additional results� Herlihy and Rajsbaum ���
 con�
sider protocol complexes for protocols that employ more powerful primitives
than read	write memory� Chaudhuri� Herlihy� Lynch� and Tuttle ���
 give
the �rst tight topology�based lower bounds on set agreement in the syn�
chronous fail�stop model� Attiya and Rajsbaum cast our topological model
in an equivalent �combinatorial� representation ��
� Borowsky and Gafni
���� ��
 base a key part of their simulation method on our notion of spans�
Herlihy and Rajsbaum ���
 use homology theory to derive further impossi�
bility results for set agreement� and to unify a variety of known impossibility
results in terms of the algebraic theory of chain maps and chain complexes
���
� The impossibility proof for renaming re"ects the in"uence of this paper�
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The graph theoretic characterization of Biran� Moran and Zaks��
 also
provides an e�ective procedure for deciding whether a task has a ��resilient
message passing protocol� By contrast� Gafni and Koutsoupias ���
 use
topological techniques to show that it is undecidable in general whether
wait�free read�write tasks have a read�write protocol� Herlihy and Rajs�
baum ���
 extend these techniques to characterize task decidability in a
variety of computational models� Herlihy� Rajsbaum� and Tuttle ���
 give
a simple round�by�round construction that uni�es the synchronous� semi�
synchronous� and asynchronous message�passing models of distributed com�
putation within a common formalism based on a topological construction
called a pseudosphere�

Herlihy and Rajsbaum ���
 use topological techniques to give the �rst
complete characterization of the computational power of a non�trivial family
of synchronization primitives� encompassing both read�write memory and
three�process set agreement�

The topological framework is also of use in modeling complexity� Hoest
and Shavit ���
 analyze the round complexity of protocols in the iterated
immediate snapshot �IIS� model of Borowsky and Gafni� By introducing
a novel form of span called the non�uniform chromatic subdivision� they
re�ne our topological computability model into a theorem that states that
the time complexity of any IIS protocol is directly proportional to the level
of non�uniform chromatic subdivisions necessary to allow a simplicial map
from a task�s input complex to its output complex� In other words� the more
you need to subdivide in order for a map to exist� the higher the complexity
of your algorithm�

We believe the topological approach has a great deal of promise for the
theory of distributed and concurrent computation� and that it merits further
investigation� We look forward to the day when knowledge of elementary
combinatorial and algebraic topology is considered as essential to theoretical
computer science as knowledge of graph theory or probability theory�
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A Appendix

A�� Connectivity

Theorem A�� If A and B are each n�connected� and A 
 B is �n � ���
connected� then A� B is n�connected�

Proof� Recall that a complex C is n�connected if its homotopy groups
���C�� � � � � �n�C� vanish ���
�

By induction on n� For the base case� when n � �� this theorem is
just the Siefert	Van Kampen theorem ���� p����
� For the induction step�
assume A and B are n�connected� and A
B is �n����connected� and A�B is
�n� ���connected� The homology groups Hn�A�� Hn�B�� and Hn���A
B�
all vanish� and by the Mayer�Vietoris sequence ���� p����
� so does the
homology group Hn�A � B�� By the Hurewicz Isomorphism Theorem ����
p����
� �n�A� B� must also vanish and therefore A� B is n�connected�

A�� Anonymous Computability Theorem

De�nition A�� The chromatic K�extension of a color�preserving simpli�
cial map 
 � A � B is the map � � �K�A� � B de�ned by ���x� � 
��y��
where �y is the unique vertex in carrier ��x�A� of matching color�

Lemma A�� The chromatic K�extension of any color�preserving simplicial
map is a color�preserving simplicial map�

��



Proof� De�ne � � �K�A� � A to be the map carrying each �x to �y� the
unique vertex in carrier ��x�A� of matching color� By Lemma ����� � is a
simplicial map� The chromatic K�extension of 
 is the composition of 
 and
�� both color�preserving simplicial maps�

Lemma A�� Let A be a �p� ���sphere� B a p�disk having A as boundary�
and C a complex that is �p � ���connected and link�connected� If 
 � A �
C is a color�preserving simplicial map� then there exists a color�preserving
simplicial map

� � �K�B�� A

for some K 
 �� such that � restricted to �K�A� is the K�chromatic exten�
sion of 
�

Proof� Lemma ���� states that there exists a chromatic subdivision 
 and
simplicial map

 
 � 
�B�� C

such that 
�A� � A� and  
 agrees with 
 on A�
By Theorem ����� there exists K 
 � and a color and carrier�preserving

simplicial map
� � �K�B�� 
�B��

The composition of  
 and � yields the desired map ��

An anonymous span is a color�preserving map 
 � �K�I� � P� for
some K 
 �� such that 
 is symmetric under permutation� and for all �x in
�K�I��


��x� � P�carrier ��x� 
�I���� ����

De�nition A�� Let C be a symmetric complex� Two k�simplexes Sk� and
Sk� belong to the same k�orbit if Sk� � ��Sk� �� for some permutation ��

The set of k�orbits partition the k�simplexes of C into equivalence classes�

Lemma A�	 Every wait�free anonymous protocol complex has an anony�
mous span�

Proof� We build up the span inductively� For each �v � I� de�ne 
���v� �
P��v�� the unique vertex corresponding to a solo execution� This map trivially
satis�es Equation ��� and is symmetric under permutation�

��



Assume inductively that for some Kk�� 
 �� we have a color�preserving
simplicial map


k�� � �
Kk���skelk���I��� P

symmetric under permutation� and satisfying Equation ��� Let Sk� � � � � � S
k
L

be a set of k�simplexes constructed by choosing one k�simplex from each
k�orbit of skelk�I��

For � � i � L� �Kk���skelk���Ski �� is a �k����sphere� and the subdivision
of Ski constructed by starring �Kk�� is a k�disk� so by Lemma A��� for some
Li 
 ��


k�� � �
Kk��� !Sk��i �� P�Ski �

can be extended to a color�preserving simplicial map

� � �Kk���Li�Ski �� P�Ski ��

such that � restricted to �Kk���Lie�skelk���Ski �� is the Li�chromatic exten�
sion of 
k��� Let Kk � maxLi���Kk�� � Li�� For � � i � L� de�ne

�i � �
Kk�Ski �� P�Ski �

to be the Li�chromatic extension of �� The restriction of �i to skelk���Ski �
is the �Kk �Kk����chromatic extension of 
k��� so for every � � i� j � L�
�i and �j agree on the intersection of their domains� Together they de�ne
a map


k � �Kk�skelk���I��� P

satisfying Equation ��� This completes the induction step of the proof�

Theorem A�
 �Anonymous Computability Theorem� A symmetric de�
cision task hIn�On��i has a wait�free anonymous protocol using read�write
memory if and only if there exists an integer K and a color�preserving sim�
plicial map

	 � �K�I�� O

symmetric under permutation� such that for each vertex �x in �K�I�� 	��x� �
��carrier ��x�I���

Proof� The �if� part follows immediately from the protocol construction
in Section ��

The �only if� part follows from the existence of the anonymous span
guaranteed by Lemma A���
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