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Counting networks are concurrent data structures that serve as building blocks in the design of
highly scalable concurrent data structures in a way that eliminates sequential bottlenecks and
contention� Linearizable counting networks assure that the order of the values returned by the
network re�ects the real�time order in which they were requested� Linearizability is an impor�
tant consistency condition for concurrent data structures� as it simpli�es proofs and enhances
compositionality�

Though most counting networks are not linearizable� this paper presents a precise characteriza�
tion of the timing conditions under which uniform non�linearizable networks exhibit linearizable
behavior� Uniformity is a common structuring property of almost all published counting networks�
a uniform network is made of �balancers	 and �wires	 so that each balancer lies on some path
from inputs to outputs� and all paths from inputs to outputs have equal lengths� Our results
include the following simple condition� if the time it takes a slow token to traverse a �wire	 or
�balancer	 is no more than twice that of a fast token� the network is linearizable� Surprisingly� the
timing measure in this condition is local to the individual �wires	 and �balancers	 of the network�
that is� it is independent of network depth�

We use our timing measure to mathematically explain our empirical �ndings� that in a variety
of highly concurrent execution scenarios tested on a simulated shared memorymultiprocessor� the
Bitonic counting networks of Aspnes� Herlihy� and Shavit exhibit completely linearizable behavior�
and when linearizability is violated� the percentage of violations is relatively small�

Herlihy� Shavit� and Waarts have shown that counting networks that achieve linearizability
under all circumstances must pay the penalty of linear time latency� Our results suggest that for
systems in which timing anomalies occur infrequently� such linear delays may be an unnecessary
burden on applications that are willing to incur occasional non�linearizability�
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�� INTRODUCTION

Counting networks ��� are a class of highly scalable structures used for concurrent
counting� Such networks allow the design of concurrent data structures in a way
that eliminates sequential bottlenecks and contention� Unlike queue�locks ���� and
combining trees ��	� which are based on a single counter location handing out
indices
 counting networks hand out indices from a collection of counter locations�
To guarantee that indices handed out by the separate counters are not erroneously
�duplicated� or �omitted
� one adds a special network coordination structure to be
traversed by processes before accessing the counters�

Counting networks ��� are constructed from simple computing elements called
balancers 
see Figure ��� Tokens arrive on the balancer�s input wires and are output
on its output wires� Intuitively one may think of a balancer as a toggle mechanism
that
 given a stream of input tokens
 repeatedly sends one token to the left output
wire and one to the right
 e�ectively balancing the number of tokens that have been
output� In order to form a counting network
 balancers are connected to one another
by wires in an acyclic fashion
 in the same way comparators are connected to form
a sorting network ����� However
 unlike in sorting networks
 counting networks
are asynchronous in nature
 that is
 tokens arrive at the network�s input wires
at arbitrary times
 and traverse the network with di�ering pace� Nevertheless
 if
the balancers are connected correctly
 a network having w consecutively numbered
output wires will move input tokens to output wires in increasing order modulo w�
Networks of balancers having this property can easily be adapted to count the total
number of tokens that pass through them� Counting is done by adding a �local
counter� to each output wire i
 so that tokens coming out of that wire are assigned
numbers i� i� w� i� �w
 and so on�

On a shared memory multiprocessor
 counting networks are implemented as data
structures in which balancers are represented as records and wires as pointers among
them� Tokens are �shepherded� by processors that traverse this pointer�based data
structure from input pointers to output wires
 �nally incrementing the counter on
the appropriate output wire� This implies that tokens may overtake one another on
a wire and that balancer and network traversal times are dependent on individual
processor speeds and variations in speeds�

A Bitonic counting network ��� has a layout isomorphic to Batcher�s Bitonic
sorting network ���� Bitonic counting networks for n processors have width w �
n and depth �
log� w� 
all logarithms in this paper are to the base ��� Unlike
combining trees
 counting networks support complete independence among requests
and are thus highly fault tolerant� At peak performance their throughput is w
 as
w indices are returned per time step by the independent counters� Unfortunately

counting networks su�er a performance drop�o� due to contention as concurrency
increases
 and the latency in traversing them is a high �
log�w�� There is a wide
body of research on counting networks ��� 	� �� �� ��� ��� ��� ��� ���� A recently
developed form of counting network called a Di�racting Tree ���� is based on a new
type of distributed balancer implementation� It has been shown to scale especially
well
 exhibiting low latency since its depth is logarithmic in w�
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Fig� �� A balancer and its input�output properties�

Linearizability is a consistency condition for concurrent systems formulated by
Herlihy and Wing ����� It requires that the values returned by access requests to
a concurrent shared object re�ect the order in which they were issued� The use
of linearizable data abstractions simpli�es both the speci�cation and the proofs
of multiple instruction�multiple data shared memory algorithms� As Herlihy and
Wing explain
 linearizability generalizes and uni�es a number of ad�hoc correctness
conditions in the literature
 and is related to 
but not identical with� correctness
criteria such as sequential consistency ���� and strict serializability �����

Herlihy
 Shavit
 and Waarts ���� de�ned the class of linearizable counting net�
works
 networks that assure that the order of the values returned by the network
re�ects the real�time order in which they were requested� Linearizable counting lies
at the heart of concurrent timestamp generation
 as well as concurrent implementa�
tions of shared counters
 FIFO bu�ers
 priority queues and similar data structures�
Unfortunately
 for both the Bitonic networks of Aspnes
 Herlihy
 and Shavit ��� and
the Di�racting Trees of Shavit and Zemach ����
 there exist worst case asynchronous
schedules in which linearizability is violated� In ���� linear depth linearizable count�
ing network constructions were presented and shown to be optimal
 that is
 any low
contention counting network that is linearizable in all executions must have linear
depth�

Timing and Linearizability

This paper provides a characterization of the timing conditions under which low
depth non�linearizable counting networks become linearizable� It applies to semi�
synchronous and real�time systems ��� where upper and lower time bounds that limit
the extent to which one process can be slower or faster than others are known� As
we show
 our characterization also extends beyond such systems and has implica�
tions in the analysis of counting network linearizability in general asynchronous
multiprocessor systems� We believe that the linear time cost of designing counting
networks achieving linearizability under all circumstances may be an unnecessary
burden on applications that are willing to trade�o� occasional non�linearizability for
speed and parallelism� In such systems an intelligent trade�o� decision can be made
with the help of clear characterization of the parameters governing linearizability�

Our main result is a simple timing condition that is local to the individual wires
and balancers of the network� It quanti�es the extent to which a network can su�er
from timing anomalies and still remain linearizable�

This result is interesting
 since even a counting network of depth one exhibits
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non�linearizable behavior� Consider the following scenario for a counting network
consisting of the balancer B and two atomic counters A� and A� with initial values
� and �
 and that count by �� Token T� enters the balancer via x�
 exits via y�

and then is delayed� Token T� enters via x� and exits via y� and obtains the value
� from the counter A�� Token T� enters via x� and exits via y� and obtains the
value � from the counter A�� Finally T� obtains the value � from A��

The behavior is not linearizable because the traversal of the network by T� com�
pletely precedes T�
 yet T� returns a lower counter value�

We use a c��c� timing model in the style of Attiya
 Dwork
 Lynch
 and Stock�
meyer ���� Let c� be the minimum time that it takes for a token to traverse a
wire from balancer to balancer
 let c� be the maximum such time
 and assume that
balancer transitions are instantaneous� This timing model is general enough to
capture standard message passing and shared memory balancer implementations
��� ���� Alternately
 one could attribute the c��c� latency to the balancer traversal
and make wire traversal instantaneous� The two models can be shown to be equiv�
alent
 and we choose to attribute delays exclusively to the wires as this simpli�es
our modeling and presentation�

Our model is also similar to that of semi�synchronous systems 
cf� Archimedean
distributed systems of Vitanyi ������ One can view our setting as one in which each
token traverses a wire and a balancer on the local clock tick
 where the local clocks
can tick not faster than every c�
 and not slower than every c� time units according
to some global clock�

A common structuring property of almost all published counting networks ��� ��
	� �� ��� ��� ��� ��� �	� ��� is uniformity� each balancer of the network lies on
some path from inputs to outputs
 and all paths from inputs to outputs have equal
lengths�

We prove
 in Section 	
 the following properties for any uniform counting network

explicitly constructible or not��

�If c� � � � c� then the network is linearizable� This is so regardless of the network
depth�

�If c� � k � c�
 where k � � then the network is linearizable if for any two tokens
traversing the network their traversals either overlap or they are separated by
time t � h � k
c� � � � c��
 where h is the depth of the network�

�If a constant k � � is known a priori
 such that c� � k � c�
 then given a counting
network of depth h we can extend this network by pre�xing each of its inputs with
h
k��� ��input ��output balancers so that the resulting network is a linearizable
network of depth O
h��

In Section � we show that counting 
Di�racting� trees and Bitonic counting net�
works are not linearizable for c� � � � c�
 and that one can create executions with
large numbers of non�linearizable operations�

Finally
 in Section � we provide empirical measurements of the extent to which
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timing can a�ect linearizability in Bitonic Networks and Di�racting Trees� These
results were collected on a simulated Alewife ��� shared�memory multiprocessor
using the Proteus ��� simulator�

We use our c��c� measure to mathematically support our experimental results�
that in a variety of �normal� situations
 the Bitonic counting networks of Aspnes

Herlihy
 and Shavit ��� exhibit linearizable behavior� In fact
 for high concurrency
levels
 our results show that even if one skews system timings by introducing large
timing variations among processes
 the network rarely exhibits violations of lin�
earizability� At low concurrency levels we observed a signi�cantly higher number
of violations�

�� MODELS AND DEFINITIONS

We consider networks consisting of acyclically wired routing elements called bal�

ancers� We refer the reader to ��� for a more detailed presentation of the model and
its implications� For the sake of generality
 our balancers are de�ned as multi�
balancers in the style of Aharonson and Attiya ��� and Felten
 LaMarca
 and
Ladner ���� 
Figure ��
 having e input wires x�� x�� � � � � xe�� and d output wires
y�� y�� � � � � yd��� Slightly abusing notation
 we let xi 
respectively yi� also serve as
a state variable that stands for the number of tokens that have entered 
exited� via
that wire�

A balancer passes tokens from input wire to output wire
 maintaining a step

property on its output wires� in any state of the balancer
 its output wires satisfy
� � yi�yj � � for any i � j� This requirement is stronger than the standard one ���

since it implies that token traversal through a balancer is atomic� However
 we note
that it is consistent with the standard message passing and shared memory based
balancer implementations ��� and with Di�racting balancer implementations ����

as they all meet the speci�cation of a balancer with atomic transitions�

We further require that a balancer not create tokens spontaneously
 that is
Pe��
i�� xi �

Pd��
i�� yi� A state in which

Pe��
i�� xi �

Pd��
i�� yi is called a quiescent

state�

To perform an increment operation on the network
 a process routes a token
from input wire to output wire
 traversing a sequence of balancers on the way� We
de�ne a quiescent state of a balancing network with v input ports X�� X�� � � � � Xv��

and w output ports Y�� Y�� � � � � Yw�� as a state in which all tokens that have ever
entered it have already exited� A counting network with w outputs is a network of
balancers that satis�es the following step property�

In any quiescent state� � � Yi � Yj � � for any i � j�

The step property of counting networks is the cornerstone of the claims and
proofs we will present�

We now add timing to our model� The state transition of a balancer
 i�e�
 the
passing of a token from the balancer�s input port to its output port
 will be modeled
as an instantaneous event� While balancer transitions are instantaneous
 transitions
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Fig� �� Equal length paths lead to any balancer in a uniform network�

along a wire connecting an output port of one balancer to an input port of another
are not� However
 we assume that there is some c� � � that is the lower bound on
time it takes for a token to traverse a wire between two balancers� Similarly there
exists a c� that is the upper bound on such time
 where � � c� � c�� Wires with
the same delay bounds are also used to connect the output wires of the network
to a set of counters added to it� Each output wire Yi of the network leads from
a balancer whose output wire is also a network output
 to an atomic counter at
its end� We identify this counter with the output wire Yi� The input wires of a
network are the input wires of the balancers they connect to� Such balancers are
called input balancers� We use the term node to refer to a component of a network
that may be either a balancer or a counter�

We refer to w as the output width of the network� The tokens exiting from output
wire Yi are consecutively assigned the numbers i� i � w� i � �w
 etc� The number
assigned to a token by a counter is called the token�s returned value�

De�nition ��� A counting network is uniform if each balancer of the network lies
on some path from inputs to outputs
 and all paths from inputs to outputs have
equal lengths�

We de�ne the depth of a uniform counting network as the number of wires on
the path between any input balancer and output counter� The time t it takes for a
token to traverse a uniform network of depth h is bounded by� h � c� � t � h � c��
It is easy to see
 from the above de�nition
 that for each balancer B
 the lengths
of all paths from the input balancers to B are equal and the lengths of all paths
from B to the output balancers are equal
 see Figure �� Note that there and in
the remaining �gures
 we do not show the counters attached to the outputs� For
� � g � 
h � �� we also de�ne the g�th layer of a network to be the collection of
nodes 
balancers or counters� whose distance from the inputs is g � ��

In the proofs
 without loss of generality
 we sequentially number the tokens
traversing the network according to the time of their entry 
ties are broken ar�
bitrarily��

An execution or execution sequence of a network is a sequence E � e�� e�� � � � of
instantaneous transition events ei � hT�Bi corresponding to a token T traversing a
balancer or counter B� We associate history variables with tokens and balancers to
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capture their implicit knowledge about the execution� The history variables are sets
of token ids� A history variable HT is associated with each token T 
 and HB with
each balancer B� For every execution E the values of these variables are computed
inductively as follows
 where Hi

B and Hi
T denote the values of HB and HT after

the event ei�

�At the beginning of the execution
 we de�ne H�
B �  and H�

T � fTg� In other
words
 at the beginning of the execution the knowledge of every balancer is an
empty set and the knowledge of every token consists of the token�s own identi�er�

�The inductive step is as follows� If ei � hT�Bi
 then Hi
B � Hi

T � Hi��
T �Hi��

B �
Intuitively
 the token T and the balancer B combine their knowledge as the result
of ei�
For every other token T � �� T and balancer B� �� B
 we de�ne Hi

T � � Hi��
T � and

Hi
B� � Hi��

B� �

De�nition ��� A timing schedule S for an execution of a uniform network of depth
h and input width v is a triple hK�L�Qi� K is the set of token ids produced by
sequentially numbering the tokens starting with � and based on their arrival times�
L � K � fXi � � � i � vg is a function such that for a token T 
 L
T � is the input
balancer on which the token enters the network� Q � K � ����
h� ��� � R 
where
R is the reals� is the function such that Q
T� g� is the real time instant when the
token T passes through a node in layer g of the network�

Adapting the de�nition of Herlihy and Wing ���� to counting networks�

De�nition ��� An execution of a counting network is linearizable if for any two
tokens that traverse the network one completely after another 
non�overlapping in
time�
 the earlier token obtains a smaller value than the later one�

De�nition ��� A counting network is linearizable if every execution of the network
is linearizable�

We now introduce the notion of non�linearizable operations� Consider an ex�
ecution in which the network traversal operation � completely precedes another
traversal operation �
 but � returns a higher value than �� Clearly such an execu�
tion is not linearizable� In the de�nition below we ascribe the non�linearizablilty of
the execution to the operation ��

De�nition ��� Given an execution of a counting network
 we say that a traversal
operation � and its associated token are non�linearizable
 if there exists some other
traversal operation � completely preceding � in time
 whose associated token has
a higher returned value than ��

We choose to de�ne � as the non�linearizable operation and not � since this
allows us to determine whether or not an operation is non�linearizable as soon as
it completes� Furthermore
 if instead � were de�ned to be the non�linearizable
traversal operation
 this would lead to non�intuitive situations where a single oper�
ation can cause all preceding operations to become non�linearizable if it returns a
su!ciently low value�
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It is easy to see that for any execution sequence
 if we remove all non�linearizable
traversal operations the remaining sequence of operations will contain no violations
of linearizability�� However
 such sequence of operations might not correspond to
a valid execution of a counting network
 since it could contain gaps�

The following de�nition quanti�es non�linearizability of �nite executions�

De�nition ��	 The fraction of non�linearizable operations in a �nite execution is
de�ned to be the number of non�linearizable operations divided by the number of
completed operations in the execution�

It follows from the de�nitions above that this fraction is an upper bound on the
fraction of operations whose removal yields a linearizable execution trace�

�� A CHARACTERIZATION OF LINEARIZABILITY FOR COUNTING NETWORKS

In this section and the next
 we show that the ratio c��c� plays a key role in
determining whether a uniform counting network is linearizable�

We begin by proving several lemmas that will be used to derive our main result

that uniform networks are linearizable for c� � �c�� The �rst lemma shows that
in any counting network
 when a token completed traversing the network
 it has
implicit knowledge about the �existence� of a certain minimum number of other
tokens�

Lemma ��� Let N be a counting network with w output ports Y�� � � � � Yw��� If
the token T is the ath token to exit on Yi
 then jHT j � w
a� �� � i � � following
its transition onto Yi�

Proof
 The proof is by contradiction� We start by de�ning the notion of events
in�uencing other events� For a pair of events e and e� in an execution E
 we say
that e in�uences e� if there is sequence of events S � e�� e�� � � � en such that 
�� S
is a subsequence of E
 
�� e � e� and en � e� and 
	� for every k � � � � �n � � if
ek � hTk� Bki and ek�� � hTk��� Bk��i
 then either Tk � Tk�� or Bk � Bk���

We now assume that there exists an execution E
 in which T is the ath token to
exit on Yi
 but jHT j � w
a � �� � i � �� We �x E and construct a new execution
E� in the following way� Let E� be the projection of E consisting consisting of
all events involving T 
 and all the events that in�uence these events� From the
de�nition of implicit knowledge
 it is clear that E� contains events involving only
the tokens found in HT during the execution�

We claim that E� is a possible execution of the counting network in which the
participating tokens and nodes cannot distinguish between E� and E�

�In general it may be possible to remove fewer operations �whether linearizable or not� to eliminate
all instances of non�linearizability� For example� consider an execution consisting of three time�
disjoint operations �� � and � that return the values �� � and �� in that order� According to our
de�nition� � and � are non�linearizable� Removing both of them yields a sequence consisting of �
alone� thus removing all instances of non�linearizability� However� if we remove � instead� then �
and � become linearizable�
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We show this by induction on all the pre�xes of E�� The base case for the empty
pre�x is trivial� For the inductive step we assume that the length of E� is positive
and that the pre�x of E� of length n� �
 for n � �
 is a possible execution of the
network� We now consider the pre�x e��� e

�

� � � � � e
�

n of E�
 where e�n � hS�Di�

Now consider the sequence e�� e�� � � � � em such that it is the pre�x of E that ends
with em � e�n� By the de�nition of E�
 we know that all the events involving
either S or D in e�� e�� � � � em�� are contained in e��� e

�

�� � � � � e
�

n��� By the induction
hypothesis
 e��� e

�

�� � � � � e
�

n�� is a possible execution of the counting network in which
the participating tokens and nodes cannot distinguish between this pre�x and the
pre�x e�� e�� � � � ei of E
 where the event ei is e�n���

Note that by the de�nition of E� the subsequence ei��� � � � � em�� of E
 does not
include any events involving S or D� Therefore
 neither S nor D can distinguish
between the execution e��� e

�

�� � � �e
�

n�� and the execution e�� e�� � � � em��� Because
hS�Di is next event after em�� inE
 the sequence e��� e

�

�� � � � e
�

n��� hS�Di is a possible
execution of the counting network�

In E�
 T is still the ath token to exit on Yi� Since only the tokens ofHT participate
in E�
 any completion of E� in which no new token enters the network leads to a
quiescent state with the step property violated� This is so because if a tokens exit
on Yi
 then it is impossible to establish the needed step property with fewer than
w
a� �� � i � � tokens� �

The next lemma shows that the implicit knowledge in the history variables can
only re�ect information propagation at the maximum pace of � wire per c� time
units�

Lemma ��� Let N be a uniform counting network of depth h� For any execution
E � e�� e�� � � �
 if ek � hT�Bi occurs at time t
 where B is a node in layer 
g���
 for
� � g � h then Hk

B contains only tokens that enter the network by time t� g � c��

Proof
 By induction on g� The base case for g � � is trivial� Assume the lemma
holds for g � �� We now show it holds for g�

Assume there is an execution sequence E � e�� e�� � � � ek� � � �
 containing a tran�
sition event ek � hT�Bi that occurs at time t� Assume also that jfej � � � j �
k 	 ej � hT�Bjigj � g
 which means that token T traverses g balancers and wires
en route to B� From the de�nition of historical knowledge
 Hk

T � Hk��
T �Hk��

B �

Consider the tokens inHk��
T � This set re�ects T �s knowledge after traversing g��

wires� By the induction hypothesis and because it takes at least c� time to traverse
a wire
 all tokens in Hk��

T enter the network by time 
t� c��� 
g���c� � t�g � c��

Now consider the tokens inHk��
B � This set consists of the accumulated knowledge

of the tokens that traversed B� Because the network is uniform
 each token in
Hk��
B traverses g wires before reaching B� Since each such token reaches B by

time t
 it reaches the previous balancer 
there is such a balancer because g � ��
by time t � c� and by the induction hypothesis it enters the network by time

t� c�� � 
g � ��c� � t � g � c�� �
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The next result combines the lemmas above�

Lemma ��� Let N be a uniform counting network of depth h with w outputs� If
at time t
 token T exits on output Yi
 and it is the ath token to exit through this
output wire
 then at least w
a����i�� tokens enter the network by time t�h �c��

Proof
 Let ej � hT� Yii 
recall that we identify the counter at output Yi with Yi��

Lemma 	�� establishes jHj
T j � w
a � �� � i � �� Lemma 	�� establishes that the

tokens in Hj
T � Hj

Yi
enter the network by time t� h � c�� �

In the next lemma we show that if the tokens in a set K� enter a network N by
time t and proceed according to time schedule Q�
 and the tokens in the set K�

enter after t
 then any tokens that enter after t can only increase the number of
tokens that exit on any output of any balancer B as the result of Q��

Lemma ��� Let t be a time instant
 and S� � hK�� L�� Q�i and S� � hK� �
K�� L�� Q�i be two timing schedules for a uniform counting network N 
 such that
K� 
 K� �  
 L� � L�
 Q� � Q� and Q�
T�� �� � t � Q�
T�� �� for all tokens
T� � K�� T� � K�� If B is a balancer within layer g � � of N 
 where � � g � h

then by time t� g � c� the number of tokens that traverse any of B�s outputs in S�
is no smaller than the number of tokens that traverse the same output of B in S��

Proof
 By induction on g� For g � � the lemma follows trivially from the fact that
in S� and S�
 by time t only the tokens in K� enter and they enter through the
same input balancers�

Assuming the lemma holds for g
 we show it holds for g � �� Consider a node
B within the layer g � �� Since N is uniform
 all of B�s inputs are connected to
the outputs of some balancers within the layer g� �� By the induction hypothesis

by time t � gc� the number of tokens that exit on any of these outputs in S� is
no smaller than the number that exit on the same outputs in S�� Since it takes at
most c� time to traverse a wire from one layer to the next
 by time t � 
g � ��c�
the number of tokens that enter any of the inputs of B in S� is no smaller than the
number of tokens entering the same inputs in S��

In any execution
 the number of tokens exiting any of the outputs of a balancer
is deterministically established from the sum of the number of tokens that enter
the inputs of the balancer� Since Q� � Q�
 for any balancer
 between time t � gc�
and t� 
g � ��c� there are at least as many tokens transitioning from its inputs to
each of its outputs in S� as in S�� �

For the next two proofs
 given a counting network of width w
 we de�ne qmi to be
the number of tokens that exit on each of the network outputs Yi 
� � i � w� once
m tokens enter and exit the network� We use the property of counting networks
that qmi is uniquely de�ned by the formulas

Pw��
i�� qmi � m and � � qmi � qmj � �

for i � j ����

Lemma ��� Let N be a uniform counting network of depth h and width w� If m
tokens enter N by time t
 then by time t� h � c� the number of tokens that exit on
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Fig� �� Illustration for Theorem ����

each output Yi is at least qmi �

Proof
 Let S� � hK�� L�� Q�i be a timing schedule with jK�j � m and Q�
T� �� � t
for T � K�� It takes at most h � c� time for a token to traverse the network�
Therefore
 any of the m tokens that enter the network by time t must exit the
network by time t� � t�h �c�� Since by the de�nition of S� no other tokens entered
the network
 it is in a quiescent state and the number of tokens exiting on each
output Yi is exactly q

m
i �

Suppose additional tokens enter the network after time t� Let S� be the timing
schedule that describes an execution with additional tokens entering after time t�
By Lemma 	�� with g � h
 for each output Yi
 the new number of tokens that exit
in S� is no smaller than the number that exit in S�
 and is therefore at least qmi � �

The following is our main theorem on the linearizability of uniform counting
networks�

Theorem ��	 If tokens T� and T� traverse a uniform counting network of depth
h during periods �t�� t�� and �t�� t�� respectively
 in an execution in which
t� � h � 
c� � �c�� � t�
 then T� has a higher returned value than T��

Proof
 Suppose ai is the number of tokens that exit by time t� on output Yi for
� � i � w� We de�ne r as follows�

r � maxfi � � � i � w 	 ai � maxfaj � � � j � wgg


that is
 r is the largest output index such that ar is the largest number of tokens
that exit on any output�

By Lemma 	�	
 there are at least m � w
ar � �� � r � � tokens that enter the
network no later than time t � t� � h � c� 
see Figure 	�
 and T� is among these
tokens� Let K be the set of these tokens�

By Lemma 	��
 by time t� � t� h � c� � t� � h � c� � h � c� the tokens in K exit

and for each output Yi 
� � i � w� the number of tokens that exit is at least qmi �

From the fact that it takes at least h � c� to traverse the network and because
t��h�c����h�c� � t�
 token T� exits at time t� � t��h�c� � t��h�c����h�c��h�c� �
t�� h � c� � h � c� � t�� This means that all tokens that enter by time t � t�� h � c�
exit before time t�� Thus
 all of the tokens in K exit prior to the exit of token T��
Since by time t� the number of tokens that exit each of the outputs Yi exceeds the
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number of tokens qmi needed to establish the step property using m tokens
 token
T� returns a higher number than any of the tokens in K and therefore higher than
T�� �

From the �nish�start token time relationship in the above theorem we can estab�
lish the following result about the start�start time relationship�

Corollary ��� If tokens T� and T� traverse a uniform counting network of depth
h during periods �t�� t�� and �t�� t�� respectively in an execution where
t� � �h � 
c� � c�� � t�
 then T� has a higher returned value than T��

Proof
 From the de�nition of c� we conclude that t� � t� � h � c�� By adding this
inequality and the inequality t� � �h � 
c� � c�� � t� in the hypothesis
 we obtain
the inequality t� � h � 
c� � �c�� � t�� This is exactly the relationship between t�
and t� which is required by Theorem 	�� to ensure that T� returns a higher value
than T�� �

The next corollary also follows from Theorem 	���

Corollary ��� If tokens T� and T� traverse a uniform counting network during
disjoint successive time periods �t�� t�� and �t�� t�� respectively 
i�e�
 t� � t��
 and
c� � �c� then T� returns a larger number than T��

Proof
 If c� � �c�
 then h � 
c� � �c�� � �� By adding this inequality and the the
inequality t� � t� we again obtain the relationship between t� and t� that allows
us to use Theorem 	�� to ensure that T� returns a higher value than T�� �

Together with the de�nition of linearizability
 this leads to our main local liner�
izability criteria for uniform networks�

Corollary ��
 Uniform counting networks are linearizable for any timing schedule
where c� � � � c��

This implies that Bitonic counting networks ���
 Periodic counting networks ���

the networks of ���� and ��� are all linearizable for c� � � � c�� It also implies that
counting and Di�racting trees ���� and the uniform trees of Busch and Mavronico�
las ���� are linearizable for c� � � � c��

We now consider a modi�cation allowing to turn any uniform depth counting
network into a linearizable network given that c� � k � c� for some k � ��

Corollary ���� Given a uniform counting network of depth h
 another uniform
counting network of depth dh � 
k� ��e can be constructed so that it is linearizable
for any k � � such that c� � k � c��

Proof
 Given the original network
 we attach in front of each of its inputs a
path of length dh � 
k � ��e of ��input ��output �balancers� wired one after the
other� The tokens traversing such balancers simply proceed from one to the next�
For any two tokens that traverse the new network in a time�disjoint fashion
 their



Timing Conditions for Linearizability � 
�

tbh

�
�B� C�

D�

B�

B�

�
�
�
�

Bitonic��w�

Bitonic��w�

Merger��w�

Merger��w�




�J
J
J
J
J�

�
PPPq








�

�

�

Bitonic��w�

x�
x�

y�
y�
y�
y�

u���
u���

v���
v���

v���
v���

u���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�x�w��

Fig� �� Inductive step for Lemma ����

traversals of the original 
sub�network are such that the second token enters it at
least dh
k� ��ec� � h
c��c�� ��c� � h � c�� �h � c� time after the �rst token exits�
By Theorem 	��
 the second token returns a higher value� �

�� LIMITS ON LINEARIZABILITY OF TREES AND BITONIC COUNTERS

We now show some limitations on the linearizability of Di�racting trees ���� and
Bitonic counting networks ��� by constructing execution scenarios under which they
exhibit non�linearizable behavior�

Theorem ��� Counting and Di�racting trees are not linearizable if c� � � � c��

Proof
 Let h be the depth of the tree and let 	 � � be such that c� � 
� � 	� � c��
We consider an execution in which the �rst two tokens
 T� and T�
 enter the tree
at the same time t� 
we visualize the tree on its side with its root to the left and
the leaves on the right�� Without loss of generality
 let T� go up 
corresponding to
the root balancer transition from � to �� and T� go down 
the balancer transition
from � back to ��
 i�e�
 T� precedes T�� After traversing the root
 T� proceeds at
the slowest possible pace of one wire per c� time
 while T� proceeds at the fastest
possible pace of one wire per c� time� T� reaches the topmost leaf of the bottom
subtree at time t� � t� � h � c� and returns the value � 
by the de�nition of the
counting tree and c���

Immediately after T��s exit
 a wave of �h � � tokens enters the tree
 say at time
t� � t� � 
 � t�� We choose 
 to be such that � � 
 � 	� These tokens proceed at
the fastest possible pace of � wire per c� time� Of these tokens
 �h�� tokens go to
the upper subtree and the remaining �h�� � � tokens go to the lower subtree�

Since the token T� is slow
 it reaches a leaf at time t� � t� � h � c�� The second
wave of fast tokens reaches the leaves at time t� � t� � h � c� � t� � 
 � h � c� �
t� � �h � c� � 
 � t� � h � 
c� � c�	� � 
 � t� � h � c� � c�h	 � 
� Since we chose 

such that � � 
 � 	
 the inequality can be further simpli�ed to t� � t��h � c� � t��
Thus t� � t� and these fast tokens reach the leaves ahead of T�� Since we have �

h��

tokens in addition to T� traversing the top subtree
 at least one token reaches the
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topmost leaf of the tree and returns the value �� This token traverses the counting
tree completely after T� exits
 but returns a smaller value� �

We now consider Bitonic networks�

Lemma ��� Let T� be the �rst token to enter a Bitonic counting network� Sup�
pose T� enters through input X� and completely traverses the network alone� If
subsequently tokens T� and T� enter the network in this order through X�
 then�

a� the balancer that is attached to X� is the only balancer that both T� and T�
pass through
 
b� T� exits through output wire Y�
 T� through output wire Y� and
T� through output wire Y� 
mod w��

Proof
 By induction on the width w of the network� The base case is trivial for
w � � with a single balancer and two counters 
we only need to note that outputs
y� and y� are the same for this network��

Assuming the lemma holds for some width w � �
 we prove that it holds for
networks of width �w� The inductive step is depicted in Figure �
 and the balancer
and exit labels below refer to that �gure� We use the inductive construction of
Bitonic counting networks as in ���� Bitonic��w� is made of two Bitonic�w� networks

two Merger�w� merging networks and an additional w balancers� Even�numbered
outputs of Bitonic��w� are connected to the �rst w�� inputs of Merger��w� and odd�
numbered outputs of Bitonic��w� are connected to the last w�� inputs of Merger��w��
The rest of the outputs are similarly connected to Merger��w�� The outputs of the
two mergers are then shu�ed into a row of w balancers whose outputs are the
outputs of Bitonic��w��

By the inductive hypothesis for Bitonic��w�
 token T� exits via output u���
 T� via
u��� and T� via u��� 
note that for w � � the output u��� is the same as u����� By
the construction of Bitonic��w�
 T� and T� enter Merger��w� via its �rst balancer�
Since these are the only two tokens to enter Merger��w� and since they traverse the
merger one after the other
 T� must exit via v��� and T� via v���
 else Bitonic��w� will
not reach a quiescent state in the execution where T� is the only token� Similarly

T� exits via v��� of Merger��w�� In the �nal row of balancers
 T� and T� traverse
B�
 and T� traverses B��

To show 
a� we observe that T� and T� may only traverse the same balancer
inside Bitonic��w�
 and by the inductive hypothesis
 B� is the only such balancer�

To show 
b�
 we observe that T� traverses the network alone and it reaches B�

�rst and exits via Y�
 and so T� necessarily exits via Y�� The only remaining token
T� exits via Y�� �

Theorem ��� Bitonic counting networks are not linearizable if c� � � � c��

Proof
 In the example in Section � we established that a network of width �
consisting of a single balancer and two counters is not linearizable
 and it is easy
to see that this is so for any c� and c� such that c� � � � c�� Below we consider
networks with w � �� We choose 	� 
�� 
� � � such that 
� � 
� � 	
 and we let
c� � � � c� � 	�



Timing Conditions for Linearizability � 
�

Using the framework of Lemma ���
 we deploy the three tokens T�
 T�
 and T�
according to the following scenario� Starting in the initial state
 we let T� enter via
the input X� and completely traverse the network and exit via the output Y� thus
returning the value �� Following this
 at some time t�
 token T� also enters via X�

and T� enters via X� immediately behind T� at time t� � 
� for some 
� � �� We
let T� proceed at the slowest possible pace of � wire per c� time
 while T� proceeds
at the fastest possible pace of � wire per c� time� This means that T� exits at time
t�� � t� � �h � c� � h	
 and T� exits at time t�� � t� � 
� � h � c��

By Lemma ���
 the paths that T� and T� traverse have no balancers in common

with the exception of the �rst balancer in their paths� Thus
 in the execution frag�
ment that follows and does not include these tokens� traversal of the �rst balancer

T� is not in�uenced by T� and still proceeds to the exit Y��

As soon as T� exits via Y� and obtains the counter value �
 w fast tokens enter
the network at time t� � t��� 
� for some 
� � �� Regardless of these tokens� paths

they exit the network at time t�� � t� � h � c�� Since 
� � 
� � 	
 these tokens exit
before the slow token T��

During this execution
 the network is traversed by w � 	 tokens� If no other
tokens enter the network
 then each of outputs Y�� Y�
 and Y� has each two tokens
that exit through it
 and outputs Y�� � � � � Yw�� each have one� Thus one of the fast
tokens exits via Y� and because it is faster than T�
 it obtains the counter value �

while T� obtains the value � � w� As a result the fast token obtains a lower value
than T�� �

As we will see in the experimental results Section �
 when the ratio c��c� increases
beyond �
 the percentage of non�linearizable operations also increases� Below we
show that for Bitonic networks there can be a large fraction of tokens that exhibit
non�linearizable behavior for certain ratios of c��c��

Theorem ��� Bitonic counting networks are not linearizable if c� �
��logw

� � c�

where w is the width of the network� Moreover
 for such c� and c� there exists an
execution scenario with 	w�� tokens such that w�� tokens result in non�linearizable
operations�

Proof
 The Bitonic counting network ��� of width w
 Bitonic�w�
 has depth h �
logw��logw��	

� � The network consists of two stages 
see Figure ��� The �rst stage
includes two Bitonic�w��� networks of depth h� � h � logw connected in parallel
to the second stage that is the merging network of depth h� � logw
 Merger�w��

Merger�w� consists of a row of balancers connected to two Merger�w��� mergers

for details see ������ Note that this inductive construction of the merger is di�erent
from
 but isomorphic to the construction in Figure �� The construction we use here
yields a clearer proof�

A non�linearizable schedule is constructed as follows� The �rst wave ofw�� tokens
enters Bitonic��w��� network at the same time and proceeds in lock step at some
pace to the exits of the �rst stage� The second wave of w�� tokens enters the same
network immediately behind the �rst wave after a small delay 
 � ��
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Fig� �� Inductive construction of Bitonic�w� for Theorem ��� �wires are omitted��

As soon as the �rst wave enters Merger�w�
 it slows down to the slowest pos�
sible pace of one wire per c� time� This wave proceeds to the Merger��w���
sub�component of the merger after passing through the �rst row of balancers of
Merger�w��

Similarly
 the second wave of w�� tokens proceeds to Merger��w���
 except that
it proceeds at the fastest possible pace of one wire per c� time� As soon as the
second wave exits
 a third wave enters Bitonic�w� as the �rst two waves�

The third wave of w�� tokens proceeds in lock step at the fastest pace of one wire
per c� time to the exits� Therefore this wave exits through the �rst w�� exits�

It takes the �rst wave t� � h� � c� � c� � logw time to reach the exits� It
takes the second wave t� � h� � c� � c� � logw time to exit� It takes the third

wave t� � h � c� � c� �
logw��logw��	

� time to traverse the entire network� Since

c� �
��logw

� � c�
 we have that t� � t� � t�� Thus the third wave passes the �rst
wave on the �nal wire out and returns counter values that are all lower than those
obtained by the second wave� There are three waves of w�� tokens out of which
w�� tokens are non�linearizable� �

We have shown speci�c scenarios in which the violations of local timing condi�
tions lead to non�linearizable executions in important classes of uniform counting
networks� The work of Mavronicolas et al� ���� shows how violations of timing
conditions lead to non�linearizability in general counting networks 
see Section ���

�� EMPIRICAL EVALUATION OF LINEARIZABILITY

We evaluated the linearizability of counting networks on a simulated distributed�
shared�memory machine similar to the MIT Alewife of Agarwal et al ���� Alewife is
a large�scale multiprocessor that supports cache�coherent distributed shared mem�
ory and user�level message�passing� The nodes communicate via messages on a
two�dimensional mesh network� A Communication and Memory Management Unit
on each node holds the cache tags and implements the memory coherence protocol
by synthesizing messages to other nodes� Our experiments make use of the shared
memory interface only� To simulate the Alewife we used Proteus�
 a multiproces�
sor simulator developed by Brewer
 Dellarocas
 Colbrook
 and Weihl ���� Proteus
simulates parallel code by multiplexing several parallel threads on a single CPU�

�Version ��

� dated February ��� �

��
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Each thread runs on its own virtual CPU with accompanying local memory
 cache
and communications hardware
 keeping track of how much time is spent using each
component� In order to facilitate fast simulations
 Proteus does not do complete
hardware simulations� Instead
 operations which are local 
do not interact with the
parallel environment� are run uninterrupted on the simulating machine�s CPU and
memory� The amount of time used for local calculations is added to the time spent
performing 
simulated� globally visible operations to derive each thread�s notion of
the current time� Proteus makes sure a thread can only see global events within
the scope of its local time�

Implementation and experimentation methodology

For our benchmarks
 we implemented the Di�racting tree ���� and the Bitonic
counting network ��� in shared memory� Both types of data structures gave each
simulated processor with one of the two possible timing characteristics� The �rst
kind allowed the processors to traverse the network unimpeded� The second kind
introduced a time delay following the traversal of a balancer� This delay models
the network delays or additional work that a processor may need to perform� We
randomly designated a fraction of the processors
 all of whom were be subjected to
such delays� We performed two sets of experiments� In one set of experiments
 the
fraction F was ��"
 in the other F was ��"� For each set of experiments
 the time
delay is de�ned via a workload variable W equal to ���� ����� ������ and ������
wait cycles �

We ran the scenarios varying the number of processors from �
 ��
 ��
 ���
 ���

and up to ��� 
this upper limit is due to the speci�cs of the hardware con�gura�
tion we used�� The execution of each simulation proceeded until each processor
performed ��� operations� This number was chosen because of the long simulation
times for large number of processors� 
We also performed this test using �
���
total operations�� The graphs plot the non�linearizability ratio
 i�e the percentage
of non�linearizable operations 
see De�nition ���� among all the operations during
the execution�

Every balancer was implemented as a critical section protected by a Mellor�
Crummey and Scott 
MCS� queue�lock ���� and
 in the Di�racting tree
 using a
multi�prism implementation ��	�� This was done to reduce contention on the bal�
ancers which would have attenuated the in�uence of the W �waiting periods on the
c��c� relation�

The pseudocode for the main component of the simulation
 the operation of
obtaining the �next� counter value is given in Figure �� This code was executed by
each simulated process� SharedCounter is the concurrent counter implementation�
In our simulations it was either the Bitonic counting network or the Di�racting tree
counter implementation� The array TotalIncrements ensured that each processor
performed MaxIncrements operations� The private variable
 old and new
 were
used to respectively remember the previous value of the counter value obtained
within the process
 and to store the new value� All other variables are the global
simulator variables� That means that all the processes could access them atomically
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�� Reset�SharedCounter��

�� Array TotalIncrements	���n
 init ������n
�

�� GreatestNumber �� ���

�� for all processors id � � ��� n cobegin

�� while TotalIncrements	id
 �� MaxIncrements do

�� old �� GreatestNumber�

�� new �� Fetch�Increment�SharedCounter��

�� TotalIncrements	id
 �� TotalIncrement	id
 � ��

�� if new � old

�� then Nonlin �� Nonlin � ��

�� else GreatestNumber �� max�new� GreatestNumber��

�� end if

�� end while

�� coend�

Fig� �� Counter simulation main loop�

at no cost� Nonlin is the number of non�linearizable operations we observed�

A typical implementation of a shared�memory counter is shown in Figure ��

type balancer is

begin

state� regular or Diffracting balancer state

next� array ����d��� of ptr to balancer

end

constants

width� global integer

input � global ptr to some input wire of a Bitonic network or binary tree

of balancers

� function fetch	incr
�� integer

� begin


 b�� input

� while not leaf
b�

� b �� traverse�balancer
b�

� endwhile

� i �� increment�counter�at�leaf
b�

� return i � width � number�of�leaf
b�

� end

Fig� �� A Shared�Memory tree�based counter implementation

We present the empirical data by charting the non�linearizability ratio as the
function of the number of processors� In each of our experiments
 we compute the
average time it takes for a processor to traverse a balancer and a wire when the
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workload W � �� We use this average as the approximation of c� in the presenta�
tion� Note that using such average is conservative # for example
 using the minimum
value for such traversal would cause an increase in c��c� ratio and thus �excuse� or
�explain� more of the non�linearizable operations observed in some scenarios� Us�
ing this de�nition of c�
 we compute c� as 
Average�c� �Workload��Average�c� �
� �Workload�Average�c��

The absolute values of the average c� vary between the Bitonic network and the
Di�racting tree due to the di�erence in the processing time associated with the
prism in the Di�racting tree implementation� For ease of presentation
 all data
is normalized with respect to the average c� in the execution� To illustrate the
ratio c��c� 
c� divided by c�� we present the normalized c� and also the normalized
standard deviation for c� in the form Standard�deviation � Average�c��

Presentation and assessment of empirical data

The main results are presented in Figure � for the Di�racting tree and Figure � for
the Bitonic network� The charts show the non�linearizability ratio as the function
of the number of processors P � Each �gure contains two charts
 one showing the
results with ��" delayed processors and the other with ��" delayed processors�

In Tables � and � we give the normalized c� for the Di�racting tree and the
Bitonic network respectively� In Tables 	 and � we give the respective normalized
standard deviations for c��

Using the theoretical results and empirical data we now discuss the e�ects of
timing
 network depth
 concurrency
 and asynchrony and randomization on the
linearizability of the simulated execution scenarios�

The e�ects of timing� As can be seen
 for the lower delay workloads 
W � ��� and
W � �����
 the normalized c� is less then or close to �
 and no linearizability viola�
tions occur for �� or more processors� For these workloads some non�linearizability
is observed for small number of processors
 i�e�
 four� Note that for the Bitonic net�
work
 the violations occur for these values of W when the normalized c� is above
�� Even so
 the non�linearizability ratio here is less than �"�

For higher delay workloads 
W � ����� and W � �������
 the normalized c� is
well above � and for the Bitonic network it reaches several hundreds 
see Tables �
and ��� As expected
 we observe signi�cant increase in the ratio of non�linearizable
operations� For the Di�racting tree the ratios peak at about ��" for �� processors
��" of which incur delays of W � ������� For the Bitonic network the peak ratio
is about ��" for the same parameters� Substantially lower peak non�linearizable
ratios
 of ��" and �" respectively
 are observed for F � ��" and �� processors�

It is surprising is that despite the high c�
 the non�linearizable token ratio falls
sharply as the number of processors is increased� We examine some of the reasons
for this phenomena�
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Di�racting Tree � Normalized c�
P 
 ��� ��� ��
 �� �� � ��� ��� ��
 �� �� �

W ��� of processes delayed �
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 ���
 ���
 ���� ���� ���� ���
 ���
 ���
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���
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Fig� �� Non�linearizability Ratios for the Di�racting Tree�

The e�ects of network depth� The Bitonic networks have substantially greater
depth than Di�racting trees of the same width� This results in many more oper�
ations overlapping in the Bitonic networks given identical token arrival schedules�
With this di�erentiating factor
 we expect and indeed observe substantially fewer
linearizability violations in the Bitonic network simulations as compared to the
Di�racting tree simulations� This padding e�ect is also suggested by Theorem 	��
that enables
 for a known c��c� � �
 the construction of a linearizable networks by
extending the depth of any known counting network�

The e�ects of concurrency� There are simple scenarios that
 using as few proces�
sors as �
 produce high levels of non�linearizability� Recall our example in Section
�
 in which three tokens caused one non�linearizable operation� Let processor P� be
the owner of the token T� and processor P� be the owner of tokens T� and T�� If the
token T� is very slow
 so that it does not exit the network for a long time
 then any
sequence of tokens Ti generated by P� will have each of its even�numbered tokens
T�j return lower counter values than its odd�numbered tokens T�j�� for j � �� This
is because the even� and odd�numbered tokens traverse the network sequentially� If
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there were three processors
 such that T�j is concurrent with T�j��
 then the there
would be no nonlinearizable operations�

Although far from a complete characterization
 the above observation of lineariz�
ability versus concurrency provides intuition for why there is a dramatic reduction

at high concurrency
 in the number of non�linearizable operations for both the
Di�racting tree and the Bitonic network�

Of course the counting network approach is optimized for high concurrency
 so it
is not surprising that deploying counting networks in low�concurrency setting has
its drawbacks� For few processors
 there are more e!cient and linearizable solutions
�����

The e�ects of asynchrony and randomization� We also tested the linearizability
of our implementation when either all or no tokens were delayed
 i�e�
 the cases of
F � �" and F � ���"
 and�or when the additional delays were eliminated
 i�e�

W � �� In none of these simulation were there any non�linearizable operations�
Although not surprising # these scenarios create timing schedules close to those
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of an implementation that is synchronous # we performed these simulations for
completeness�

In another simulation scenario we forced every token to wait a random number
of cycles between � and W � Again
 the simulation was observed to be completely
linearizable� Randomization apparently has attenuating e�ect that prevents con�
sistent accumulation of timing discrepancies by faster or slower tokens�

	� CONCLUSIONS AND DISCUSSION

Our paper studies the e�ects of timing on the linearizability of uniform counting
networks� Our results were recently extended and generalized by Mavronicolas

Papatrianta�lou
 and Tsigas ����
 to include non�uniform networks� For a given
network G
 let d be the maximum path length from inputs to outputs
 and s
be the shortest such path� They show that a counting network is linearizable if
c��c� � �s�d 
for uniform networks s � d
 and the linearizability requirement
reduces to the c��c� � � shown in Section 	�� Furthermore
 they introduce the
powerful notion of an in�uence radius of a graph G
 iradG
 as the length of the
maximum common subpath of any two maximal paths from an internal balancer to
any two outputs
 and show that a network is not linearizable if c��c� � d�iradG��

for uniform networks iradG � d
 and linearizability is violated when c��c� � � as
we show here��

We have considered local timing characteristics at balancers� The linearizablility
question can also be posed in terms of global timing characteristics
 i�e�
 in terms
of the minimum and maximum time it takes a token to traverse the entire network
and without the restriction on the time to traverse each individual balancer� Our
examination of Counting trees and Bitonic networks shows that violations of re�
quired local conditions lead to non�linearizable executions 
this is also shown for
general networks in ������ In these executions we use tokens that traverse a network
at the fastest and the slowest possible paces� The fast tokens �bypass� the slow
tokens only at the exits� Therefore even if the required conditions are global 
 our
scenarios still yield non�linearizable executions�

There are many other variations of the timing model which one may investi�
gate� However
 we feel the most interesting direction to follow at this time is the
characterization of applications that do not have an absolute requirement for lin�
earizability
 that is
 ones requiring that only a given fraction of the operations be
linearizable�
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