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TOWARD A TOPOLOGICAL CHARACTERIZATION OF
ASYNCHRONOUS COMPLEXITY∗

GUNNAR HOEST† AND NIR SHAVIT‡

Abstract. This paper introduces the use of topological models and methods, formerly used to
analyze computability, as tools for the quantification and classification of asynchronous complexity.
We present the first asynchronous complexity theorem, applied to decision tasks in the iterated
immediate snapshot (IIS) model of Borowsky and Gafni. We do so by introducing a novel form of
topological tool called the nonuniform chromatic subdivision. Building on the framework of Herlihy
and Shavit’s topological computability model, our theorem states that the time complexity of any
asynchronous algorithm is directly proportional to the level of nonuniform chromatic subdivisions
necessary to allow a simplicial map from a task’s input complex to its output complex. To show
the power of our theorem, we use it to derive a new tight bound on the time to achieve n process
approximate agreement in the IIS model:
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⌉
, where d = 3 for two processes

and d = 2 for three or more. This closes an intriguing gap between the known upper and lower bounds
implied by the work of Aspnes and Herlihy. More than the new bounds themselves, the importance
of our asynchronous complexity theorem is that the algorithms and lower bounds it allows us to
derive are intuitive and simple, with topological proofs that require no mention of concurrency at
all.
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1. Introduction. In the 21st century, computers are progressively being used as
coordination devices in asynchronous, distributed systems. Unfortunately, the stan-
dard, Turing notions of computability and complexity are not sufficient for evaluating
the behavior of such systems. In the last few years, techniques of modeling and anal-
ysis based on classical algebraic topology [3, 12, 14, 18, 20, 21, 22, 24, 25, 26, 32] in
conjunction with distributed simulation methods [9, 10, 11, 12] have brought about sig-
nificant progress in our understanding of computability problems in an asynchronous
distributed setting. We feel the time is ripe to extend these techniques to address
asynchronous complexity.

This paper studies asynchronous shared memory solutions to the class of prob-
lems called decision tasks, input/output problems in which N processes start with
input values and, after communicating, halt with private output values. We focus
on the iterated immediate snapshot (IIS) memory model introduced by Borowsky and
Gafni [12] as part of their new simplified proof of the asynchronous computability
theorem [26]. The model is a restriction of atomic snapshot memory that guarantees
that processes’ scan operations return views that contain nondecreasing sets of the
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participating processes’ inputs. Though it is not a realistic computation model (no
machine supports such operations) we believe it is a good first candidate for topo-
logical modeling since it has a particularly nice geometric representation and hence
easily lends itself to topological analysis.

1.1. Historical background and related work. Let us begin by giving a brief
account of previous work on computability problems in fault-prone, asynchronous, dis-
tributed systems, applications of algebraic topology to asynchronous computability
problems, simulation techniques, and also on characterizing the Approximate Agree-
ment task.

In 1985, a fundamental paper by Fischer, Lynch, and Paterson [17] demonstrated
that traditional Turing computability theory is not sufficient for analyzing computabil-
ity problems in asynchronous, distributed systems. In particular, it showed that the
well-known Consensus task, in which each participating process has a private input
value drawn from some set S, and every nonfaulty process must decide on the same
output value equal to the input of some process, cannot be solved in a message pass-
ing system even if only one process may fail by halting. Later, it was also shown
that the message passing and shared memory models are equivalent [4], so this result
carries over to shared memory systems as well. This fundamental discovery led to
the creation of a highly active research area, which is surveyed in a recent book by
Lynch [29].

In 1988, Biran, Moran, and Zaks [7] provided a breakthrough result by introducing
a graph-theoretic framework that allows a complete characterization of the types of
tasks that can be solved in a message passing or shared memory system in the presence
of a single failure. However, this framework proved hard to extend to more than one
failure, and even the problem of characterizing the solvability of specific tasks such as
Renaming [5] and Set Agreement [13] for any number of processes remains unsolved.

In 1993, three research teams working independently—Borowsky and Gafni [10],
Saks and Zaharoglou [32], and Herlihy and Shavit [24]—derived impossibility results
for solving the Set Agreement task in the read-write shared memory model. The
paper of Borowsky and Gafni introduced a powerful new simulation technique for
proving solvability and unsolvability results in asynchronous, distributed systems. The
technique allows N -process protocols to be executed by fewer processes in a resilient
way and has been proven correct by Borowsky, Gafni, Lynch, and Rajsbaum [9]. The
paper by Saks and Zaharoglou [32] constructed an elegant topological structure that
captures the knowledge of the processors of the state of the system, allowing them
to prove the impossibility of wait-free k-set agreement using point-set topology. The
proof exposes an interesting relation between set agreement and the Brouwer fixed
point theorem for the k-dimensional ball.

The paper of Herlihy and Shavit [24, 26] introduced a new formalism based on
tools from classical, algebraic topology for reasoning about computations in asyn-
chronous, distributed systems in which any number of processes may fail. Their
framework consisted of modeling tasks and protocols using algebraic structures called
simplicial complexes and then applying standard homology theory to reason about
them. Herlihy and Shavit extended this framework by providing the asynchronous
computability theorem, which states a condition that is necessary and sufficient for a
task to be solvable by a wait-free protocol in shared memory [26], and showed appli-
cations of this theorem to tasks such as Set Agreement and Renaming. Borowsky [8]
generalized this solvability condition to a model consisting of regular shared memory
augmented with set-consensus objects, under more general resiliency requirements.
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In 1993, Chaudhuri, Herlihy, Lynch, and Tuttle [14] also used topological and
geometric arguments to prove tight bounds on solving the Set Agreement problem in
the synchronous message passing model where an arbitrary number of processes may
fail.

In 1994, Herlihy and Rajsbaum derived further impossibility results for Set Agree-
ment by applying classical homology theory [20]. Moreover, in a unifying paper in
1995, Herlihy and Rajsbaum provided a common, general framework for describing a
wide collection of impossibility results by using chain maps and chain complexes [22].
At the same time, Attiya and Rajsbaum reproved several impossibility results using
purely combinatorial tools [3].

In 1995, Gafni and Koutsopias presented a reduction from the classical con-
tractibility problem of algebraic topology to show that it is undecidable whether a
certain class of 3-process tasks is wait-free solvable in the shared memory model [18].
This work was then generalized by Herlihy and Rajsbaum to arbitrary numbers of pro-
cesses and failures in a variety of computational models [21]. More recently, Havlicek
showed that, while undecidability holds in the general case, the problem of solvability
is in fact decidable for a relatively large class of tasks [19]. Another recent paper by
Herlihy, Rajsbaum, and Tuttle [23] introduces the use of pseudospheres as a means
for unifying the synchronous, semisynchronous, and asynchronous message passing
computation models.

The immediate snapshot (IS) object was introduced by Borowsky and Gafni in
1993 [11]. It is the basic building block of the iterated immediate snapshot (IIS) model,
first implicitly used by Herlihy and Shavit [24, 25] and more recently formulated as a
computation model by Borowsky and Gafni [12] as part of their new, simplified proof
of the asynchronous computability theorem of Herlihy and Shavit [26]. This work also
shows that the IIS model is computationally equivalent to standard shared memory
models by providing a wait-free implementation of IIS from shared memory, and vice
versa. It is not clear, however, whether these implementations are optimal from a
complexity-theoretic viewpoint.

The Approximate Agreement problem is a weakening of the Consensus problem
in which each process has a real valued input, and in any execution, nonfaulty pro-
cesses with inputs in a range [min input,max input] (the range changes from one
execution to the next based on the input set of participating processes) must agree on
output values within that range that are at most ε > 0 apart. The problem was first
introduced in 1986 by Dolev, Lynch, Pinter, Stark, and Weihl [15] in a paper showing
that this task can be solved in both the synchronous and asynchronous message pass-
ing models even when assuming a Byzantine failure model (in which processes may
exhibit arbitrary, even malicious, behavior). The paper also provided matching upper
and lower bounds for solving the task in these settings. These results were extended
to various failure models by Fekete [16], who also showed optimality in terms of the
number of rounds of communication used.

In 1994, Attiya, Lynch, and Shavit published a paper giving an Ω(logN) step
complexity lower bound, together with a matching O(logN) upper bound, for solving
in a wait-free manner N -process Approximate Agreement in “normal” (synchronous
and failure-free) executions using single-writer, multireader shared memory [6]. These
results were part of a proof that, in certain settings, wait-free algorithms are inherently
slower than non–wait-free algorithms.

This work was extended by Schenk [33], who showed matching upper and lower
bounds for solving the task in the asynchronous single-writer, multireader shared
memory model where the magnitudes of the inputs are bounded from above.
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Finally, in 1994, Aspnes and Herlihy [2] showed a
⌈
log3

max input−min input
ε

⌉
lower

bound, together with a
⌈
log2

max input−min input
ε

⌉
upper bound on the time complex-

ity (the number of steps taken by a process) for solving Approximate Agreement
using wait-free protocols in the asynchronous single-writer, multireader shared mem-
ory model.

1.2. The asynchronous complexity theorem. This paper introduces a new
theorem that for the first time provides a topological characterization of complex-
ity for asynchronous computation. We introduce the nonuniform iterated immediate
snapshot (NIIS) model, a refinement of the IIS model that allows better modeling
of complexity. Keeping in style with Herlihy and Shavit’s topological computability
framework [26], our theorem states that the worst case time complexity for solving a
decision task in the NIIS model is equivalent to the minimal number of nonuniform
chromatic subdivisions of the task’s input complex necessary to allow a simplicial map
from the subdivided input complex to the output complex. The theorem implies an
algorithm if one is given a subdivision and a mapping.

The nonuniform chromatic subdivisions we introduce (see Figure 13) are a looser
and more general form of standard chromatic subdivisions [26]. Unlike the iterated
standard chromatic subdivisions used in the computability work of [26, 12], they
allow individual simplexes in a complex to be subdivided a different number of times,
while ensuring that the subdivision of the complex as a whole remains consistent.
Nonuniformity is a necessary property when analyzing complexity since it allows the
level of subdivision of input simplexes to differ from one simplex to the next. This
allows one to model a world in which different numbers of steps are taken on different
input sets. If one used only uniform subdivisions, one could talk only about the
complexity of the most highly subdivided simplex. This would make the complexity
theorem useless, since, for example, for the Approximate Agreement problem, Aspnes
and Herlihy [2] show that for any k one can find a set of inputs that will require time
k in the worst case.

The power of our theorem lies in its ability to allow one to reason about the com-
plexity of problems in a purely geometric setting. As we show, the subdivisions of a
complex are a clean and higher level way of thinking about the multitude of different
length executions of a concurrent protocol. We found this geometric representation
helpful and believe that it will prove to be an invaluable tool for designing and an-
alyzing concurrent algorithms. For technical reasons, in order to avoid the need to
deal with infinite size complexes, we restrict our problem space to decision tasks with
finite (yet not necessarily bounded) input and output domains.

We provide an example application of Theorem 4.2. In section 5, we use our
topological framework to show tight upper and lower bounds on the time to solve the
Approximate Agreement problem in a wait-free manner in the NIIS model. We close
the gap implied by the work of Aspnes and Herlihy [2], proving matching upper and
lower bounds of

⌈
logd

max input−min input
ε

⌉
, where d = 3 for two processes and d = 2

for three or more.
Apart from the theorem itself, its proof provides two additional contributions to

the asynchronous computability literature.
• The upper bound proof of Herlihy and Shavit’s asynchronous computability

theorem [26] and related papers by Borowsky and Gafni [11, 12] all rely on the
fact that the standard chromatic subdivision [25, 26] is indeed a subdivision
in the topological sense. We provide the first formal proof of this fact.

• In 1997, Borowsky and Gafni provided a simulation of atomic snapshot mem-
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ory from IIS memory [12]. They showed that based on this simulation, if one
is given a proof of an asynchronous computability theorem for the IIS model
(which they called Proposition 3.1), it will imply one for the general read-write
model. The hope was that the proof of their Proposition 3.1 would be con-
structive and therefore significantly simpler than the nonconstructive proof
in [24, 26]. The proof of our asynchronous complexity theorem in section 4
provides a constructive proof of computability for the NIIS model, and since
IIS is a subset of NIIS, it provides the first known proof of Proposition 3.1
of [12].

1.3. Organization. The paper is organized as follows. Section 2 provides a
formal definition of decision tasks. It also contains a thorough description of our
model of computation, together with the complexity measures we use for analyzing
protocols in this model. Section 3 contains a collection of necessary definitions and
results from algebraic topology, as well as a description of how we model decision
tasks and NIIS protocols topologically. It also contains definitions of the standard
chromatic subdivision and the nonuniform chromatic subdivision. Section 4 contains
a statement and proof of our main theorem. Section 5 contains an application of
our asynchronous complexity theorem to the Approximate Agreement task. Finally,
section 6 summarizes our results and also gives some directions for further research.

2. Model. In order to develop a useful and applicable complexity theory for
asynchronous, distributed computer systems, we need to define some reasonable model
of such systems. This model must be detailed enough so as to accurately and faith-
fully capture the inherent complexity of solving tasks in real distributed systems yet
be simple enough so as to easily lend itself to some practical form of complexity
analysis. The model we consider in this paper consists of a class of one-shot dis-
tributed problems, called decision tasks, together with a novel model of computation,
a type of shared memory called the nonuniform iterated immediate snapshot (NIIS)
model. This section contains a detailed description of these fundamental concepts. It
also contains the complexity measures that will be used to analyze the complexity of
solving decision tasks in the NIIS model.

2.1. Informal synopsis. We begin with an informal synopsis of our model,
which largely follows that of Herlihy and Shavit [24, 25, 26]. Some fixed number N =
n+1 of sequential threads of control, called processes, communicate by asynchronously
accessing shared memory in order to solve decision tasks. In such a task, each process
starts with a private input value and halts with a private output value. For example,
in the well-known Binary Consensus task, the processes have binary inputs and must
agree on some process’s input [17]. A protocol is a distributed program that solves
a decision task in such a system. A protocol is wait-free if it guarantees that every
nonfaulty process will halt in a finite number of steps, independent of the progress of
the other processes. The time complexity of solving a decision task in this model on
a given input set is the supremum of the number of accesses to shared memory made
by any process on that input set.

2.2. Decision tasks. In this section, we define decision tasks more precisely.
This class of tasks is intended to provide a simplified model of reactive systems, such
as databases, file systems, or automated teller machines. An input value represents
information entering the system from the surrounding environment, such as a char-
acter typed at a keyboard, a message from another computer, or a signal from a
sensor. An output value models an effect on the outside world, such as an irrevocable
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decision to commit a transaction, to dispense cash, or to launch a missile. Informally
speaking, a decision task is a relation between vectors of input values and vectors of
output values. We define this more precisely below.

Let DI and DO be two finite data types, possibly identical, called the input data
type and the output data type, respectively. We first define the concept of an input
vector.

Definition 2.1. An n+1-process input vector �I is an n+1-dimensional vector,
indexed by {0, . . . , n}, each component of which is either an object of type DI or the
distinguished value ⊥, with the additional requirement that at least one component of
�I must be different from ⊥.

The definition of output vectors is similar to that of input vectors.
Definition 2.2. An n + 1-process output vector �O is an n + 1-dimensional

vector, indexed by {0, . . . , n}, each component of which is either an object of type DO

or the distinguished value ⊥.
When it is clear from the context, we omit mentioning the number of processes

in specifying input and output vectors. We denote the ith component of an input
vector �I by �I[i], and, similarly, we denote the ith component of an output vector �O

by �O[i]. In the remainder of the paper, unless stated otherwise, we will assume that
i and j are index values in the set {0, . . . , n}. These index values will be used both
for specifying vector elements and also for indexing processes. We will use the terms
“one-dimensional array” (“array” for short) and “vector” interchangeably.

We are often concerned with executions that are prefixes of a given execution.
Definition 2.3. Vector �U is a prefix of �V if, for 0 ≤ i ≤ n, either �U [i] = �V [i]

or �U [i] = ⊥.
If a prefix has an entry distinct from ⊥, then it agrees with the corresponding

entry in the original.
Definition 2.4. A set V of vectors is prefix-closed if for all �V ∈ V , every prefix

�U of �V is in V .
In this paper, we will consider only sets of input and output vectors that are finite

and prefix-closed.
Definition 2.5. An input set is a finite, prefix-closed set of input vectors. An

output set is a finite, prefix-closed set of output vectors.
Next, we define the notion of a task specification map, which maps each element

of the input set to a subset of the output set. Our definition is similar to that of
Havlicek [19].

Definition 2.6. Let I and O be input and output sets, respectively. A task
specification map relating the two sets is a relation γ ⊆ I ×O such that the following
conditions hold:

• For all �I ∈ I, there exists a vector �O ∈ O such that (�I, �O) ∈ γ.

• For all (�I, �O) ∈ γ, and for all i, �I[i] = ⊥ if and only if �O[i] = ⊥.
Note that the above definition requires that in defining the task, every partici-

pating process must have a defined output. This is the specification of the task and
does not model its solvability in any given computation model.

As a convenient notation, we denote the set of vectors �O in O such that (�I, �O) ∈ γ

by γ(�I). For a given input vector �I, the set of vectors γ(�I) simply represents the set

of legitimate output vectors for the set of inputs specified by �I. This set will generally
contain more than one allowable output vector.

Definition 2.7. A decision task D = 〈I,O, γ〉 is a tuple consisting of a set I of
input vectors, a set O of output vectors, and a task specification map γ relating these
two sets.
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We note that, by definition, decision tasks are inherently one-shot in the sense
that all processes have a single input and must decide on a single output exactly once.
Not all entries in a given input vector need contain an input value; some may contain
the special value ⊥, indicating that some processes do not receive an input value. We
formalize this notion of participation in the definition below.

Definition 2.8. For any input vector �I, if the ith component is not ⊥, then i
participates in �I. Otherwise, we say that i does not participate in �I. Moreover, we
define the participating set in �I to be the set of participating indexes.

As noted by Herlihy and Shavit [24, 25, 26], the reason for incorporating an
explicit notion of participating indexes in our formalism for decision tasks is that it
is convenient for capturing the intuitive notion of “order of actions in time” through
the use of participating processes. For example, it allows us to distinguish between
tasks such as Unique-Id and Fetch-And-Increment, which have the same sets of input
and output vectors, have the same γ(I) when all processes participate, but have quite
different task specification maps when subsets of participating processes are taken
into account.

�I γ(�I)

(0,⊥,⊥) (0,⊥,⊥), (1,⊥,⊥), (2,⊥,⊥)
(⊥, 0,⊥) (⊥, 0,⊥), (⊥, 1,⊥), (⊥, 2,⊥)
(⊥,⊥, 0) (⊥,⊥, 0), (⊥,⊥, 1), (⊥,⊥, 2)
(0, 0,⊥) (0, 1,⊥), (1, 0,⊥), (0, 2,⊥), (0, 2,⊥), (2, 1,⊥), (1, 2,⊥)
(0,⊥, 0) (0,⊥, 1), (1,⊥, 0), (0,⊥, 2), (0,⊥, 2), (2,⊥, 1), (1,⊥, 2)
(⊥, 0, 0) (⊥, 0, 1), (⊥, 1, 0), (⊥, 0, 2), (⊥, 0, 2), (⊥, 2, 1), (⊥, 1, 2)
(0, 0, 0) (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)

Fig. 1. The Unique-Id task.

�I γ(�I)

(0,⊥,⊥) (0,⊥,⊥)
(⊥, 0,⊥) (⊥, 0,⊥)
(⊥,⊥, 0) (⊥,⊥, 0)
(0, 0,⊥) (0, 1,⊥), (1, 0,⊥)
(0,⊥, 0) (0,⊥, 1), (1,⊥, 0)
(⊥, 0, 0) (⊥, 0, 1), (⊥, 1, 0)
(0, 0, 0) (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)

Fig. 2. The Fetch-And-Increment task.

Example 2.9. The n + 1-process Unique-Id task is defined as follows: each
participating process i ∈ {0, . . . , n} has an input xi = 0 and chooses an output yi ∈
{0, . . . , n} such that for any pair of processes i �= j, yi �= yj.

Example 2.10. In the Fetch-And-Increment problem, each participating process
i ∈ {0, . . . , n} has an input xi = 0 and chooses a unique output yi ∈ {0, . . . , n} such
that (1) for some participating process i, yi = 0, and (2) for 1 ≤ k ≤ n, if yi = k,
then for some j �= i, yj = k − 1.

The tables in Figures 1 and 2, taken from [26], show the task specifications for
Unique-Id and Fetch-And-Increment for three processes. Notice that Unique-Id allows
identifiers to be assigned statically, while Fetch-And-Increment effectively requires
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that they be assigned dynamically in increasing order. The first task has a trivial
wait-free solution: statically preassign the values 0, 1, and 2 to the three processes.
The second has no solution in read-write memory if one or more processes can fail.

2.3. Modeling objects, processes, and protocols. We formally model ob-
jects, processes, and protocols using a simplified form of the Input/Output (I/O)
automaton formalism of Lynch and Tuttle [28]. An I/O automaton is a nondeter-
ministic automaton with a finite or infinite set of states, a set of input actions, a set
of output actions, and a transition relation given by a set of steps, each defining a
state transition following a given action. An execution of an I/O automaton is an
alternating sequence of states and enabled actions, starting from some initial state.
An execution fragment is a subsequence of consecutive states and actions occurring
in an execution. For simplicity we will use the term execution to mean either execu-
tion or execution fragment, the appropriate term being clear from the context. An
automaton history is the subsequence of actions occurring in an execution. Automata
can be composed by identifying input and output actions in the natural way (details
can be found in [28]).

An object X is an automaton with input action call(i, v,X,D) and output action
return(i, v,X,D), where i is a process id, v is a value, X an object, and D a data type.
An action on object X by process i is said to occur on X’s ith “port.” A process i is
an automaton with output actions call(i, v,X,D), and decide(i, v) and input actions
return(i, v,X,D) and start(i, v). An operation is a matching pair of call and return
actions, that is, having the same type, name, and process id. From here on we will
abuse this notation for the sake of clarity by dropping unnecessary parameters and
denoting others using subscripts.

A protocol P = {0, . . . , n;M} is the automaton composed by identifying in the
obvious way the actions for processes 0, . . . , n and the memory M . A process i is said
to participate in an execution of a protocol if the execution contains a start(v)i action.
The set of participating processes is called the execution’s participating set. Note that
this definition of the participating set matches our earlier definition of a participating
set of input vectors. To capture the notion that a process represents a single thread
of control, a protocol execution is well formed if every process history (the projection
of the history onto the actions of i) has a unique start action (generated externally
to the protocol) which precedes any call or return actions, alternates matching call
and return actions, and has at most one decide action. We restrict our attention to
well-formed executions.

2.4. Solvability. We are interested in solvability in the face of arbitrary fail-stop
failures [17] (such failures also model processes being arbitrarily delayed or halted).
To capture the notion of processes having fail-stop failures, we add to the process
automaton a unique fail(i) event. A process’s execution is thus a sequence of actions
ending in either a decide or a fail action. If the execution ended in a fail action the
process is said to be faulty. An execution is t-faulty if up to t processes become faulty.

Definition 2.11. A protocol solves a decision task in an execution if the follow-
ing condition holds. Let {i|i ∈ U} be the processes that have start actions, and let
{ui|i ∈ U} be their arguments. Let {j|j ∈ V }, V ⊆ U , be the processes that execute

decide actions, and let {vj |j ∈ V } be their output values. Let �I be the input vector

with ui in component i, and ⊥ elsewhere, and let �O be the corresponding output vector
for the vj. We require that

1. no process takes an infinite number of steps without a decide or fail action,
and

2. �O is a prefix of some vector in Δ(�I).
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Informally, the second condition implies that if a protocol solves a task in an
execution, the outputs of the nonfaulty processes in any prefix of the execution are
consistent with the allowable outputs of the possibly larger set of inputs to the ex-
ecution as a whole. A protocol for N processes wait-free solves a decision task if it
solves it in every t-faulty execution where 0 ≤ t < N . We will call such a protocol
wait-free and henceforth use the term solves to mean wait-free solves.1

2.5. One-shot IS. Our memory model is based on Borowsky and Gafni’s IS
object [11], a model that has proven to be a useful building block for the construction
and analysis of protocols in many asynchronous, distributed systems [11, 12, 24, 25,
26, 31].

Informally, an n+1-process IS object consists of a shared n+1-dimensional mem-
ory array and supports a single type of operation, called writeread. Each writeread
operation writes a value to a single shared memory array cell, and returns a “snap-
shot” view of the entire array in the state immediately following the write—hence the
name “immediate snapshot.” A writeread operation by process i writes its value to
the ith cell of the memory array.

Formally, we can specify IS objects as I/O automata [28]. Let D be any data
type, and define ϑ(D) to be the data type (D ∪ {⊥})n+1, the set of all n + 1-arrays
each of whose cells contains either an element of D or ⊥. We index the elements of
ϑ(D) using the numbers in {0, . . . , n} and define ϑk(D) for k ≥ 2 as ϑ(ϑk−1(D)),
that is, a recursively growing vector of vectors. An IS automaton for n + 1-processes
and data type D called ISx is defined as in Figure 3. We refer to such an object as
an ISn+1

D object. When the data type and number of processes are clear from the
context, we usually omit the subscripts and superscripts above.

In Figure 3, the operation writeread(v, S)i,x by process i on ISx writes the value
v to the ith cell of memory and subsequently returns a snapshot S. The idea of
the automaton specification is to capture the notion of an update of a memory array
location followed immediately by a snapshot view of the entire array. Using a style
similar to that of the atomic snapshot memory specification of [1], we record the
history of invocations and responses using interface variables and allow the combined
“write and snapshot” operation itself to occur via an internal automaton transition at
some point between the invocation and associated response. Figure 4 shows a stylized
diagram of the IS object ISx.

For all i, the inv writeread(v)i,x action simply writes the input value v to the ith
cell of the input value array of ISx. This array provides temporary storage for inputs
to the ISn+1

D object. At the same time, the flag “inv” is written to the ith cell of the
interface array, which indicates an input by process i. The update(U) action is the
internal transition that periodically copies a set of values corresponding to the indexes
in U from the input value array to the memory array. The set U must be a subset
of the indexes i with the property that interface[i] = inv; in other words, these are
operations that have been invoked by participating processes and have not yet been
updated in memory. Additionally, a copy of the memory array is written to the ith
cell of the return value array for each i ∈ U . This corresponds to an IS view being
collected. Finally, the flag “ret” is written to the ith cell of the interface array for
each i ∈ U , indicating that a response value to the invocation by process i is available.

1Note that we use the standard notion of wait-free protocols [27] and not the more restrictive
notion of bounded wait-free protocols [27] even though, given that we consider deterministic algo-
rithms and that in our discussion the input space is finite, one could actually place a bound on the
length of any wait-free execution.
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ISn+1
D object named ISx

Signature
Inputs:

inv writeread(v)i,x, v ∈ D, i ∈ {0, . . . , n}.
Internals:

update(U), U ⊆ {0, . . . , n}.
Outputs:

ret writeread(S)i,x, S ∈ ϑ(D), i ∈ {0, . . . , n}.
State
memory ∈ ϑ(D), initially (⊥, . . . ,⊥).
input value ∈ ϑ(D), initially (⊥, . . . ,⊥).
return value ∈ ϑ2(D), initially (⊥, . . . ,⊥).
interface ∈ {inv, ret,⊥}n+1, initially (⊥, . . . ,⊥).

Transitions
input: inv writeread(v)i,x

Eff: input value[i] := v
interface[i] := inv

internal: update(U)
Pre: U ⊆ {i | interface[i] = inv}
Eff: For all i in U do

memory[i] := input value[i]
For all i in U do

return value[i] := memory
For all i in U do

interface[i] := ret

output: ret writeread(S)i,x
Pre: interface[i] = ret

return value[i] = S
Eff: interface[i] := ⊥

Fig. 3. I/O automaton for an ISn+1
D object with name ISx.

ISx

update(U)
ret_writeread(S) i,x

inv_writeread(v)
i,x

Fig. 4. Diagram of ISx.

The ret writeread(S)i,x output action provides a response to a previous invocation by
process i. Its only effect on the IS object is to reset the value interface[i] to ⊥, thereby
preventing more than one response to an invocation. The ret writeread(S)i,x action
can occur only after a return value has been written to the ith cell of the return value
array and the flag “ret” has been written to the corresponding cell in the interface
array.

In the remainder of this section, we will state and prove a few basic properties
about IS objects. These properties will be useful later, when we prove the correctness
of a topological framework for analyzing the complexity of protocols in models of
computation that include multiple IS objects.

In this paper we will consider only a restricted class of executions of ISx, called
one-shot executions, in which each object has at most one invocation and at most one
response by any process.

Lemma 2.12. For any two distinct actions update(U) and update(U ′) in a one-
shot execution α of ISx, the index sets U and U ′ are disjoint.
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Proof. Suppose without loss of generality that U occurs before U ′, and suppose
i ∈ U . Immediately after the action update(U), interface[i] is equal to “ret.” Since
we are considering a one-shot execution, interface[i] will not return to the value “inv”
for the remainder of the execution. Hence, the precondition of the update(U ′) action
guarantees that i /∈ U ′.

We can now define what we mean by concurrent operations of ISx.
Definition 2.13. Two operations writeread(vi, Si)i,x and writeread(vj , Sj)j,x in

a one-shot execution α of ISx are concurrent if there exists an action update(U) in
α such that i, j ∈ U .

The proof of the following lemma is immediate by construction.
Lemma 2.14. Consider any operation writeread(vi, Si)i,x in a one-shot execution

α of ISx. Then Si[i] = vi.
The value returned by a ret writeread(S)i,x action is a one-dimensional array of

type ϑ(D). In the following lemma, we prove that ISx exhibits the property that the
set of snapshots returned in a one-shot execution can be totally ordered by the prefix
relation defined in Definition 2.3.

Lemma 2.15. Consider any two writeread operations in a one-shot execution α,
writeread(vi, Si)i,x and writeread(vj , Sj)j,x. Either Si is a prefix of Sj or Sj is a prefix
of Si.

Proof. Suppose the values vi and vj are written to memory by the actions
update(Ui) and update(Uj), respectively.

If these actions are the same, that is, if Ui = Uj , the two operations writeread(vi,
Si)i,x and writeread(vj , Sj)j,x are concurrent. In this case, the value of memory that
is copied to return value[i] is identical to the value copied to return value[j], since
both are copied by the same update(Ui) action. It follows that Si = Sj . Now suppose
Ui �= Uj , and suppose update(Ui) occurs after update(Uj). Since no memory cells
are ever reset, it follows that the memory version that is written to return value[j]
during update(Uj) is a prefix of the version that is written to return value[i] during
update(Ui). Hence Sj is a prefix of Si. The case where update(Uj) occurs after
update(Ui) is similar, and in this case we have that Si is a prefix of Sj . The lemma
follows.

The next lemma concerns what is referred to in [11] as the immediacy property of
IS objects. If a value written to memory by an invocation by process j is contained
in a snapshot of an operation by process i, then the snapshot returned to process j
is a prefix of that returned to process i. This corresponds to the informal notion of a
writeread operation by j happening before a writeread operation by i.

Lemma 2.16. Consider any two writeread operations in a one-shot execution α,
writeread(vi, Si)i,x and writeread(vj , Sj)j,x. If Si[j] �= ⊥, then Sj is a prefix of Si.

Proof. Suppose the values vi and vj are written to memory by the actions
update(Ui) and update(Uj), respectively, and suppose Si[j] �= ⊥. This implies that
either vj was written to memory during update(Ui), in which case Ui = Uj , or the
action update(Uj) occurred before update(Ui). In either case, we have that Sj must
be a prefix of Si.

2.6. The NIIS model. Our nonuniform iterated immediate snapshot (NIIS)
model is a variant of the iterated immediate snapshot (IIS) model, first used implicitly
by Herlihy and Shavit [25, 26], and later formulated as a computation model by
Borowsky and Gafni [12].

The IIS model assumes a bounded sequence ISn+1
D , ISn+1

ϑ(D), IS
n+1
ϑ2(D), . . . , IS

n+1
ϑk−1(D)

of IS objects, denoted by IS1, IS2, IS3, . . . , ISk, where k > 0. On a high level, the IIS
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inv_writeread(v)inv_writeread(v) i,1

ret_writeread(S) i,1

inv_writeread(v) i,x

ret_writeread(S)
i,x

1

i

n

IS

IS

1

x

Fig. 5. Diagram of the NIIS model.

model has each participating process proceed in accessing IS objects in ascending or-
der in the sequence. On each object it executes a writeread(v)i,1 action, with v equal
to its local state. The response from each object, consisting of an IS of its shared
memory vector, is provided as input to the next object accessed in the sequence, until
k objects have been accessed. Once a process has received an output from the kth IS
object, it applies a decision map δ to this value to create its returned decision value.
We note that there is no loss of generality in assuming a “full information model”
where the input to one writeread operation is the response by the previous one.

We generalize the IIS model by introducing the NIIS model. Unlike IIS, the
NIIS model assumes an unbounded sequence ISn+1

D , ISn+1
ϑ(D), IS

n+1
ϑ2(D), . . . of IS objects,

denoted IS1, IS2, IS3, . . . . A stylized interconnection diagram of the k-shot IIS model
is given in Figure 5. The number of IS objects accessed by any two distinct processes
in a given execution need not be the same, and, moreover, the number of objects
accessed by any fixed process may vary from execution to execution. The motivation
behind this is to be able to model complexity more accurately. In a given execution
it may be the case that the necessary amount of computation will vary from process
to process, from input value to input value, and indeed from execution to execution.
This cannot be captured by a uniform model such as IIS in which every execution of
a given protocol will involve the same number of steps.

The only significant difference between a protocol P(n,τ,δ) in the NIIS model and
a protocol in the IIS model is that after each complete writeread operation, each
process checks whether it has reached a final state by applying the predicate τ to the
local state variable. If τ returns true, the process executes a decide(S)i action and
halts. Otherwise, it accesses the next IS object as in the IIS model, and so on. In
fact, any protocol in the IIS model is equivalent to a protocol P(n,τ,δ) in the NIIS
model, in which the predicate τ simply checks whether the local state variable is of
type ϑk(D).

Notice that, unlike the IIS model, the NIIS model permits unbounded length
executions (assuming an unbounded number of IS objects) for some choices of the
termination predicate map τ . However, we will consider only protocols for which τ is
chosen such that the entire system does not have any infinite executions.

Each protocol in the NIIS model is fully characterized by the maximum num-
ber n + 1 of processes that can participate, a predicate function τ :

⋃∞
l=0 ϑ

l(D) →
{true, false}, which each process applies to its local state variable after each com-
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Process i

Signature
Inputs:

ret writeread(S)i,x, S ∈
⋃∞

l=1 ϑ
l(D).

start(v)i, v ∈ D.
faili

Internals:

Outputs:
inv writeread(v)i,x, v ∈

⋃∞
l=0 ϑ

l(D).
decide(v)i, v ∈ DO.

State
local state ∈ (

⋃∞
l=0 ϑ

l(D)) ∪ {⊥}, initially in the fresh state ⊥.
status ∈ {ready,waiting, decided, failed}, initially ready.
Transitions
input: ret writeread(S)i,x

Eff: local state := S
If status = waiting do

status := ready
output: inv writeread(v)i,x

Pre: τ(local state) = false

status = ready
local state = v �= ⊥

Eff: status := waiting
input: faili

Eff: status := failed

input: start(v)i
Eff: local state := v

output: decide(v)i
Pre: τ(local state) = true

δ(local state) = v ∈ DO

status = ready
Eff: status := decided

Fig. 6. I/O automaton for process i running NIIS protocol.

plete writeread operation to determine whether or not to decide, and a decision map
δ :

⋃∞
l=0 ϑ

l(D) → DO, where DO is an arbitrary data type, which we call the proto-
col’s output data type. We refer to the protocol obtained by fixing these parameters
as P(n,τ,δ).

We specify each IS object as in Figure 3, and each process i as in Figure 6.
The protocol can then be specified by composing the automata for the processes
and the automata for IS objects by matching up invocations and responses from
consecutive IS objects in the natural way. The resulting protocol automaton is denoted
by P(n,τ,δ) = {0, 1, . . . , n; IS1, IS2, . . . }.

For any execution α of P(n,τ,δ), the processes’ input values can conveniently be

represented using an n + 1-dimensional input vector �I, as specified in the previous
section, with input data type D. The ith entry of �I is the input of process i. Similarly,
the processes’ output values in α can be represented using an n+1-dimensional output
vector �O. The ith entry of �O is the output of process i.

It should be noted that the notions of participating processes and sets defined for
executions and input vectors are consistent; a process i participates in an execution

α if and only if the index i participates in the input vector �I corresponding to α.
Therefore, when the meaning is clear from the context, we usually omit qualifying a
participating set with an execution or input vector.

We note that we have added fail i actions to the protocol to achieve the stopping
failure property. We note that by construction if α is an execution of P(n,τ,δ) that con-
tains a fail i action, then α contains no actions locally controlled by i (inv writeread(v)i,x
or decide(S)i) after the fail i action.
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2.7. Complexity measures for the IIS and NIIS models. We now define
the complexity measures to be used for analyzing the performance of protocols in the
NIIS model. Since the IIS model is equivalent to a special case of the NIIS model,
these measures also apply directly to the IIS model.

Let P(n,τ,δ) be a protocol in the NIIS model solving a given decision task D, let �I

be an input vector, and let α be any execution of P(n,τ,δ) that corresponds to �I. For
all i, let ti be the number of IS objects accessed by process i in α. We first define the
time complexity of the execution α.

Definition 2.17. The time complexity of α, denoted tα, is maxi ti, the maximum
number of IS objects accessed by any process.

We note that tα is well defined, since the number of processes n + 1 is finite.
Moreover, by definition of the max function, tα is an integer value. We use the
definition given above to define the time complexity of the protocol P on the input
vector �I.

Definition 2.18. The time complexity of P(n,τ,δ) on �I, denoted t�I , is the supre-

mum of the set {tα | tα is an execution corresponding to �I}.
Finally, we define the complexity of a protocol P(n,τ,δ) on an input set I.
Definition 2.19. The time complexity of P(n,τ,δ) on I, denoted tI , is the supre-

mum of the set {t�I | �I ∈ I}.
The reason for preferring these simple, discrete complexity measures over other,

more elaborate, measures such as real time, for instance, is the highly regular structure
of the IIS and NIIS models. We make the assumption that each access to an IS
object takes the same amount of time and do not worry about breaking up the time
required to complete each access to an IS object into subparts. Instead, we group the
time spent on invocation, response, and on local computation at the IS object. This
assumption is somewhat strong, as the presence of asynchrony in our model will tend
to introduce varying delays for each access to an object. However, we believe that, as
a first step toward a complexity theory, this assumption is justifiable, as it allows for
complexity measures that are simple and easy to apply, and that have a particularly
nice topological representation, as we will see in section 4.

3. A topological framework. In this section we first introduce some known
tools from the field of algebraic topology and show how they may be used to model
decision tasks and protocols in the NIIS model of computation. We then introduce
a new tool for analyzing complexity in this setting, called the nonuniform iterated
chromatic subdivision.

3.1. Basic topological definitions and concepts. This section introduces
the basic topological definitions and concepts that we shall need for modeling decision
tasks and wait-free protocols in the NIIS model. Some of these definitions are fairly
standard and are mainly taken from popular textbooks on algebraic topology [30, 34],
while others are due to Herlihy and Shavit [24, 25, 26]. The statements and proofs
related to subdivisions are novel to this work. Some of the figures used in this section
are also adopted from Herlihy and Shavit’s work [24, 25, 26].

A vertex �v is a point in a Euclidean space R
l. A set {�v0, . . . , �vn} of vertexes

is geometrically independent if and only if the set of vectors {�vi − �v0}ni=1 is linearly
independent. Clearly, for a set of n + 1 vertexes to be geometrically independent,
l ≥ n. We can now define the concept of a geometric simplex, or simplex for short.

Definition 3.1. Let {�v0, . . . , �vn} be a geometrically independent set of vertexes
in R

l. We define the n-simplex S spanned by �v0, . . . , �vn to be the set of all points x
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S

T

v
0

v1

v23v

Fig. 7. Example of a pure, two-dimensional simplicial complex.

such that x =
∑n

i=0 ti�vi, where
∑n

i=0 ti = 1 and ti ≥ 0 for all i.
For example, a 0-simplex is a vertex, a 1-simplex a line segment, a 2-simplex a

solid triangle, and a 3-simplex a solid tetrahedron. For simplicity, we often denote
the simplex spanned by a set {�v0, . . . , �vn} of geometrically independent vertexes as
(�v0, . . . , �vn). The number n is called the dimension of the simplex S and is often
denoted by dim(S). For clarity, we will sometimes include the number n as an explicit
superscript when referring to a simplex; that is, we will write Sn to refer to the simplex
spanned by the vertexes in {�v0, . . . , �vn}.

Any simplex T spanned by a subset of {�v0, . . . , �vn} is called a face of S. The faces
of S different from S itself are called the proper faces of S. The simplex spanned by
the vertexes {�v0, �v1} is a proper face of the 2-simplex S spanned by {�v0, �v1, �v2} in
Figure 7.

The union of the proper faces of S is called the boundary of S and is denoted
Bd(S). The interior of S, denoted Int(S), is defined by the set equation Int(S) =
S −Bd(S). For any set of points, the point

�b =
n∑

i=0

(�vi/(n + 1))

is their barycenter. The barycenter of a simplex S is the barycenter of its vertexes.
In particular, if S is a vertex, then �b = S.

We will use a vertex to model the state of a single process, and a simplex to model
consistent states of all the processes involved in solving a decision task or in running a
protocol in the NIIS model. To model a collection of such states we need the concept
of a geometric, simplicial complex, or complex for short, which is defined below.

Definition 3.2. A geometric simplicial complex K in the Euclidean space R
l is

a collection of geometric simplexes in R
l such that

• every face T of every simplex S in K is contained in K, and
• the intersection U of any two simplexes S, T in K is contained in K.

In this paper we will consider only finite complexes. The dimension of a complex
K, often denoted by dim(K), is the highest dimension of any of its simplexes and
is also sometimes indicated explicitly by a superscript. An n-dimensional complex
(or n-complex) is pure if every simplex is a face of some n-simplex. All complexes
considered in this paper are pure unless stated otherwise. A simplex S in K with
dimension dim(S) = dim(K) is called a maximal simplex.

Given a simplex S, let S denote the complex of all faces of S, and let Ṡ denote the
complex consisting of all proper faces of S. We note that, since Ṡ contains all faces
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of S except S itself, dim(Ṡ) = dim(S) − 1. An example of a pure, two-dimensional
simplicial complex, which we call K, is shown in Figure 7. This complex equals
the union of S and T , where S is the 2-simplex spanned by {�v0, �v1, �v2}, and T is
the 2-simplex spanned by {�v0, �v1, �v3}. Both S and T are maximal simplexes in this
example.

If L is a subcollection of simplexes in K that is closed under containment and
intersection, where dim(L) ≤ dim(K), then L is a complex in its own right. It is
called a subcomplex of K. For example, the complex Ṡ of faces of S is a subcomplex
of K in Figure 7.

One subcomplex of a complex K of particular interest is the subcomplex of all
simplexes in K of dimension at most p, where p is some integer between 0 and dim(K).
We call this subcomplex the pth skeleton of a K, denoted skelp(K). The elements of
the collection skel0(K) are called the 0-simplexes of K. The 0-skeleton of the complex
K in Figure 7 is the collection of 0-simplexes {(�v0), (�v1), (�v2), (�v3)}. Similarly, the
1-skeleton of K is the union of the 0-skeleton described above and the collection
{(�v0, �v1), (�v0, �v2), (�v1, �v2), (�v1, �v3), (�v2, �v3)}.

Let |K| be the subset
⋃

S∈K S of R
l that is the union of the simplexes of K. Giving

each simplex its natural topology as a subspace of R
l, we topologize |K| by declaring

a subset A of |K| to be closed if and only if A ∩ S is closed for all S ∈ K. This space
is called the polytope of K. Conversely, K is called a triangulation of |K|.

In practice, the geometric representations we have given for simplexes and com-
plexes are not always convenient, since the analytic geometry involved can get quite
involved. Therefore, we introduce the notions of abstract simplexes and abstract com-
plexes.

Definition 3.3. An abstract simplex S is a finite, nonempty set.
The dimension of S is its cardinality. Each nonempty subset T of S is called a face

of S. Each element of S is called a vertex of S. There is a close relationship between
geometric simplexes and abstract simplexes. Any geometrically independent set of
vectors {�v0, . . . , �vn} not only spans a geometric simplex; it also forms an abstract
simplex.

Definition 3.4. An abstract complex Ka is a collection of abstract simplexes,
such that if S is in Ka, so is any face of S.

Most concepts defined for geometric complexes immediately carry over to abstract
complexes; the dimension of Ka, often denoted by dim(Ka), is the highest dimension
of any of its simplexes. An n-dimensional abstract complex (or n-complex) is pure if
every simplex is a face of some n-simplex. If La is a subcollection of Ka that is itself
an abstract complex, then La is called a subcomplex of Ka.

Definition 3.5. Let K be a geometric complex, and let V be the vertex set of K.
Let Ka be the abstract complex of all subsets S of V such that S spans a simplex in
K. Then Ka is called the vertex scheme of K.

Definition 3.6. Two abstract complexes Ka and La are isomorphic if there is
a bijective correspondence ψ between their vertex sets such that a set S of vertexes is
in Ka if and only if ψ(S) ∈ La. The bijective correspondence ψ is called an isomor-
phism.

Theorem 3.7. Every abstract complex Ka is isomorphic to the vertex scheme of
some geometric complex K in R

2 dim(Ka)+1.
We will not prove this theorem here. For a proof, see any standard textbook on

algebraic topology [30, 34]. In the rest of this paper, for convenience, we will often use
abstract and geometric representations of simplexes and complexes interchangeably.

We now define a way of “adding” simplexes, known as starring.
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S1
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Fig. 8. The star of two complexes S and T .

Definition 3.8. Let S = (s0, . . . , sp) and T = (t0, . . . , tq) be simplexes whose
combined sets of vertexes are affinely independent. Then the star of S and T , denoted
S 
 T , is the simplex (s0, . . . , sp, t0, . . . , tq).

We may extend the notion of starring to complexes as well.

Definition 3.9. Let K and L be simplicial complexes, not necessarily of the same
dimension. Then the star of K and L, denoted K 
 L, is the collection of simplexes
K ∪ L ∪ {S 
 T | S ∈ K, T ∈ L}.

The star of two complexes K and L is a complex in its own right [30]. Figure 8
shows a complex consisting of two 3-simplexes and all their faces resulting from star-
ring the complex S which includes the 1-simplex (s0, s1) and all its faces, and the
complex T consisting of the two 1-simplexes (t0, t1) and (t1, t2) and all their faces.

The remainder of this section, however, which introduces a number of important
topological concepts, such as simplicial maps, subdivisions, and carriers, is set in the
context of geometric complexes.

We first define the notions of simplicial vertex maps and simplicial maps from
one complex into another.

Definition 3.10. Let K and L be complexes, possibly of different dimensions,
and let μ : skel0(K) → skel0(L) be a function mapping vertexes to vertexes. Sup-
pose that whenever the vertexes �v0, . . . , �vn of K span a simplex of K, the vertexes
μ(�v0), . . . , μ(�vn) span a simplex of L. Then μ is called a simplicial vertex map from
K to L. μ can be extended to a continuous map μ∗ : |K| → |L| such that

x =

n∑
i=0

ti�vi ⇒ μ∗(x) =

n∑
i=0

tiμ∗(�vi).

This continuous extension is called a simplicial map from K to L.

For simplicity, we henceforth refer to the simplicial vertex map μ as the simplicial
map, without actual reference to the continuous extension μ∗, which is less relevant
for our purposes. As a further abuse of notation, we usually write μ : K → L when
we refer to the simplicial vertex map, glossing over the fact that this map is in fact
defined only on the vertexes of K, and that the image of the map is a subset of the
vertex set of L. Henceforth, unless stated otherwise, all maps between complexes are
assumed to be simplicial. An example of a simplicial map is given in Figure 9.

We note that a simplex and its image under a simplicial map need not have
the same dimension. A simplicial map μ : K → L is noncollapsing if it preserves
dimension; that is, for all S ∈ K: dim(μ(S)) = dim(S).
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μ

Fig. 9. Example of a simplicial map between two complexes.

κ σ(κ)

Fig. 10. Example of a pure, two-dimensional simplicial complex and a subdivision of it.

Definition 3.11. A coloring of an n-dimensional complex K is a noncollapsing
simplicial map χ : K → S, where S is an n-simplex.

Intuitively, a coloring corresponds to a labeling of the vertexes of the complex such
that no two neighboring vertexes (connected by a 1-simplex) have the same label. A
chromatic complex (K, χ) is a complex K together with a coloring χ of K. When
it is clear from the context, we specify the chromatic complex (K, χ) simply as the
complex K, omitting explicit mention of the coloring χ.

Definition 3.12. Let (K, χK) and (L, χL) be chromatic complexes, and let
μ : K → L be a simplicial map. We say that μ is chromatic if, for every vertex �v ∈ K,
χK(�v) = χL(μ(�v)).

In other words, μ is chromatic if it maps each vertex in K to a vertex in L of the
same color. All the simplicial maps we consider in this paper are chromatic. We can
now define the concepts of a subdivision of a complex and the carrier of a simplex in
a subdivision.

Definition 3.13. Let K be a complex in R
l. A complex σ(K) is said to be a

subdivision of K if the following two conditions hold:

• Each simplex in σ(K) is contained in a simplex in K.
• Each simplex of K equals the union of finitely many simplexes in σ(K).

An example of a complex and its subdivision is given in Figure 10.

Definition 3.14. If S is a simplex of σ(K), the carrier of S, denoted carrier(S),
is the unique smallest T ∈ K such that S ⊂ T .

The concept of a carrier of a simplex is illustrated in Figure 11. The original
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Simplex S Carrier(S)

Fig. 11. The carrier of a simplex.

complex is shown on the right, and the subdivided complex is shown on the left. A
simplex S in the subdivision and the corresponding carrier carrier(S) in the original
complex are highlighted in the figure.

A chromatic subdivision of (K, χK) is a chromatic complex (σ(K), χσ(K)) such
that σ(K) is a subdivision of K, and for all S in σ(K), χσ(K)(S) ⊆ χK(carrier(S)).
A simplicial map μ : σ1(K) → σ2(K) between chromatic subdivisions of K is carrier
preserving if for all S ∈ σ1(K), carrier(S) = carrier(μ(S)). All subdivisions we
consider in this paper will be chromatic, unless explicitly stated otherwise.

3.2. Topological modeling of decision tasks. Earlier in this section, we de-
fined the notion of a decision task in terms of input and output vectors. That definition
was intended to help the reader understand what a decision task is, but it lacks the
mathematical structure necessary to prove interesting results. We now reformulate
this definition in terms of simplicial complexes. To illustrate our constructions, we
will first explain on a high level how to topologically model tasks, specifically the
well-known Unique-Id task of Example 2.9. We will then provide detailed topological
definitions of decision tasks.

We represent all possible input vectors to a task as a simplicial complex. In
the case of the Unique-Id task, there is a (unique) n + 1-dimensional input vector
�I = [0, . . . , 0] represented as a simplex S, with dimension 0 ≤ dim(S) ≤ n. The
dimension of S equals the number of non-⊥ elements in the vector.

From here on, each vertex �v in a simplex S will be labeled with a process id
and an input value. We will use ids(S) to denote a simplex S’s set of process ids
(similarly for a complex), and vals(S) to denote the multiset of values in S (similarly

for a complex). If �J is a prefix of �I, then the simplex corresponding to �J is a face
of S. The set I of input vectors is thus modeled as a complex I of input simplexes,
called the input complex. For the Unique-Id task each vertex in �I is labeled 〈i, vi〉,
where �I[i] = vi = 0.

Similarly, the set O of output vectors is modeled as a complex O of output
simplexes, called the output complex. In the Unique-Id task we represent each n+ 1-
dimensional output vector �O = [x1, . . . , xn], where for all i, j, either xi = ⊥ or 0 ≤
xi ≤ n and (xi = xj) ⇒ (xi = ⊥), as a simplex T , with dimension 0 ≤ dim(T ) ≤ n.
Each vertex �v in T is labeled with a process id and an output value 〈i, vi〉, where
�O[i] = vi. As before, if �P is a prefix of �O, then the simplex corresponding to �P is a
face of T .
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A topological task specification map Γ maps the input complex to the output
complex in a way that captures the input/output vector relation γ of a given task.
The Unique-Id task induces a topological task specification map Γ in the natural way,
mapping each input simplex S ∈ I to a set Γ(S) of output simplexes in O, with the
property that for all T ∈ Γ(S), the set vals(T ) contains no non-⊥ duplicates.

We can now give an alternative, topological representation of the Unique-Id de-
cision task by simply specifying it as a tuple D = 〈I,O,Γ〉 consisting of an input
complex I, an output complex O, and a topological task specification map Γ.

This topological representation gives an alternative interpretation of the notion
of “similar” system states. The processes corresponding to vertexes on the common
boundary of the two simplexes cannot distinguish between the two global output sets
based on their own output values. Unlike graph-theoretic models (e.g., [7]), simplicial
complexes capture in a natural way the notion of the degree of similarity between the
two global output sets: it is the dimension of the intersection of the two 2-simplexes.

We now give a formal procedure for how to specify a given decision task D =
〈I,O, γ〉 topologically. We first construct a representation using abstract simplexes
and complexes. It then follows from Theorem 3.7 that there exists a representation
using geometric simplexes and complexes for which the vertex scheme is isomorphic to
the abstract representation. There are standard ways of constructing such geometric
complexes [30], but we choose not to get into the details of these constructions in this
paper.

Definition 3.15. Let �I ∈ I be an input vector. The input simplex corre-
sponding to �I, denoted S(�I), is the abstract simplex (〈i0, vi0〉, . . . , 〈im, vim〉), where

vij = �I[ij ], and where for all ij, i0 ≤ ij ≤ im, ij ∈ {0, . . . , n} ∧ �I[ij ] �= ⊥, and for all

i, (�I[i] = ⊥) ⇒ (i /∈ {i0, . . . , im}).
Definition 3.16. Let �O ∈ O be an output vector. The output simplex corre-

sponding to �O, denoted T ( �O), is the abstract simplex (〈i0, vi1〉, . . . , 〈im, vim〉), where

vij = �O[ij ], and where for all ij, i0 ≤ ij ≤ im, ij ∈ {0, . . . , n} ∧ �O[ij ] �= ⊥, and for

all i, ( �O[i] = ⊥) ⇒ (i /∈ {i0, . . . , im}).
In other words, the vertexes in an input/output simplex correspond exactly to the

non-⊥ values of the input/output vectors. Having defined input and output simplexes,
we can define input and output complexes.

Definition 3.17. The input complex corresponding to I, denoted I, is the
collection of input simplexes S(�I) corresponding to the input vectors of I.

Definition 3.18. The output complex corresponding to O, denoted O, is the
collection of output simplexes T ( �O) corresponding to the output vectors of O.

Definitions 3.17 and 3.18 make sense topologically due to the following lemma
which follows from the fact that the sets of input and output vectors we consider are
prefix-closed (see Definition 2.5).

Lemma 3.19. Given a set I of input vectors (alternatively a set O of output
vectors), the corresponding input complex I (output complex O), as defined in Defi-
nition 3.17, is an abstract, chromatic complex.

Given a pair of (abstract) input and output complexes, we may apply Theorem 3.7
to construct a corresponding pair of geometric chromatic input and output complexes
by embedding the abstract complexes in R

2n+1. As discussed in section 3.1, we will
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thus work with both interchangeably in the remainder of this paper.
We now construct a topological equivalent of the task specification map γ ⊆ I×O.
Definition 3.20. The topological task specification map corresponding to γ,

denoted Γ ⊆ I ×O, is defined as follows:

(S(�I), T ( �O)) ∈ Γ ⇐⇒ (�I, �O) ∈ γ.

As a convenient notation, for all S(�I) ∈ I, we denote the set of simplexes T ( �O)

in O such that (S(�I), T ( �O)) ∈ Γ by Γ(S(�I)). Usually, we simply refer to a topolog-
ical task specification map as a “task specification map.” We now prove that task
specifications are id-preserving; if a process i has an input value, it must also have an
output value, and vice versa.

Lemma 3.21. For all S(�I) ∈ I, and all T ( �O) ∈ Γ(S(�I)), ids(T ) = ids(S).

Proof. Let S(�I) be any simplex in I, and let T ( �O) ∈ Γ(S(�I)). Then �O ∈ γ(�I) by

Definition 3.20. Suppose i /∈ ids(S(�I)). Then �I[i] = ⊥ by Definition 3.15, and hence

by Definition 2.6, �O[i] = ⊥. It follows from Definition 3.16 that i /∈ ids(T ( �O)). Now

suppose i /∈ ids(T ( �O)). Then �O[i] = ⊥ by Definition 3.16, and hence by Definition 2.6,
�I[i] = ⊥. It follows from Definition 3.15 that i /∈ ids(S(�I)).

A schematic illustration of a topological decision task specification is given in
Figure 12.

Input Complex Output Complex

Input
Simplex

Set of legal
output simplexes

Fig. 12. A decision task.

Definition 3.22. Given a decision task D = 〈I,O, γ〉, the corresponding topo-
logical representation of the task, denoted D = 〈I,O,Γ〉, consists of an input complex
I corresponding to I, an output complex O corresponding to O, and a task specifica-
tion map Γ corresponding to γ.

In the remainder of this paper, we will specify decision tasks using Definitions 2.7
and 3.22 interchangeably. A set of inputs or outputs may thus be specified as either
a vector or a simplex, the vertexes of which are labeled with process ids and values.

3.3. Topological modeling of NIIS protocols. We model protocols in the
NIIS model in much the same way that we model decision tasks. As discussed in
section 2, the sets of inputs and outputs for any execution α of a protocol P(n,τ,δ)
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in the NIIS model can be modeled using n + 1 process input and output vectors.
We denote the sets of input vectors and output vectors of a protocol by I and O,
respectively. We are interested only in protocols that solve decision tasks, so we may
assume that the set I of possible input vectors to a protocol is prefix-closed. The
following lemma states that for any protocol in the NIIS model, the set O of possible
output vectors from all executions of the protocol must necessarily be prefix-closed.
Recall from section 2.6 that we are considering only the set of fair (and hence finite)
executions of a protocol here.

Lemma 3.23. Let O be the set of possible output vectors of a protocol P(n,τ,δ) in
the NIIS model, with a corresponding set of input vectors I. Then O is prefix-closed.

Proof. Let �O be an output vector produced by the execution αO, and let �P
be a prefix of �O. We construct an execution αP as follows: For each i such that
�O[i] = vi �= ⊥ = �P [i], replace the action decide(S)i (S is the output value returned
by that action) in αO with a fail i action, meaning that process i fail-stopped before
deciding. Clearly, the execution thus obtained is a possible execution of P(n,τ,δ), and

its output vector is �P . Hence �P is in O, and O is prefix-closed.
Given that both the set of input vectors I and the set of output vectors O as-

sociated with a protocol P(n,τ,δ) are prefix-closed sets of vectors, we can construct
corresponding input and output complexes, denoted I and P(n,τ,δ)(I), respectively.
These complexes are constructed in the same way as the complexes corresponding to
input and output sets of vectors for decision tasks, and the proofs that they are in-
deed chromatic complexes are also identical. The output complex P(n,τ,δ)(I) is called
a protocol complex.

Let J be a subcomplex of the input complex I. The set of possible outputs when
the protocol is given inputs corresponding to simplexes in J is denoted P(n,τ,δ)(J ).

Lemma 3.24. Let J be a subcomplex of I. Then P(n,τ,δ)(J ) is a subcomplex of
P(n,τ,δ)(I).

Proof. It suffices to show that P(n,τ,δ)(J ) is a complex, since P(n,τ,δ)(J ) is clearly
a subset of P(n,τ,δ)(I). Consider the set of vectors J corresponding to the subcomplex
J as the set of input vectors to the protocol P(n,τ,δ). This set is prefix-closed since
J is a complex and hence is closed under containment. Hence the set P of output
vectors given input vectors in J is prefix-closed by Lemma 3.23. It follows that the
complex corresponding to P(n,τ,δ) with input complex J , denoted P(n,τ,δ)(J ), is by
construction a complex and hence a subcomplex of P(n,τ,δ)(I).

In the remainder of this paper, we will specify protocols in NIIS using both its
formal specification from section 2.6 as well as protocol complexes as described in this
section interchangeably. A set of inputs or outputs may thus be specified as either a
vector or a simplex, the vertexes of which are labeled with process ids and values.

3.4. Subdivisions. The standard chromatic subdivision was introduced by Her-
lihy and Shavit as part of their work on asynchronous computability [24, 25, 26]. It
is essentially a chromatic generalization of the standard barycentric subdivision from
classical algebraic topology [30, 34]. In this section, we will present a complete, formal
definition of the standard chromatic subdivision, together with a proof that it is, in the
topological sense, a chromatic subdivision of a given complex. As noted earlier, such
a proof also provides the necessary formal basis for the use of the standard chromatic
subdivision in [12, 26]. We note that our definition is somewhat different from that
of Herlihy and Shavit [24, 25, 26], as it is based on an explicit, inductive, geometric
construction. We also introduce the concept of a nonuniform chromatic subdivision, a
generalization of the standard chromatic subdivision, in which the different simplexes
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of a complex are not necessarily subdivided the same number of times. Informally,
a nonuniform chromatic subdivision of level 1 of a complex K, denoted by X̃ 1(K), is
constructed by choosing, for each n-simplex in K, a single face of the simplex (a face
can be of any dimension and can also be the whole simplex) to which we apply the
standard chromatic subdivision. We then induce the subdivision onto the rest of the
simplex. The subdivisions of any two intersecting simplexes must be such that they
agree on their shared face. Examples can be seen in Figure 13. Its right-hand side
shows a valid nonuniform chromatic subdivision of a complex where, for example,
the simplex (b, c, d)’s subdivision is the result of subdividing the 1-face (c, d) once
and then inducing this subdivision onto the rest of the simplex. The left-hand side
structure is not a legal subdivision, since the subdivision of the simplex (b, c, d) does
not agree with that of the simplex (a, b, d) on the shared face (b, d). This structure is
not even a simplicial complex, since it contains an object that is not a simplex (the
cross-hatched region in Figure 13). A kth level nonuniform chromatic subdivision of a

complex K, denoted by X̃ k(K), is generated by repeating this process k times, where
only simplexes in faces that were subdivided in round k−1 can be subdivided in phase
k. The complex on the right-hand side of Figure 13 is an example of a nonuniform
chromatic subdivision of level 2, since the face (a, d) is subdivided twice.

ab

c d e

original complex

b a

c d e

valid subdivision

c e

b a

d

invalid subdivision

Fig. 13. Valid and invalid nonuniform subdivisions.

Later in this section we will show that the nonuniform chromatic subdivisions
correspond in a natural way to the set of protocol complexes in the NIIS model of
computation. As an execution in the NIIS model unfolds, some processes continue
to step through IIS objects while others fail or decide. For a given input simplex,
each transition through an IIS object by a subset of processes will correspond to a
subdivision of the face corresponding to their respective vertexes. The other faces
of the simplex, ones corresponding to the remaining processes, are not subdivided
further, corresponding to the idea that the respective processes have either failed or
decided. In the input complex, input simplexes sharing the same face have compatible
subdivisions. As it turns out, each nonuniform standard chromatic subdivision is equal
to some NIIS protocol complex (up to isomorphism).

3.4.1. The standard chromatic subdivision. In this section we provide our
definition of the standard chromatic subdivision and prove that this definition does
indeed specify a chromatic subdivision of a given complex.

Let K be a pure, n-dimensional, chromatic geometric complex, where the colors
are the numbers in 0, . . . , n. Label each vertex �v in K with 〈i, vi〉, where i is the color
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(process id) of �v denoted also as id(�v), and vi is a value (denoted also as val(�v)) in
some set DI chosen such that no two vertexes in K have the same label. Note that
two adjacent vertexes may have the same values if they have different colors. We
define the standard chromatic subdivision of K by inductively defining a sequence
of subdivisions Lp of the skeletons of K, 0 ≤ p ≤ n, as follows. We begin with the
following auxiliary definition of the containment conditions among labeled vertexes.

Definition 3.25. For any set of simplexes T = (�t0, . . . , �tr) in a complex K with
labels 〈i, Si〉, where Si is the vertex scheme of some subset of simplexes in K, define
the containment conditions on the labels of T for any 1 ≤ i, j ≤ r, i �= j, as follows:

C1. id(�ti) �= id(�tj).
C2. id(�ti) ∈ ids(val(�ti)).
C3. val(�ti) is a face of val(�tj) or vice versa.
C4. id(�tj) ∈ ids(val(�ti)) ⇒ val(�tj) is a face of val(�ti).

Condition C1 simply states that the given simplex is chromatic; that is, vertexes
are colored with different ids. The remaining three conditions, which we will elaborate
on shortly, will be used to capture the relation among the values written and read by
a collection of writeread operations. In a nutshell, if one thinks of the id(�ti) as the
value written and the ids(val(�ti)) as the IS value returned, then conditions C2, C3,
and C4 correspond to the properties in Lemmas 2.14, 2.15, and 2.16.

We inductively define Lp. Let L0 = skel0(K). Inductively assume that Lp−1 is a
chromatic subdivision of the p−1-skeleton of K where each vertex �v in Lp−1 is labeled
〈i, Si〉, and where Si is the vertex scheme of some simplex in skelp−1(K). We further
assume that the labels 〈i, Si〉 are such that any T = (�t0, . . . , �tr), where r ≤ p− 1, is a
simplex in Lp−1 if and only if ids(T ) ⊆ ids(carrier(T )) and for all 1 ≤ i, j ≤ r, i �= j,
the labels of T meet the containment conditions of Definition 3.25.

Figure 14 describes a simplex (S0, S1, S2) whose L0 subdivision includes the black
vertexes. It has been subdivided by L1, causing each simplex in L0 to be split in
three by the two new vertexes in grey. Note that each of these pairs of vertexes has a
different id but the same value field which represents the vertex scheme of its carrier
L0 simplex. The reader can check that the labels of these vertexes meet the four
containment conditions of Definition 3.25. If we think of the value fields of vertexes
as representations of the return value of an IS writeread operation, then the four
conditions capture the nature of two process executions in the IIS model. For any
two processes, say, 0 and 1, there are three possible outcomes of passing through an
IIS object, represented by the three simplexes of the subdivided (〈0, 0〉, 〈1, 1〉) simplex:
0 reads only itself and 1 reads both, 1 reads only itself and 0 reads both, or they both
read each other.

Based on Lp−1 we can now complete the definition of Lp. Let S = (�s0, . . . , �sp) be
a p-simplex in K. The set Bd(S) is the polytope of a subcomplex of the p−1-skeleton

of K, and hence of a subcomplex of Lp−1, which we denote LBd(S). Let �b be the
barycenter of S, and let δ be some positive real number such that 0 < δ < 1/p. For

each 1 ≤ i ≤ p, define �mi to be the point (1 + δ)�b − δ�si. These points are called
the midpoints of S. Figure 14 shows the barycenter and midpoints of a 2-simplex.
We can now label �mi with 〈i, S〉, S here being the vertex scheme of the geometric
simplex S. Let MS be the set of midpoints of S. We define LS to be the union of
LBd(S) and all the faces of all chromatic p-simplexes T = (�t0, . . . , �tp), such that for all

1 ≤ i, j ≤ p : i �= j, �ti ∈ skel0(LBd(S)) ∪MS , and the four containment conditions of
Definition 3.25 hold. Lp is thus the complex consisting of the union of the complexes
LS , as S ranges over all the p-simplexes of K.
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S0 = <0,0>

S2 = <2,2>

<1,(0,1)>

<0,(0,1)>

2,(1,2)1,(1,2)

<2,(0,2)>

<0,(0,2)>

b
m0

S1 = <1,1>

Fig. 14. Example of the inductive step in the construction of the standard chromatic subdivision
(for the sake of brevity, labels of simplexes slightly abuse notation).

S0 = <0,0>

S2 = <2,2>

<1,(0,1)>

<0,(0,1)>

2,(1,2)1,(1,2)

<2,(0,2)>

<0,(0,2)>

M0=

S1 = <1,1>

<0,(0,1,2)>

M2=<2,(0,1,2)>M1=<1,(0,1,2)>

Fig. 15. Example of the standard chromatic subdivision of a 2-simplex.

Figure 15 describes a single subdivision Lp of a 2-simplex. Think of the value
fields of vertexes as representations of the return values of an IS writeread opera-
tion by any one of three processes 1, 2, or 3. The complex captures all the pos-
sible outputs of executions in the IIS model. Each 2-simplex represents one such
execution. A simplex with a face belonging to the boundary, such as the simplex
(〈1, 1〉, 〈2, (1, 2)〉, 〈0, (0, 1, 2)〉) in the lower right-hand corner of Figure 15, represents
an execution where process 1 executed a writeread reading of only itself, process 2
performed a writeread and read itself, and process 1, and finally process 0 performed
a writeread and read all three. The middle simplex (m0,m1,m2) corresponds to an
execution where all three processes were concurrent and read each other’s written
value. The three containment conditions C2, C3, and C4 on the labels of the ver-
texes guarantee the properties of the IIS model as they are captured in Lemmas 2.14,
2.15, and 2.16: writeread operations are by different processes, writeread i returns i’s
written value, the returned snapshot by one process must include the values returned
by the other, and finally, if i read j, then the value returned by j cannot contain an
input that i did not read.

We now prove that this structure makes sense mathematically, that is, that it is
in fact a subdivision of the p-skeleton of K.



482 GUNNAR HOEST AND NIR SHAVIT

Lemma 3.26. For all 0 ≤ p ≤ n, Lp is a chromatic subdivision of skelp(K).
Proof. We argue by induction. The case p = 0 is trivial. So suppose p > 0, and

suppose the claim holds for L0, . . . ,Lp−1. We will first prove that Lp is a chromatic
simplicial complex. To that end, we prove the following auxiliary lemma.

Lemma 3.27. For all p-simplexes S in K, LS is a chromatic complex.
Proof. We must show that LS is closed under containment and intersection. Let

U be a simplex in LS , and let V be a face of U , where 0 ≤ dim(V ) ≤ dim(U) < p. If
U is in LBd(S), then so is V , since LBd(S) is a complex (since Lp is a subdivision and
hence a complex by assumption). Hence V is in LS . Suppose U is not contained in
LBd(S). Then U must be the face of a p-simplex T as described above. By definition
of LS , all the faces of T , and hence all faces of U , must be in LS . It follows that LS

is closed under containment.
Let U, V be simplexes in LS , and suppose their intersection, denoted by W , is

nonempty. If U, V are both in LBd(S), it follows immediately that V r is in LBd(S)

and hence in LS . Similarly, if U is in LBd(S) but V is not, then W = U ∩ V =
U ∩ (V ∩ |LBd(S)|). Note that V ∩ |LBd(S)| is a simplex in LBd(S), since all the
containment conditions of Definition 3.25 are satisfied. Hence it follows that W is in
LBd(S), and hence in LS . If neither U nor V is in LBd(S), then since all faces of U
and V are in LS , then so is W . It follows that LS is closed under intersection, and
hence is a complex. That LS is chromatic follows from the fact that we include only
chromatic simplexes in LS in our construction (note that Lp−1 and hence LBd(S) are
chromatic by assumption).

Notice that for all distinct p-simplexes S, T we have that |LS | ∩ |LT | = S ∩ T ,
which is a simplex in skelp−1(K) and hence is the polytope of a subcomplex of Lp−1

and hence of both LS and LT . It follows that Lp is a simplicial complex [30]. It
remains to show that Lp is a chromatic subdivision. To this end, we must first show
that every simplex in Lp is contained in some simplex in skelp(K) and that every
simplex in skelp(K) is the union of finitely many simplexes in Lp. Now, it is clear
from our construction that any simplex Tq in Lp is contained in some simplex S in
skelp(K). Also, since for all simplexes S in skelp(K), the set of midpoints is finite,
and Lp−1 is a subdivision of skelp−1(K) by assumption, it follows that S is the union
of finitely many simplexes in Lp. Hence Lp is a subdivision. This subdivision is
chromatic, since Lp−1 is chromatic by assumption, since the colors used to color the
midpoints of any simplex S are exactly the colors used to color S, and since any
simplex in Lp including midpoints must satisfy the requirement that no two vertexes
have the same color (id).

We are now ready to give our definition of the standard chromatic subdivision of
a complex K.

Definition 3.28. The standard chromatic subdivision of K, denoted X (K), is
the complex Ln.

An example of a complex and its standard chromatic subdivision is given in
Figure 16. As one can see, the subdivision of a simplex as seen in Figure 15 is applied
to all the simplexes in the complex K. Applying the standard chromatic subdivision
k times, where k > 1, yields a subdivision X k(K) = X k−1(X (K)), which we call
the kth iterated standard chromatic subdivision [24, 25, 26]. Since the standard
chromatic subdivision of a complex is again a complex, and a chromatic subdivision
of a chromatic subdivision of K is itself a chromatic subdivision of K, X k(K) is a
chromatic subdivision of K. The number k is called the level of the subdivision.

The following is the vertex scheme representation of the standard chromatic sub-
division. This particularly compact formulation of the standard chromatic subdivision
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κ σ(κ)X

Fig. 16. Example of a two-dimensional complex and its standard chromatic subdivision.

is equivalent to the definition of Herlihy and Shavit [24, 25, 26].
Lemma 3.29. Let K be a pure, chromatic complex of dimension n. The vertex

scheme of X (K) is the closure under containment of the set of all n-simplexes of the
form S = (〈0, S0〉, . . . , 〈n, Sn〉), where for all i, Si is the vertex scheme of some face
of a simplex S in K, and the following conditions hold for all i �= j:

• i ∈ ids(Si).
• Si is a face of Sj or vice versa.
• If j ∈ ids(Si), then Sj is a face of Si.

Furthermore, any abstract complex L with a vertex scheme meeting the above criteria
has a realization as a geometric standard chromatic subdivision X (K) = L of the
complex K induced by all vertexes 〈i, Si〉 where dim(Si) = 0.

As before, the above three conditions have the exact same role as containment
conditions C2, C3, and C4 of Definition 3.25.

Proof. We argue that the vertex scheme of X (K) meets the above properties by
induction on k, where 0 ≤ k ≤ n. It is immediate that the simplexes of X (K) lying
in the subdivision L0 of skel0(K) are of this form (each such simplex is a vertex of K
labeled with a process id and a value), and the three requirements of the lemma are
all satisfied trivially.

Now suppose the claim holds for 0, . . . , k − 1. Consider a simplex T lying in the
subdivision Lk of skelk(K) and not in Lk−1. Then T = U 
 V , where U is a simplex
in Lk−1, and V is a simplex, each vertex of which is one of the midpoints in MS ,
where S = carrier(T ). By assumption, V is nontrivial, meaning that there is at least
one vertex in V . However, U may be trivial. For each vertex �v in V , val(�v) = S,
the vertex scheme of S. Hence, for i, j in ids(V ), since ids(V ) ⊆ ids(S), all the
containment conditions of Definition 3.25 are met. For i, j in ids(U), the conditions
are satisfied by induction. Now suppose i is in ids(U), while j is in ids(V ). Notice
that Si = carrier(U), and Sj = carrier(V ) = S.

The first condition follows by induction (for i) and since ids(V ) ⊆ ids(S) =
vals(V ) (for j). Since carrier(U) is a face of S, it follows that Si is a proper face of
S, and hence of Sj , which equals the vertex scheme of S, and so the second condition
is satisfied. It is clear that i is in ids(Sj), since Sj equals the vertex scheme of S, and
i is in ids(carrier(U)), which is a subset of ids(S). That Si is a face of Sj has already
been established. It follows that, since X (K) is chromatic, ids(U) ∩ ids(V ) = ∅,
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ids(Si) ⊆ ids(carrier(U)), and j is not in ids(carrier(U)), j cannot be in ids(Si). It
follows that the third condition is satisfied.

We now show that any abstract complex L with a vertex scheme meeting the above
criteria has a realization as a geometric standard chromatic subdivision X (K) = L
of the complex K induced by all vertexes with 0-dimensional labels, that is, 〈i, Si〉
where dim(Si) = 0. We argue by induction on k, 0 ≤ k ≤ n, the size of the set Si

in the label of any vertex 〈i, Si〉 in L. It is immediate that the vertexes with zero-
dimensional labels meet the criteria since the first condition of Lemma 3.29 implies
condition C2 and all other conditions of Definition 3.28 are satisfied trivially. These
vertexes form skel0(K).

Now suppose the claim holds for 0, . . . , k − 1. Consider the set of k-simplexes
Tj , all having vertexes 〈i, Si〉 out of the same subset of k ids in L. By definition
each simplex has at least one vertex whose label 〈i, Si〉 has dim(Si) = k. By the
induction hypothesis the realization of this set includes k complexes, each with a
proper subset using k − 1 of these ids, and each a geometric complex meeting the re-
quirements of the geometric standard chromatic subdivision. These complexes which
inductively form skelk−1 meet each other at k − 2-dimensional boundaries, and their
union (topological sum [30]) is a complex that is a k−1-dimensional sphere (for exam-
ple, three one-dimensional complexes, each a subdivision using two unique ids, form
a one-dimensional sphere, i.e., a circle). Let �b be the barycenter of this sphere, and
let vi, 0 ≤ i ≤ k, be the set of vertexes in the sphere with zero-dimensional labels.
Now, in the set of simplexes Tj there are by the definition of Lemma 3.29 k vertexes
with k-dimensional labels. If we choose each of them as a midpoint �mi at some dis-
tance (1 + δ)�b− δ�vi, from the barycenter �b where 0 ≤ δ ≤ 1/k, then the simplexes Tj

defined by the conditions of Lemma 3.29 form the interior of a simplex bounded by
the k− 1-dimensional sphere and fit the conditions of Lemma 3.26, implying that the
above realization of L is a geometric standard chromatic subdivision of the complex
K induced by the vertexes with zero-dimensional labels in L.

In the remainder of this paper, we will usually work with this description of the
standard chromatic subdivision, and we refer to it as X (K). Whenever the distinction
between the geometric and abstract representations of X (K) is significant, it will be
mentioned explicitly.

3.4.2. The nonuniform chromatic subdivision. In this section, we define the
nonuniform chromatic subdivision and prove that this definition does indeed specify
a chromatic subdivision of a given complex. We will give a recursive definition of
the nonuniform chromatic subdivision which we denote as X̃ k(K), k ≥ 0. We note

that unlike X k(K), X̃ k(K) is a procedure and not a function, and so X̃ k(X̃ (K)) �=
X̃ (X̃ k(K)).

Definition 3.30. Let K be a pure n-dimensional chromatic complex, where the
colors are the numbers in 0, . . . , n. A k-level nonuniform chromatic subdivision of a
complex K by X̃ k(K) for k ≥ 0 is defined as follows.

If dim(K) = 0, then for all k ≥ 0, X̃ k(K) is K itself. Now suppose dim(K) > 0.

Then X̃ 0(K) is K itself. For k > 0, X̃ k(K) is given by the following procedure:
Partition the vertexes of K into two disjoint sets, A and B, where A is nonempty.
Let A and B be the pure subcomplexes of K induced (respectively) by the vertexes

in A and the vertexes in B. The subdivision X̃ k(K) is the complex consisting of all

simplexes in B, all simplexes in X̃ k−1(X (A)), and all simplexes of the form S 
 T ,

where S is a simplex in X̃ k−1(X (A)), T is a simplex in B, and carrier(S) 
 T is a
simplex in K.
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We note that in the above definition, when we say induced subcomplexes A and
B, we mean that a simplex S in K is in A if the vertexes spanning S are all in A, and
it is in B if its spanning vertexes are all in B. Since K is pure, so are A and B.

Informally speaking, a nonuniform chromatic subdivision of level k is one in which
there is some simplex in K which is subdivided k times but no simplex that is sub-
divided more than k times. Note that the k-level standard chromatic subdivision is
a special case of the k-level nonuniform chromatic subdivision. Hence for all k ≥ 0,
there exists some nonuniform chromatic subdivision of level k.

Our definition of nonuniform chromatic subdivisions is designed to model protocol
complexes of the NIIS model. The main difference between IIS and NIIS protocols
is that in NIIS, some processes may decide after passing through fewer IS objects
than others. This is captured by the recursive definition that splits vertexes into two
groups A and B. At any level of the recursion, the vertexes in A can be thought of
as corresponding to processes that continue computing given their current local state,
while the vertexes in B correspond to processes that decide.

To better understand our construction, let us jump slightly ahead of ourselves
and consider how the protocol complex of any NIIS protocol with input complex I
in some subset of processes accesses one IS object and is captured by a nonuniform
chromatic subdivision X̃ 1(I) up to isomorphism.

Consider any vertex �v in I. It is labeled with 〈i, vi〉, where i is a process id and vi
represents an input value to process i. According to the specification of NIIS protocols
in section 2.6, process i will (provided it does not fail), upon having received the input
vi, execute either an inv writeread(v)i,1 action or a decide(S)i action, depending on
whether τ(local state) evaluates to true or not. In this way, the predicate map τ
induces a partition of the vertexes of I into two disjoint sets A and B. We now
construct complexes A and B as in Definition 3.30; that is, a simplex T in I is in A
if and only if all its vertexes are in A, and it is in B if and only if all its vertexes are
in B.

The vertexes in A correspond to processes that, based on their input values,
execute an inv writeread(v)i,1 action with the object IS1. The protocol complex on
A equals X (A) up to isomorphism. In any execution α of the protocol, some of
the participating, nonfailing processes decide on their input values (corresponding to
vertexes in B), while some decide on the snapshots they receive from the object IS1

(corresponding to vertexes in the protocol complex of A). It follows that the protocol
complex on I contains every simplex in B, every simplex in X (A), and every simplex
of the form S 
 T , where S is in X (A), T is in B, and carrier(S) 
 T is in I.

Note that the structure of the recursion of X̃ k is such that X̃ k−1(X (A)) is applied

and not X (X̃ k−1(A)). This guarantees that we model a situation in which the subset
of processes with nodes A in K go through the first IS object, and only a subset of
these can then go through the next IS object, and so on. It is never the case that a
node corresponding to a process that has stopped passing through earlier IS objects
is later subdivided.

An example of a level 1 nonuniform chromatic subdivision of a 2-complex K is
given in Figure 17, and an example of a level 2 nonuniform chromatic subdivision of a
slightly bigger 2-complex L is given in Figure 18. Note that in Figure 18 the complex
A for the second level of recursion is isomorphic to the complex A for the first level
of recursion in Figure 17.

An example of a chromatic subdivision that does not satisfy Definition 3.30 is
given in Figure 19. It is not a nonuniform chromatic subdivision because the vertex
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κ σ(κ)X
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Fig. 17. Example of level 1 nonuniform chromatic subdivision of a 2-complex.

L

X
~

(L)2

original complex

level 2 non−uniform 

chromatic subdivision

Fig. 18. Example of level 2 nonuniform chromatic subdivision of a 2-complex.

b is part of the B complex at the first level of recursion (that is, it is not part of the
subcomplex that is subdivided further), while in the next level of recursion, the edge
between d (which is in the A complex at the first level of recursion, and hence is to
be subdivided further) and b is subdivided, meaning that b is in the A complex at the
second level of recursion, which is clearly impossible, since the carrier of any vertex
in the A complex at the second level must be a simplex in the A complex at the first
level of recursion. Informally, this simply means that, if a vertex is not to be part
of the complex to be further subdivided at the first level, it cannot be part of the
complex to be further subdivided at the second level.

Lemma 3.31. Any nonuniform chromatic subdivision X̃ k(K) is a chromatic sub-
division of K.

Proof. We first note that X̃ k(K) is well defined, since each recursive step lowers

the level of subdivision by 1, and X̃ 0(K) is defined for all K. We will prove that

X̃ k(K) is a chromatic subdivision by induction on k.

The case where k = 0 is trivial, since X̃ 0(K) = K. Now suppose that k > 0, and

that for 0 ≤ l ≤ k − 1, and any complex K, X̃ l(K) is a chromatic subdivision of K.
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ab

c d e

original complex
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non−uniform chromatic
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ab

c d e

Fig. 19. Example of a subdivision that is not a nonuniform chromatic subdivision.

If B = ∅, the result follows by induction and by Lemma 3.26. So suppose that B is
nonempty.

We first show that X̃ k(K) is closed under containment. Let U be a simplex in

X̃ k(K), and let V be a face of U . If U is in B, then so is V , since B is a complex. Hence

V is in X̃ k(K). Similarly, if U is in X̃ k−1(X (A)), then so is V , since X̃ k−1(X (A))
is a complex by our induction hypothesis. Now suppose U = S 
 T for some S in
X̃ k−1(X (A)), T in B. Then S ∩ V is in X̃ k−1(X (A)), and T ∩ V is in B. It follows
that V = (S ∩ V ) 
 (T ∩ V ), where carrier(S ∩ V ) 
 (T ∩ V ) is a simplex in K. By

Definition 3.30, V is in X̃ k(K). It follows that X̃ k(K) is closed under containment.

Let U, V be simplexes in X̃ k(K), and let W be their intersection. If both U, V are
in B, then so is W , since B is closed under intersection. Similarly, if both U and V are
in X̃ k−1(X (A)), then so is W , since X̃ k−1(X (A)) is closed under intersection. If U is

in B and V is in X̃ k−1(X (A)), or vice versa, then U∩V = ∅, and so containment under
intersection holds vacuously. We now consider the case where either U or V is not
contained in either complex; that is, suppose U = S 
T for some S in X̃ k−1(X (A)), T

in B, and V = X
Y for some X in X̃ k−1(X (A)), Y in B. Now, U∩V = (S
T )∩(X
Y ),
and (S 
 T )∩ (X 
Y ) = (S ∩X) 
 (T ∩ Y ) [30]. If S ∩X = ∅ or T ∩ Y = ∅, then since
the remaining nonempty intersecting pair of subsets is completely in B or completely
in X̃ k−1(X (A)), it follows that W is also. So suppose now that S, T , X, Y , and the
intersections S∩X and Y ∩T are all nonempty. Since carrier(S∩X) is a face of both
carrier(S) and carrier(X), it follows that carrier(S ∩X) 
 T and carrier(S ∩X) 
 Y
are simplexes in K, and so is their intersection carrier(S ∩ X) 
 (T ∩ Y ), since K is

a complex. It follows that W is in X̃ k(K). This concludes the proof that X̃ k(K) is a
complex. That it is a chromatic complex follows directly from Lemma 3.26.

We now prove that X̃ k(K) is a chromatic subdivision. Given is a simplex U in

X̃ k(K). If U is in B, then U is clearly contained in a simplex in K, namely, itself, and

the colors of U are contained in the set of colors of its carrier. If U is in X̃ k−1(X (A)),
it follows by induction and Lemma 3.26 that U is contained in some some simplex
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carrier(U) in A, and hence in K, and that the colors of U are a subset of the colors of
its carrier. Now suppose U = S 
T , where carrier(S)
T is in K. Then U is contained
in carrier(S)
T , and the colors of U are a subset of the colors of carrier(S)
T . Now
consider any simplex U in K. We can decompose it into two disjoint faces S and T ,
such that S ∈ A and T ∈ B. The simplex S is subdivided according to X̃ k−1(X (A)),
which by induction and Lemma 3.26 consists of finitely many simplexes. The simplex
T is not subdivided at all. It follows that the subdivision X̃ k(K) subdivides U into

finitely many simplexes (those in X̃ k−1(X (S)) 
 T ). This completes the proof that

X̃ k(K) is a chromatic subdivision.

A nonuniform subdivision X̃ k(K) of a complex induces a nonuniform chromatic
subdivision of any subcomplex L of K. The level of the induced subdivision of L may
vary from subcomplex to subcomplex. We slightly abuse our notation to be able to
define the effect of X̃ k(K) on the restricted subcomplex L.

Definition 3.32. Let K be a chromatic complex, let L be a subcomplex or simplex
of K, and let X̃ k(K) be a nonuniform iterated chromatic subdivision of K. We denote

its restriction to simplexes in L by X̃ k(L/K). The level of subdivision kL is the

maximal level of subdivision of X̃ k(L/K).
It is clear that for any subcomplex or simplex L of K, kL ≤ k.

4. The asynchronous complexity theorem. The strength and usefulness of
the NIIS model of computation comes from the fact that each of its associated protocol
complexes has a nice, recursive structure. In fact, it turns out that any protocol
complex of NIIS is equal to some nonuniform iterated chromatic subdivision of the
input complex, and vice versa. This is the essence of our main theorem, which we
state and prove in this section.

The level of subdivision necessary for the existence of a simplicial map from the
input to the output complex of a decision task that agrees with the task specifica-
tion can be interpreted as a topological measure of the task’s time complexity. The
following definition introduces the concept of mappability, which is a useful construct
for reasoning about this topological measure.

Definition 4.1. Given a decision task D = 〈I,O,Γ〉 and a nonnegative integer

k, we say that X̃ k(I) is a mappable subdivision of the input complex and k is a
mappable level of subdivision if there exists some chromatic simplicial map μ from
X̃ k(I) to O such that for all T in X̃ k(I), μ(T ) ∈ Γ(carrier(T )).

This definition extends naturally to individual simplexes as the map induces dif-
ferent levels of subdivision on the individual simplexes in accordance with the idea
that, in order to solve a decision task, some processes may have to do more computa-
tional work than others, and some inputs may require more computation than others.
We can now state our main theorem.

Theorem 4.2 (time complexity). A decision task D = 〈I,O,Γ〉 has a wait-free
solution protocol in the NIIS model with worst case time complexity kS on inputs
S ∈ I if and only if there is a mappable nonuniform iterated chromatic subdivision
X̃ k(I) with level kS on S.

Keeping in style with Herlihy and Shavit [24, 25, 26], the theorem simply states
that solvability of a decision task D = 〈I,O,Γ〉 in the NIIS model is equivalent
to the existence of a chromatic simplicial map μ from some nonuniform chromatic
subdivision X̃ k(I) to O that agrees with the task specification Γ; that is, for all T

in X̃ k(I), μ(Tm) ∈ Γ(carrier(T )). The minimum possible level kS is a lower bound
on the worst case time complexity of solving this task with inputs in S in the NIIS
model.
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As noted in the introduction, the theorem directly implies Proposition 3.1 of [12].
In [12], Borowsky and Gafni provided a simulation of atomic snapshot memory from
IIS memory and showed that, based on this simulation, if one is given a constructive
proof of an asynchronous computability theorem for the IIS model (which they called
Proposition 3.1), it will imply one for the general read-write model. The proof we are
about to present provides a constructive proof of computability for the NIIS model,
and since IIS is a subset of NIIS, it provides the first known proof of Proposition 3.1
of [12].

Our theorem immediately provides a solution algorithm for a task given the sub-
division and simplicial mapping. Simply run the protocol of Figure 6. Since each
process can locally store the subdivision and mapping, the termination predicate map
τ just needs to test if the local state variable is equal to some node v in the subdivision
and if so return μ(v).

In the remainder of this section, we will give the proof of our asynchronous time
complexity theorem. We begin by proving a lemma about the protocol complex of a
protocol in the IIS model with only one available IS object.

Lemma 4.3. Let A be an input complex in the IIS model with a single IS object.
The corresponding protocol complex is isomorphic to X (A).

Proof. We will construct an isomorphism Ψ from the abstract complex P(n,τ,δ)(A)
to the abstract complex (vertex scheme) X (A), as specified by Lemma 3.29. Let
�v = 〈i, Si〉 be any vertex in P(n,τ,δ)(A). Then Ψ(�v) = 〈i, Ti〉, where Ti is the simplex in
A such that for all j, Si[j] = vj if and only if 〈j, vj〉 ∈ Ti. Notice that this isomorphism
is chromatic; that is, the id of a vertex equals the id of its image under Ψ.

By Lemma 3.29, we must show that a set of vertexes �v0, . . . , �vm in skel0(P(n,τ,δ)(A)),
where m ≤ n, forms a simplex in P(n,τ,δ)(A) if and only if the set of vertexes Ψ(�v0),
. . . ,Ψ(�vm) in skel0(X (A)) forms a simplex in X (A). Suppose without loss of gener-
ality that for all i, where 0 ≤ i ≤ m, �vi = 〈i, Si〉, where Si ∈ ϑ(DI), and DI is the
input data type (that is, the id of the ith vertex is i).

Suppose that the vertexes �v0, . . . , �vm do form a simplex V in P(n,τ,δ)(A). This
output simplex corresponds to some execution α in the one-shot IS model, with cor-
responding input simplex U in A. Each vertex in U is labeled with a process id i and
an input value vi ∈ DI . Notice that dim(V ) ≤ dim(U), since some participating pro-
cesses may not decide, that is, they may fail (execute a fail i action) before executing
a decide action.

From Lemma 2.14, we have that, for any vertex �vi = 〈i, Si〉 in V , Si[i] = vi. This
implies that 〈i, vi〉 is in Ti. From Lemma 2.15, we have that, for any two vertexes
�vi = 〈i, Si〉 and �vj = 〈j, Sj〉 in V , either Si is a prefix of Sj or vice versa. Suppose
without loss of generality that Sj is a prefix of Si. Then for all x, where 0 ≤ x ≤ n,
if Si[x] = ⊥, then Sj [x] = ⊥, and if Sj [x] �= ⊥, then Si[x] = Sj [x]. It follows that if
〈x, vx〉 is in Tj , it is also in Ti, and if x is not in ids(Ti), then it is also not in ids(Tj).
This implies that Tj is a face of Ti. From Lemma 2.16, it follows that, if Si[j] = vj ,
then Sj is a prefix of Si. This means that, if 〈j, vj〉 is in Ti, then Tj is a face of Ti.

Now suppose that the vertexes Ψ(�v0), . . . ,Ψ(�vm) in skel0(X (A)) form a simplex
V in X (A). We will construct an execution α with corresponding output simplex U
such that Ψ(U) = V . Let W = carrier(V ). Partition the set ids(V ) into a collection
of nonempty concurrency classes of process ids, C1, . . . , Ck for some k ≥ 0, such that
any two process indexes i, j are in the same concurrency class if and only if Ti = Tj .

We can define a total order ≺ on this collection of concurrency classes as follows.
Let Cx, Cy be distinct concurrency classes. Then Cx ∩ Cy = ∅. Since both classes are
nonempty, we can pick an element from each, say, i ∈ Cx and j ∈ Cy. By assumption,



490 GUNNAR HOEST AND NIR SHAVIT

Ti �= Tj . Then by Lemma 3.29, either Ti is a face of Tj or Tj is a face of Ti. In the
first case, let Cx ≺ Cy, and in the second case, let Cy ≺ Cx. Thus ≺ is a total order of
the concurrency classes.

Now use this ordered partition of the participating processes in α to define a
second partition C′

1, . . . , C′
k of the set ids(W ) as follows. For each concurrency class

C of ids(V ), define a concurrency class C′ of ids(W ) as follows. C′ is the union of C
and all i ∈ ids(W )− ids(V ) such that C is the least concurrency class (as determined
by ≺) such that for all j ∈ C, i ∈ Tj . Note that this is a partition of all ids(W )
since W = carrier(V ). This partition gives us a new collection of concurrency classes
C′
1, . . . , C′

k.
We are now ready to construct α. First position updateC′

i
actions in increas-

ing order according to the ≺ ordering. For each concurrency class C′
x, position

the inv writeread(v)i,1 actions of all i such that i ∈ C′
x immediately before the

updateC′
x

action (their internal ordering does not matter). Similarly, position the
ret writeread(v)i,1 and decide(S)i actions of all i such that i ∈ Cx and i ∈ ids(V )
immediately after the updateC′

x
action, but before the inv writeread(v)i,1 actions as-

sociated with the next concurrency class C′
y. Processes i whose indexes are not in

ids(W ) do not participate and hence take no steps in α. Processes i whose indexes
are in some concurrency class C′

x but not in ids(V ) do not execute a ret writeread(v)i,1
action; instead, they execute a fail i action after the updateC′

x
action, but before the

inv writeread(v)i,1 actions associated with the next concurrency class C′
y. Recall that

earlier concurrency classes could not have included i since by construction C′
x is the

least class including i. By construction, each deciding process i decides Si in α, as
required. The lemma follows.

We now consider the protocol complex of a protocol in NIIS with time complex-
ity 1 on the input complex I; that is, some processes access a single IS object, while
some decide based only on their own inputs. We will show that, if δ is trivial, which
we denote by δ = 1, then this protocol complex is indeed a nonuniform chromatic
subdivision.

Lemma 4.4. For all k ≥ 0, the protocol complex P(n,τ,1)(I) of any protocol in
the NIIS model, with time complexity k on inputs in I, is equal to some nonuniform
chromatic subdivision X̃ k(I) up to isomorphism.

Proof. We use induction on the time complexity k. The result holds for k = 0
trivially. Now suppose k > 0 and that the result holds for 1, . . . , k − 1. Consider the
protocol complex P(n,τ,1)(I) of any protocol in the NIIS model with time complexity
k on inputs in I.

Any vertex �v in I is labeled with 〈i, vi〉, where i is a process id and vi represents an
input value to process i. According to the specification of NIIS protocols in section 2.6,
any nonfailing process i will, upon having received the input vi, execute either an
inv writeread(v)i,1 action or a decide(S)i action, depending on whether τ(local state)
evaluates to true or not. In this way, the predicate map τ induces a partition of the
vertexes of I into two disjoint sets A and B. Since the time complexity of P(n,τ,1) on
inputs in I is k, the set A must be nonempty. We now construct complexes A and B
as in Definition 3.30; that is, a simplex T in I is in A if and only if all its vertexes
are in A, and it is in B if and only if all its vertexes are in B.

The vertexes in A correspond to processes that, based on their input values, ex-
ecute an inv writeread(v)i,1 action with the object IS1. By Lemma 4.3, the output
protocol complex on inputs in A after the first IS access equals X (A) up to isomor-
phism. The final protocol complex P(n,τ,1)(A) is given by applying X (A) as an input
complex to the protocol. Since the complexity of the protocol on inputs in I, and hence
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on inputs in A, is k, the complexity of the protocol on inputs in X (A) must be k− 1.
It follows by induction that the protocol complex P(n,τ,1)(A) equals some nonuniform

chromatic subdivision X̃ k−1(X (A)) of X (A) up to isomorphism. A simplex U is in
P(n,τ,1)(I) if and only if it corresponds to a valid set of outputs of an execution α of
the protocol. In any execution α of the protocol, some of the participating, nonfailing
processes decide on their input values (corresponding to vertexes in B), while some
decide on the returned snapshots they receive from some IS object. It follows that
P(n,τ,1)(I) contains any simplex in B, any simplex in P(n,τ,1)(A) = X̃ k−1(X (A)), and

any simplex of the form S
T , where S is in X̃ k−1(X (A)), T is in B, and carrier(S)
T
is in I. It follows from Definition 3.30 that the protocol complex P(n,τ,1)(I) equals

some nonuniform chromatic subdivision X̃ k(I) of I up to isomorphism.
We must also prove that, for any mappable nonuniform chromatic subdivision

X̃ k(I) of an input complex I, there is a matching protocol P(n,τ,1) in the NIIS model.

Lemma 4.5. For any mappable nonuniform chromatic subdivision X̃ k(I) of an
input complex I, there is a matching protocol P(n,τ,1) in the NIIS model such that the

protocol complex P(n,τ,1)(I) = X̃ k(I) up to isomorphism.

Proof. Given is a vertex �v in I. The definition of the subdivision X̃ k(I) induces a

sequence of nonuniform chromatic subdivisions I, X̃ 1(I), . . . , X̃ k(I) and correspond-
ing sequences A0, . . . ,Ak−1 and B0, . . . ,Bk−1 of complexes, the former sequence spec-
ifying the subcomplex to be subdivided further at each level of recursion.

In order to construct a protocol for n+ 1 processes, we must specify the function
τ :

⋃k
l=0 ϑ

l(D) → {true, false} and the decision map δ :
⋃k

l=0 ϑ
l(D) → DO. We

specify τ to be true for all values v such that there is a vertex �v in one of the complexes
A0, . . . ,Ak−1 with val(�v) = v. For all other values v, τ evaluates to false. This
definition is well formed, since for all p, where 0 ≤ p ≤ k, it follows from Definitions
3.28 and 3.30 that there are no two vertexes in X̃ p(I) with the same process-value
label pair, and for all p, q, where 0 ≤ p, q ≤ k and p �= q, Bp and Bq have no vertexes
with common labels (process id and value label). This concludes the proof.

We now give the proof of Theorem 4.2.
Proof of Theorem 4.2. Let D = 〈I,O,Γ〉 be a decision task. Lemma 4.4 states

that any protocol complex P(n,τ,1)(I), with worst case complexity kS on input S, cor-

responds to a nonuniform chromatic subdivision X̃ k(In) with level kS on S. Suppose
now the decision map δ is not trivial. Then, if P(n,τ,δ) solves D = 〈I,O,Γ〉, μ = δ is

a simplicial map from X̃ k(In) to O that is in correspondence with Γ, so X̃ k(In) is
mappable.

Lemma 4.5 states that any mappable nonuniform chromatic subdivision X̃ k(In)
with level kS on S is equal to the protocol complex P(n,τ,1)(I) (where δ is trivial) of
a protocol in the NIIS model with worst case complexity kS on input S. If there is a
simplicial map μ from X̃ k(In) to O that is consistent with Γ, then by setting δ = μ,
we have a protocol P(n,τ,δ) solving D = 〈I,O,Γ〉 with complexity kS on input S. The
theorem follows.

5. Approximate Agreement. As an application of Theorem 4.2, we analyze
the well-known Approximate Agreement [15] task, defined as follows: each process
i ∈ {0, . . . , n} has an input xi taken from some finite subset of the reals and chooses a
unique output yi such that, for some predetermined ε ≥ 0, (1) maxi yi − mini yi < ε,
and (2) for all i, yi ∈ [mini xi,maxi xi].

This problem, which at first glance may seem similar to Consensus, is in fact quite
different and is solvable in the read-write memory model. (If ε were 0 this problem



492 GUNNAR HOEST AND NIR SHAVIT

would be equivalent to Consensus and hence not solvable.) Aspnes and Herlihy [2]
proved a lower bound on Approximate Agreement in the read-write memory model
that implies a worst case time complexity of

⌈
log3

maxi xi−mini xi

ε

⌉
and an upper bound

of
⌈
log2

maxi xi−mini xi

ε

⌉
in the NIIS model. We will show that this log2 versus log3

gap is not simply a technical fluke.
Definition 5.1. Let V be some finite subsequence of values from R, at most ε

apart from its successor. The finite n+1-process Approximate Agreement task is the
tuple D = 〈I,O, γ〉:

• I = {[x0, . . . , xn] | xi ∈ V ∪ {⊥}}.
• O = {[y0, . . . , yn] | yi ∈ V ∪ {⊥}, (yi, yj �= ⊥) ⇒ |yi − yj | ≤ ε}.
• γ = {(�I, �O) | �O[i] ∈ [mini

�I[i],maxi
�I[i]] ∪ {⊥}}.

Define an input vector �I to be nontrivial if the maxi xi and mini xi are at least ε
apart and each belongs to at least one other disjoint input vector. We can now state
the complexity bounds for the Approximate Agreement problem.

Theorem 5.2. Given ε > 0, there is a protocol P(n,τ,δ) solving Approximate

Agreement for any nontrivial input vector �I with complexity
⌈
logd

maxi
�I[i]−mini

�I[i]
ε

⌉
,

where d = 3 if the size of the participating set of �I is 2, and d = 2 if the size of the
participating set of �I is 3 or more. Moreover, this protocol is optimal for �I.

We note that in many cases, for trivial input vectors one can “statically” predefine
the outputs for each input value so that no access to an IS object is necessary.

Our proof structure will be as follows. The upper bound will follow by showing
a subdivision and simplicial map and then applying Theorem 4.2. The lower bound
proof will follow from a geometric observation regarding the structure of any NIIS
subdivided complex for approximate agreement.

We first restate the description of the Approximate Agreement task using our
topological framework.

• I is the closure under containment of the collection of all simplexes of the
form (〈0, x0〉, . . . , 〈n, xn〉).

• O is the closure under containment of the collection of all simplexes of the
form (〈0, y0〉, . . . , 〈n, yn〉), where for all i, j, yi ∈ V and |yi − yj | ≤ ε.

• Γ = {(S, T ) | vals(T ) ⊆ [min vals(S),max vals(S)]}.
Note that the size of the participating set for the input vector corresponding to

a simplex S in I equals dim(S) + 1.
To understand our proof approach, consider Figure 20, which shows the subdivi-

sions induced by a three process protocol. In [2], the lower bound for any n+1-process
algorithm is derived from a “bad” execution in which only the two processes P and
Q with inputs farthest apart participate. Cast in our model, processes P and Q have
inputs p and q (the corners of the input simplex in Figure 20). Because there are
other simplexes adjacent to the input 1-simplex (〈P, p〉, 〈Q, q〉) that share only the
input value p and, respectively, q, μ must map 〈P, p〉 to output value p and 〈Q, q〉 to
output value q. An execution in the NIIS model corresponds to a sequence of chro-
matic subdivisions of the edge (〈P, p〉, 〈Q, q〉) (a path of 1-simplexes) from which there
is a simplicial map to a path in the output complex. In the end of the execution, the
vertexes of each 1-simplex along this edge must be mapped to an output 1-simplex
with values less than ε apart. Each subdivision, corresponding to an NIIS execution
step, introduces two new vertexes and splits the edge (〈P, p〉, 〈Q, q〉) in three. This
implies that reaching a distance of ε or less along the path of simplexes in the sub-
division of (〈P, p〉, 〈Q, q〉) requires at least log3(distance(p, q)/ε). This is the bound
of [2].
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Fig. 20. Simplex subdivided by an Approximate Agreement protocol.

However, if one considers executions in which three processes participate, this
proof does not work. Consider the first round of subdivision of the simplex for three
processors. There is a path (a sequence of adjoining 1-simplexes) between the two
endpoints P and Q, along which only a single vertex is introduced by the subdivision.
This is the path of length two through the central vertex marked R in Figure 20
(it is not marked since its simplexes are further subdivided in the figure). So the
maximum distance is cut by at most a half in the first subdivision. In the next
step of subdivision, even though each of the original 1-simplexes (P,R) and (R,Q) of

X̃ (S) can be subdivided into three simplexes, there is still a path (highlighted in the
figure) from P to Q along which only a single node was added connecting P and R
(and, respectively, R and Q). In general, after k subdivisions, there is always a path
that was divided only 2k times—hence the lower bound of log2(distance(p, q)/ε). Our
upper bounds follow directly from Theorem 4.2 by specifying the proper subdivision
and map. The thing to note about the proof we will present for Theorem 5.2 is that
it will not involve any mention of the actual executions; all we need to do is argue
about the topology of the inputs and outputs and then apply Theorem 4.2.

Proof. Theorem 5.2 states that, given ε > 0, there is a protocol P(n,τ,δ) solving

Approximate Agreement with complexity
⌈
logd

max vals(S)−min vals(S)
ε

⌉
on any input

simplex S, where d = 3 if dim(S) = 1 and d = 2 if dim(S) ≥ 1. Moreover, this
protocol is optimal on each input simplex S.

We first establish the lower bound. Let P(n,τ,δ) be a protocol that solves Approxi-
mate Agreement with worst case complexity kS on S, where S is any simplex of dimen-
sion n ≥ dim(S) > 0. Let D(S) = max�v,�u∈S(val(�v)− val(�u)) and let D(X̃ k(I)) equal
maxS∈X̃k(I) D(S). Then Theorem 4.2 states that there is some mappable nonuniform

chromatic subdivision X̃ k(I), with level kS on S. We will show that kS ≥
⌈
logd

D(S)
ε

⌉
.

The proof uses the following lemma.
Lemma 5.3. Let l ≤ k. Label the vertexes of X̃ l(S/I) with real numbers in a

way that agrees with the initial value labeling of S, and let lS be the level of X̃ l(S/I).
Then

D(X̃ l(S/I)) ≥ D(S)

dlS
.

Proof. Suppose without loss of generality that l = lS . We first give the proof
for the case of two participating processes and d = 3. By definition of D(S), there
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is a 1-simplex U = ( �u0, �u1) in S such that D(U) = D(S). The complex X̃ l(U)
contains at most 3l 1-simplexes, denoted U1, . . . , UM , where M ≤ 3l. These form a
continuous path from �u0 to �u1, the endpoints of which are labeled with val(�u0) and
val(�u1), respectively. So the best we can do is cut D(U) into 3l pieces. The trian-

gle inequality tells us that D(U) ≤
∑M

i=1 D(Ui) ≤ M maxi D(Ui) ≤ 3l maxi D(Ui).

Hence maxi D(Ui) ≥ D(U)/3l = D(S)/3l. The lemma follows, since maxi D(Ui) ≤
D(X̃ l(S/I)).

We now prove the case where the size of the participating set is greater than 2
(and hence dim(S) is greater than 1) and d = 2. We argue by induction on l. The
case l = 0 is trivial. Now suppose the claim is true for l − 1. By definition of
D(X̃ l−1(S/I)), there is a 1-simplex U = ( �u0, �u1) in X̃ l−1(S/I) such that D(U) =

D(X̃ l−1(S/I)). U is a face of some 2-simplex U ′ = ( �u0, �u1, �u2). Suppose first that
the next level of nonuniform chromatic subdivision does not subdivide U completely.
Then there is some 1-simplex T in the level l nonuniform subdivision of U ′ with
D(T ) ≥ D(U)/2. Since D(U) = D(X̃ l−1(S/I)) and D(T ) ≤ D(X̃ l(S/I)), the lemma
follows by induction. Suppose instead that the next level of subdivision does subdivide
U ′ completely. Then the level l subdivision has an internal vertex �m2, colored with
id(�u2), and two neighboring 1-simplexes T0 = (�u0, �m2) and T1 = (�m2, �u1). The
triangle inequality then tells us that D(U) ≤ D(T0) + D(T1) ≤ 2 maxi D(Ti), where

i ∈ {0, 1}. It follows that D(X̃ l(S/I)) ≥ D(X̃ l−1(S/I))/2. The lemma follows by
induction.

Suppose now that there exists a chromatic simplicial map μ : X̃ k(I) → O such

that, for all simplexes T in X̃ k(I), μ(T ) ∈ Γ(carrier(T )). We can associate this map

with a labeling of the vertexes in X̃ k(I) as follows. Label each vertex �v in X̃ k(I) with
val(μ(�v)). This labeling agrees with the input value labeling of I, since for any vertex
�v, the task specification requires that for any simplex S0 that contains �v, it must
be the case that μ(�v) is in the range of S0. Based on the nontriviality assumption,
choose two neighboring simplexes S0 and S1 containing �v such that the intersection
of the ranges of S0 and S1 is val(�v). It follows that μ(�v) = val(�v). Now let T be any

simplex in X̃ k(I). By definition of μ, μ(T ) is a simplex in O, and hence D(μ(T )) < ε.

It follows that D(T ) = D(μ(T )) < ε and hence that D(X̃ k(I)) < ε. Clearly, for any

input simplex S, it follows that the labels on X̃ k(S/I) have range less than ε. The

previous lemma then states that ε > D(X̃ k(S/I)) ≥ D(S)

dkS
. We conclude that

kS ≥
⌈
logd

D(S)

ε

⌉
.

To prove the upper bound, we construct a mappable nonuniform chromatic subdi-

vision X̃ k(I) of the input complex with level kS =
⌈
logd

D(S)
ε

⌉
on each input simplex

S, according to Definition 3.30. As argued above, the requirement that the subdi-
vision be mappable is equivalent to saying that there is a vertex labeling of X̃ k(I)
that agrees with the initial value labeling of I with the additional property that
D(X̃ k(I)) < ε.

Apply X̃ k to I where for every input n-simplex S ∈ I, and construct X̃ k(S/I)

by repeatedly applying the procedure X̃ k (as specified by Definition 3.30) for each
level of subdivision l ≤ k. For each level, split the vertexes into two sets so that a
vertex �v is in A if there is another adjacent vertex �u such that val(�v) − val(�u) > ε;
otherwise it is in B. Before applying the next level of subdivision to X (A), we relabel
all new vertexes in X (A) (those not in skel0(A)) as follows: If the dimension of A is 1,
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label the new vertexes in X (A) with (2 min val(A)+max val(A))/3 and (min val(A)+
2 max val(A))/3, respectively. This cuts the distance between the vertexes with values
apart in 3. Otherwise, label the new vertexes with (min val(A)+max val(A))/2. This
cuts the distance between the values furthest apart in 2.

It is clear from this construction that, at each level of recursion, for all simplexes
S in I we have that, if D(X̃ l(S)) > ε, then either D(X̃ l+1(S)) = D(X̃ l(S))/d or

D(X̃ l+1(S)) < ε. It follows that the level kS of X̃ k(I) on S is
⌈
logd

D(S)
ε

⌉
, where

d = 3 if dim(S) = 1, and d = 2 if dim(S) > 1. We conclude from Theorem 4.2 that
there is a wait-free protocol that solves Approximate Agreement with worst case time

complexity
⌈
logd

D(S)
ε

⌉
on input S, where d = 3 for two participating processes and

d = 2 for three or more.

6. Conclusion and directions for further research. This paper extended
the topological framework of Herlihy and Shavit [24, 25, 26] to obtain a complete
characterization of the complexity of solving decision tasks in the NIIS model, a gen-
eralization of Borowsky and Gafni’s IIS model [12]. The main difference between
the proof of Theorem 4.2 and Herlihy and Shavit’s proof of their asynchronous com-
putability theorem is that our proof rests on the ability to explicitly construct a
protocol complex for the NIIS model and to show that this complex is indeed equal to
a nonuniform chromatic subdivision. Since nonuniform chromatic subdivisions have
a recursive structure, they are well suited for arguing about complexity; the level of
recursion of a mappable nonuniform chromatic subdivision of a task’s input complex
is the complexity of the corresponding wait-free NIIS solution protocol.

We have applied Theorem 4.2 to tighten the upper and lower bounds on solving
the Approximate Agreement task implied by the work of Aspnes and Herlihy [2]. The
intuition behind this result as well as its formal proof are based on simple, geometric,
and topological arguments about the level of nonuniform chromatic subdivision that
is necessary and sufficient for mappability. We believe this is an excellent example
of how Theorem 4.2 exposes subtle properties of protocols in asynchronous shared
memory systems and how it allows us to reason formally about them without having
to argue directly about concurrent executions.

We believe it is possible to extend our existing topological framework to develop a
characterization of work complexity, the total number of steps taken by all processors
in a computation. As was the case for time complexity, a mappable nonuniform
chromatic subdivision of an input complex does contain the information necessary to
describe work complexity, and the question is really how to quantify and measure it
using a simple topological invariant.

Another possible direction is to try to extend the framework to other models
of computation, such as the atomic snapshot model, the single-writer multireader
model, or even the multiwriter multireader model. Our choice of the NIIS model was
motivated by the fact that its protocol complex is highly structured and corresponds
to a nonuniform chromatic subdivision, as the proof of Theorem 4.2 shows. Other,
less restricted, models, such as atomic snapshots, do not have this property, and so in
order to prove a result similar to Theorem 4.2 in any of these models, one would need
to identify some invariant, recursive substructure that one can model topologically
with reasonable ease.

An alternative approach would be to use simulation techniques to relate the NIIS
model to other models of computation, thereby obtaining an indirect characteriza-
tion of the complexity of solving decision tasks in these models. Currently, however,
the best known wait-free simulation of a single IS object using atomic snapshots re-
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quires O(N) accesses to shared memory by each process, where N is the number of
processes. There is thus an important open problem in finding an optimal, wait-free
implementation of NIIS using atomic snapshot, and vice versa.
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