
A Simple Optimistic skip-list Algorithm

Maurice Herlihy
Brown University & Sun Microsystems Laboratories

Yossi Lev
Brown University & Sun Microsystems Laboratories

yosef.lev@sun.com

Victor Luchangco
Sun Microsystems Laboratories

Nir Shavit
Tel-Aviv University & Sun Microsystems Laboratories

Abstract

Because of their highly distributed nature and the lack of global re-balancing, skip-lists are becoming
an increasingly important logarithmic search structure for concurrent applications. Unfortunately, none of
the concurrent skiplist implementations in the literature, whether lock-based or lock-free, have been proven
correct. Moreover, the complex structure of these algorithms, most likely the reason for a lack of a proof, is a
barrier to software designers that wish to extend and modify the algorithms or base new structures on them.

This paper proposes a simple new lock-based concurrent skip-list algorithm. Unlike other concurrent skip-
list algorithms, this algorithm preserves the skip-list properties at all times, which facilitates reasoning about
its correctness. Though it is lock-based, the algorithm derives a high degree of scalability from a novel use of
optimistic synchronization: it searches without acquiring locks, requiring only a short lock-based validation
before adding or removing nodes. Experimental evidence shows that this simpler algorithm performs as well
as the best previously known lock-free algorithm under the most common search structure usage patterns.

1 Introduction

Skip-lists [11] are an increasingly important data structure for storing and retrieving ordered in-memory data.
In this paper, we propose a new lock-based concurrent skip-list algorithm that appears to perform as well
as the best existing concurrent skip-list implementation under most common usage conditions. The principal
advantage of our implementation is that it is much simpler, and much easier to reason about.

The original lock-based concurrent skiplist implementation by Pugh [10] is rather complex due to its use of
pointer-reversal, and to the best of our knowledge has never been proved to be correct. The ConcurrentSkipListMap,
written by Doug Lea [8] based on work by Fraser and Harris [2] and released as part of the JavaTM SE 6 plat-
form, is the most effective concurrent skip-list implementation that we are aware of. This algorithm is lock-free,
and performs well in practice. The principal limitation of this implementation is that it is complicated. Cer-
tain interleavings can cause the usual skip-list invariants to be violated, sometimes transiently, and sometimes
permanently. These violations do not seem to affect performance or correctness, but they make it difficult to
reason about the correctness of the algorithm. By contrast, the algorithm presented here is lock-based and
preserves the skip-list invariants at all times. The algorithm is simple enough that we are able to provide a
straightforward proof of correctness.

The key to our novel lock-based algorithm is the combination of two complementary techniques. First, it is
optimistic: the methods traverse the list without acquiring locks. Moreover, they are able to ignore locks taken



- - - -

-

-

- - --

- -

---

−∞ 5 7 8 13 15 22 25 +∞

Figure 1: A skip-list with maximum height of 4. The number below each node (i.e., array of next pointers) is
the key of that node, with −∞ and +∞ as the keys for the left and right sentinel nodes respectively.

by other threads while the list is being traversed. Only when a method discovers the items it is seeking, does
it lock the item and its predecessors, and then validates that the list is unchanged. Second, our algorithm is
lazy : removing an item involves logically deleting it by marking it before it is physically removed (unlinked)
from the list.

Lea [7] observes that the most common search structure usage patterns search operations significantly dominate
inserts, and inserts dominate deletes. A typical pattern is 90% search operations, 9% inserts, and only 1%
deletes (see also [3]). Preliminary experimental tests conducted on a Sun FireTM T2000 multi-core and a Sun
EnterpriseTM 6500 show that despite its simplicity, our new optimistic lock-based algorithm performs as well
as the Lea’s ConcurrentSkipListMap algorithm under this common usage pattern. In fact, its performance
is than the ConcurrentSkipListMap algorithm only under the uncommon conditions of extreme contention in
multiprogrammed environments. This is because our raw experimental implementation did not have any added
contention control.

We therefore believe the algorithm proposed here could provide a viable alternative to the ConcurrentSkipListMap
algorithm, especially in applications where programmers need to understand and possibly modify the basic
skiplist structure.

2 Background

A skip-list [11] is a linked list sorted by keys. Each node is assigned a random height, up to some maximum.
The number of nodes at any height decreases exponentially with that height. A skip-list node a one successor
at each level of height. For example, a node of height 3 has three next pointers, one to the next node of height
1, another to the next node at height 2, and so on. Figure 1 shows a skip-list with integer keys.

We think of a skip-list as having several layers of lists, and we talk about the predecessor and successor of a
node at each layer. The list at each layer, other than the bottom layer, is a sublist of the list at the layer beneath
it. Because there are exponentially fewer nodes of greater heights, we can find a key quickly by searching first
at higher layers, skipping over large numbers of shorter nodes and progressively working downward until a
node with the desired key is found, or else the bottom layer is reached. Thus, the expected time complexity of
skip-list operations is logarithmic in the length of the list.

It is convenient to have left sentinel and right sentinel nodes, at the beginning and end of the lists respectively.
These nodes have the maximum height, and initially, when the skip-list is empty, the right sentinel is the
successor of the left sentinel at every layer. The left sentinel’s key is smaller, and the right sentinel’s key is
greater, than any key that may be added to the set. Searching the skip-list thus always begins at the left
sentinel.

1



4 class Node {
5 int key ;
6 int topLayer ;
7 Node∗∗ nexts ;
8 bool marked ;
9 bool fullyLinked ;

10 Lock lock ;
11 } ;

Figure 2: A node

3 Our Algorithm

We present our concurrent skip-list algorithm in the context of an implementation of a set object supporting
three methods, add, remove and contains: add(v) adds v to the set and returns true iff v was not already
in the set; remove(v) removes v from the set and returns true iff v was in the set; and contains(v) returns
true iff v is in the set. We show that our implementation is linearizable [6]; that is, every operation appears
to take place atomically at some point (the linearization point) between its invocation and response. We also
show that the implementation is deadlock-free, and that the contains operation is wait-free; that is, a thread
is guaranteed to complete a contains operation as long as it keeps taking steps, regardless of the activity of
other threads.

Our algorithm builds on the lazy-list algorithm of Heller et al. [4], a simple concurrent linked-list algorithm
with an optimistic fine-grained locking scheme for the add and remove operations, and a wait-free contains
operation: we use lazy lists at each layer of the skip-list. As in the lazy list, the key of each node is strictly
greater than the key of its predecessor, and each node has a marked flag, which is used to make remove
operations appear atomic. However, unlike the simple lazy list, we may have to link the node in at several
layers, and thus might not be able to insert a node with a single atomic instruction, which could serve as the
linearization point of a successful add operation. Thus, for the lazy skip-list, we augment each node with an
additional flag, fullyLinked, which is set to true after a node has been linked in at all its layers; setting this
flag is the linearization point of a successful add operation in our skip-list implementation. Figure 2 shows the
fields of a node.

A key is in the abstract set if and only if there is an unmarked, fully linked node with that key in the list (i.e.,
reachable from the left sentinel).

To maintain the skip-list invariant—that is, that each list is a sublist of the list at lower layers—changes are
made to the list structure (i.e., the nexts pointers) only when locks are acquired for all nodes that need to be
modified. (There is one exception to this rule involving the add operation, discussed below.)

In the following detailed description of the algorithm, we assume the existence of a garbage collector to reclaim
nodes that are removed from the skip-list, so nodes that are removed from the list are not recycled while any
thread might still access them. In the proof (Section 4), we reason as though nodes are never recycled. In a
programming environment without garbage collection, we can use solutions to the repeat offenders problem [5]
or hazard pointers [9] to achieve the same effect. We also assume that keys are integers from MinInt+1 to
MaxInt-1. We use MinInt and MaxInt as the keys for LSentinel and RSentinel, which are the left and right
sentinel nodes respectively.

Searching in the skip-list is accomplished by the findNode helper function (see Figure 3), which takes a key
v and two maximal-height arrays preds and succs of node pointers, and searches exactly as in a sequential
skip-list, starting at the highest layer and proceeding to the next lower layer each time it encounters a node
whose key is greater than or equal to v. The thread records in the preds array the last node with a key less
than v that it encountered at each layer, and that node’s successor (which must have a key greater than or
equal to v) in the succs array. If it finds a node with the sought-after key, findNode returns the index of
the first layer at which such a node was found; otherwise, it returns −1. For simplicity of presentation, we

2



33 int findNode ( int v ,
34 Node∗ preds [ ] ,
35 Node∗ succs [ ] ) {
36 int lFound = −1;
37 Node∗ pred = &LSentinel ;
38 for ( int layer = MaxHeight−1;
39 layer ≥ 0 ;
40 layer−−) {
41 Node∗ curr = pred−>nexts [ layer ] ;
42 while (v > curr−>key ) {
43 pred = curr ; curr = pred−>nexts [ layer ] ;
44 }
45 i f ( lFound == −1 && v == curr−>key ) {
46 lFound = layer ;
47 }
48 preds [ layer ] = pred ;
49 succs [ layer ] = curr ;
50 }
51 return lFound ;
52 }

Figure 3: The findNode helper function

have findNode continue to the bottom layer even if it finds a node with the sought-after key at a higher level,
so all the entries in both preds and succs arrays are filled in after findNode terminates (see Section 3.4 for
optimizations used in the real implementation). Note that findNode does not acquire any locks, nor does it
retry in case of conflicting access with some other thread. We now consider each of the operations in turn.

3.1 The add operation

The add operation, shown in Figure 4, calls findNode to determine whether a node with the key is already
in the list. If so (lines 59–66), and the node is not marked, then the add operation returns false, indicating
that the key is already in the set. However, if that node is not yet fully linked, then the thread waits until it
is (because the key is not in the abstract set until the node is fully linked). If the node is marked, then some
other thread is in the process of deleting that node, so the thread doing the add operation simply retries.

If no node was found with the appropriate key, then the thread locks and validates all the predecessors returned
by findNode up to the height of the new node (lines 69–84). This height, denoted by topNodeLayer, is
determined at the very beginning of the add operation using the randomLevel function.1 Validation (lines 81–
83) checks that for each layer i ≤ topNodeLayer, preds[i] and succs[i] are still adjacent at layer i, and that
neither is marked. If validation fails, the thread encountered a conflicting operation, so it releases the locks it
acquired (in the finally block at line 97) and retries.

If the thread successfully locks and validates the results of findNode up to the height of the new node, then
the add operation is guaranteed to succeed because the thread holds all the locks until it fully links its new
node. In this case, the thread allocates a new node with the appropriate key and height, links it in, sets the
fullyLinked flag of the new node (this is the linearization point of the add operation), and then returns true
after releasing all its locks (lines 86–97). The thread writing newNode->nexts[i] is the one case in which a
thread modifies the nexts field for a node it has not locked. It is safe because newNode will not be linked into
the list at layer i until the thread sets preds[i]->nexts[i] to newNode, after it writes newNode->nexts[i].

3



54 bool add ( int v ) {
55 int topLayer = randomLevel ( MaxHeight ) ;
56 Node∗ preds [ MaxHeight ] , succs [ MaxHeight ] ;
57 while ( true ) {
58 int lFound = findNode (v , preds , succs ) ;
59 i f ( lFound 6= −1) {
60 Node∗ nodeFound = succs [ lFound ] ;
61 i f ( ! nodeFound−>marked ) {
62 while ( ! nodeFound−>fullyLinked ) { ;}
63 return fa lse ;
64 }
65 continue ;
66 }
67 int highestLocked = −1;
68 try {
69 Node ∗pred , ∗succ , ∗prevPred = null ;
70 bool valid = true ;
71 for ( int layer = 0 ;
72 valid && ( layer ≤ topLayer ) ;
73 layer++) {
74 pred = preds [ layer ] ;
75 succ = succs [ layer ] ;
76 i f ( pred 6= prevPred ) {
77 pred−>lock . lock ( ) ;
78 highestLocked = layer ;
79 prevPred = pred ;
80 }
81 valid = ! pred−>marked && ! succ−>marked &&
82 pred−>nexts [ layer]==succ ;
83 }
84 i f ( ! valid ) continue ;

86 Node∗ newNode = new Node (v , topLayer ) ;
87 for ( int layer = 0 ;
88 layer ≤ topLayer ;
89 layer++) {
90 newNode−>nexts [ layer ] = succs [ layer ] ;
91 preds [ layer]−>nexts [ layer ] = newNode ;
92 }

94 newNode−>fullyLinked = true ;
95 return true ;
96 }
97 f ina l ly { unlock ( preds , highestLocked ) ; }
98 }

Figure 4: The add method

4



101 bool remove ( int v ) {
102 Node∗ nodeToDelete = null ;
103 bool isMarked = fa l se ;
104 int topLayer = −1;
105 Node∗ preds [ MaxHeight ] , succs [ MaxHeight ] ;
106 while ( true ) {
107 int lFound = findNode (v , preds , succs ) ;
108 i f ( isMarked | |
109 ( lFound 6= −1 && okToDelete ( succs [ lFound ] , lFound ) ) ){

111 i f ( ! isMarked ) {
112 nodeToDelete = succs [ lFound ] ;
113 topLayer = nodeToDelete−>topLayer ;
114 nodeToDelete−>lock . lock ( ) ;
115 i f ( nodeToDelete−>marked ) {
116 nodeToDelete−>lock . unlock ( ) ;
117 return fa l se ;
118 }
119 nodeToDelete−>marked = true ;
120 isMarked = true ;
121 }
122 int highestLocked = −1;
123 try {
124 Node ∗pred , ∗succ , ∗prevPred = null ;
125 bool valid = true ;
126 for ( int layer = 0 ;
127 valid && ( layer ≤ topLayer ) ;
128 layer++) {
129 pred = preds [ layer ] ;
130 succ = succs [ layer ] ;
131 i f ( pred 6= prevPred ) {
132 pred−>lock . lock ( ) ;
133 highestLocked = layer ;
134 prevPred = pred ;
135 }
136 valid = ! pred−>marked && pred−>nexts [ layer]==succ ;
137 }
138 i f ( ! valid ) continue ;

140 for ( int layer = topLayer ; layer ≥ 0 ; layer−−) {
141 preds [ layer]−>nexts [ layer ] = nodeToDelete−>nexts [ layer ] ;
142 }
143 nodeToDelete−>lock . unlock ( ) ;
144 return true ;
145 }
146 f ina l ly { unlock ( preds , highestLocked ) ; }
147 }
148 else return fa l se ;
149 }
150 }

Figure 5: The remove method

152 bool okToDelete ( Node∗ candidate , int lFound ) {
153 return ( candidate−>fullyLinked

154 && candidate−>topLayer==lFound

155 && ! candidate−>marked ) ;
156 }

Figure 6: The okToDelete method

5



158 bool contains ( int v ) {
159 Node∗ preds [ MaxHeight ] , succs [ MaxHeight ] ;
160 int lFound = findNode (v , preds , succs ) ;
161 return ( lFound 6= −1
162 && succs [ lFound]−>fullyLinked

163 && ! succs [ lFound]−>marked ) ;
164 }

Figure 7: The contains method

3.2 The remove operation

The remove operation, shown in Figure 5, likewise calls findNode to determine whether a node with the
appropriate key is in the list. If so, the thread checks whether the node is “okay to delete” (Figure 6), which
means it is fully linked, not marked, and it was found at its top layer.2 If the node meets these requirements, the
thread locks the node and verifies that it is still not marked. If so, the thread marks the node, which logically
deletes it (lines 111–121); that is, the marking of the node is the linearization point of the remove operation.

The rest of the procedure accomplishes the “physical” deletion, removing the node from the list by first locking
its predecessors at all layers up to the height of the deleted node (lines 124–138), and splicing the node out
one layer at a time (lines 140–142). To maintain the skip-list structure, the node is spliced out of higher layers
before being spliced out of lower ones (though, to ensure freedom from deadlock, as discussed in Section 4,
the locks are acquired in the opposite order, from lower layers up). As in the add operation, before changing
any of the deleted node’s predecessors, the thread validates that those nodes are indeed still the deleted node’s
predecessors. This is done using the weakValidate function, which is the same as validate except that it
does not fail if the successor is marked, since the successor in this case should be the node to be removed that
was just marked. If the validation fails, then the thread releases the locks on the old predecessors (but not the
deleted node) and tries to find the new predecessors of the deleted node by calling findNode again. However,
at this point it has already set the local isMarked flag so that it will not try to mark another node. After
successfully removing the deleted node from the list, the thread releases all its locks and returns true.

If no node was found, or the node found was not “okay to delete” (i.e., was marked, not fully linked, or not
found at its top layer), then the operation simply returns false (line 148). It is easy to see that this is correct
if the node is not marked because for any key, there is at most one node with that key in the skip-list (i.e.,
reachable from the left sentinel) at any time, and once a node is put in the list (which it must have been to
be found by findNode), it is not removed until it is marked. However, the argument is trickier if the node is
marked, because at the time the node is found, it might not be in the list, and some unmarked node with the
same key may be in the list. However, as we argue in Section 4, in that case, there must have been some time
during the execution of the remove operation at which the key was not in the abstract set.

3.3 The contains operation

Finally, we consider the contains operation, shown in Figure 7, which just calls findNode and returns true if
and only if it finds a unmarked, fully linked node with the appropriate key. If it finds such a node, then it is
immediate from the definition that the key is in the abstract set. However, as mentioned above, if the node is
marked, it is not so easy to see that it is safe to return false. We argue this in Section 4.

1This function is taken from Lea’s algorithm to ensure a fair comparison in the experiments presented in Section 5. It returns 0
with probability 3

4
, i with probability 2−(i+2) for i ∈ [1, 30], and 31 with probability 2−32.

2A node found not in its top layer was either not yet fully linked, or marked and partially unlinked, at some point when the
thread traversed the list at that layer. We could have continued with the remove operation, but the subsequent validation would
fail.

6



3.4 Implementation Issues

We implemented the algorithm in the JavaTM programming language, in order to compare it with Doug Lea’s
nonblocking skip-list implementation in the java.util.concurrent package. The array stack variables in the
pseudocode are replaced by thread-local variables, and we used a straightforward lock implementation (we
could not use the built-in object locks because our acquire and release pattern could not always be expressed
using synchronized blocks).

The pseudocode presented was optimized for simplicity, not efficiency, and there are numerous obvious ways in
which it can be improved, many of which we applied to our implementation. For example, if a node with an
appropriate key is found, the add and contains operations need not look further; they only need to ascertain
whether that node is fully linked and unmarked. If so, the contains operation can return true and the add
operation can return false. If not, then the contains operation can return false, and the add operation
either waits before returning false (if the node is not fully linked) or else must retry. The remove operation
does need to search to the bottom layer to find all the predecessors of the node to be deleted, however, once it
finds and marks the node at some layer, it can search for that exact node at lower layers rather than comparing
keys.3 This is correct because once a thread marks a node, no other thread can unlink it.

Also, in the pseudocode, findNode always starts searching from the highest possible layer, though we expect
most of the time that the highest layers will be empty (i.e., have only the two sentinel nodes). It is easy to
maintain a variable that tracks the highest nonempty layer because whenever that changes, the thread that
causes the change must have the left sentinel locked. This ease is in contrast to the nonblocking version, in
which a race between concurrent remove and add operations may result in the recorded height of the skip-list
being less than the actual height of its tallest node.

4 Correctness

In this section, we sketch a proof for our skip-list algorithm. There are four properties we want to show: that
the algorithm implements a linearizable set, that it is deadlock-free, that the contains operation is wait-free,
and that the underlying data structure maintains a correct skip-list structure, which we define more precisely
below.

4.1 Linearizability

For the proof, we make the following simplifying assumption about initialization: Nodes are initialized with
their key and height, their nexts arrays are initialized to all null, and their fullyLinked and marked fields are
initialized to false. Furthermore, we assume for the purposes of reasoning that nodes are never reclaimed, and
there is an inexhaustible supply of new nodes (otherwise, we would need to augment the algorithm to handle
running out of nodes).

We first make the following observations: The key of a node never changes (i.e., key = k is stable), and the
marked and fullyLinked fields of a node are never set to false (i.e., marked and fullyLinked are stable).
Though initially null, nexts[i] is never written to null (i.e., nexts[i] 6= null is stable). Also, a thread writes
a node’s marked or nexts fields only if it holds the node’s lock (with the one exception of an add operation
writing nexts[i] of a node before linking it in at layer i).

From these observations, and by inspection of the code, it is easy to see that in any operation, after calling
findNode, we have preds[i]->key < v and succs[i]->key ≥ v for all i, and succs[i]->key > v for i > lFound
(the value returned by findNode). Also, for a thread in remove, nodeToDelete is only set once, and that unless
that node was marked by some other thread, this thread will mark the node, and thereafter, until it completes

3Comparing keys is expensive because, to maintain compatibility with Lea’s implementation, comparison invokes the compareTo

method of the Comparable interface.

7



the operation, the thread’s isMarked variable will be true. We also know by okToDelete that the node is fully
linked (and indeed that only fully linked nodes can be marked).

Furthermore, validation and the requirement to lock nodes before writing them ensures that after successful
validation, the properties checked by the validation (which are slightly different for add and remove) remain
true until the locks are released.

We can use these properties to derive the following fundamental lemma:

Lemma 1 For a node n and 0 ≤ i ≤ n->topLayer:

n->nexts[i] 6= null =⇒ n->key < n->nexts[i]->key

We define the relation →i so that m →i n (read “m leads to n at layer i”) if m->nexts[i] = n or there exists
m′ such that m →i m′ and m′->nexts[i] = n; that is, →i is the transitive closure of the relation that relates
nodes to their immediate successors at layer i. Because a node has (at most) one immediate successor at any
layer, the →i relation “follows” a linked list at layer i, and in particular, the layer-i list of the skip list consists
of those nodes n such that LSentinel→i n (plus LSentinel itself). Also, by Lemma 1, if m →i n and m →i n′

and n->key < n′->key then n →i n′.

Using these observations, we can show that if m →i n in any reachable state of the algorithm, then m →i n
in any subsequent state unless there is an action that splices n out of the layer-i list, that is, an execution of
line 141. This claim is proved formally for the lazy-list algorithm in a recent paper [1], and that proof can
be adapted to this algorithm. Because n must already be marked before being spliced out of the list, and
because the fullyLinked flag is never set to false (after its initialization), this claim implies that a key can
be removed from the abstract set only by marking its node, which we argued earlier is the linearization point
of a successful remove operation.

Similarly, we can see that if LSentinel →i n does not hold in some reachable state of the algorithm, then it
does not hold in any subsequent state unless there is some execution of line 91 with n = newNode (as discussed
earlier, the previous line doesn’t change the list at layer-i because newNode is not yet linked in then). However,
the execution of that line occurs while newNode is being inserted and before newNode is fully linked. Thus, the
only action that adds a node to a list at any level is the setting of the node’s fullyLinked flag.

Finally, we argue that if a thread finds a marked node then the key of that node must have been absent from
the list at some point during the execution of the thread’s operation. There are two cases: If the node was
marked when the thread invoked the operation, the node must have been in the skip list at that time because
marked nodes cannot be added to the skip list (only a newly allocated node can be added to the skip list), and
because no two nodes in the skip list can have the same key, no unmarked node in the skip list has that key.
Thus, at the invocation of the operation, the key is not in the skip list. On the other hand, if the node was not
marked when the thread invoked the operation, then it must have been marked by some other thread before
the first thread found it. In this case, the key is not in the abstract set immediately after the other thread
marked the node. This claim is also proved formally for the simple lazy list [1], and that proof can be adapted
to this algorithm.

4.2 Maintaining the skip-list invariant

Our algorithm guarantees that the skip-list invariant are preserved at all times. By “skip-list invariant”, we
mean that the list at each layer is a sublist of the lists at lower layers. It is important to preserve this structure,
as the complexity analysis for skip lists requires this structure.

To see that the algorithm preserves the skip-list structure, note that linking new nodes into the skip list always
proceeds from bottom to top, and while holding the locks on all the soon-to-be predecessors of the node being
inserted. On the other hand, when a node is being removed from the list, the higher layers are unlinked before
the lower layers, and again, while holding locks on all the immediate predecessors of the node being removed.

8



Sun FireTM T2000 Sun EnterpriseTM 6500

Operations: 9% add, 1% remove, 90% contains

Range: 200,000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy

Lea

Seq

Operations: 9% add, 1% remove, 90% contains

Range: 200,000

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy

Lea

Seq

Operations: 9% add, 1% remove, 90% contains

Range: 2,000,000

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy

Lea

Seq

Operations: 9% add, 1% remove, 90% contains

Range: 2,000,000

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy

Lea

Seq

Figure 8: Throughput in operations per millisecond of 1,000,000 operations, with 9% add, 1% remove, and 90%
contains operations, and a range of either 200,000 or 2,000,000.

This property is not guaranteed by the lock-free algorithm. In that algorithm, after linking a node in the
bottom layer, links the node in the rest of the layers from top to bottom. This may result in a state of a node
that is linked only in its top and bottom layers, so that the list at the top layer is not a sublist of the list at the
layer immediately beneath it, for example. Moreover, attempts to link in a node at any layer other than the
bottom are not retried, and hence this state of nonconformity to the skip-list structure may persist indefinitely.

4.3 Deadlock freedom and wait-freedom

The algorithm is deadlock-free because a thread always acquires locks on nodes with larger keys first. More
precisely, if a thread holds a lock on a node with key v then it will not attempt to acquire a lock on a node
with key greater than or equal to v. We can see that this is true because both the add and remove methods
acquire locks on the predecessor nodes from the bottom layer up, and the key of a predecessor node is less than
the key of a different predecessor node at a lower layer. The only other lock acquisition is for the node that a
remove operation deletes. This is the first lock acquired by that operation, and its key is greater than that of
any of its predecessors.

That the contains operation is wait-free is also easy to see: it does not acquire any locks, nor does it ever
retry; it searches the list only once.

5 Performance

We evaluated our skip-list algorithm by implementing it in the Java programming language, as described
earlier. We compared our implementation against Doug Lea’s nonblocking skip-list implementation in the
ConcurrentSkipListMap class [8] of the java.util.concurrent package, which is part of the JavaTM SE 6
platform; to our knowledge, this is the best widely available concurrent skip-list implementation. We also
implemented a straightforward sequential skip -list, in which methods were synchronized to ensure thread

9



Sun FireTM T2000 Sun EnterpriseTM 6500

Operations: 20% add, 10% remove, 70% contains

Range: 200,000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70

Threads

T
h

ro
u

g
h

p
u

t

Lazy

Lea

Seq

Operations: 20% add, 10% remove, 70% contains

Range: 200,000

0

500

1000

1500

2000

2500

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy

Lea

Seq

Operations: 20% add, 10% remove, 70% contains

Range: 2,000,000

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy

Lea

Seq

Operations: 20% add, 10% remove, 70% contains

Range: 2,000,000

0

200

400

600

800

1000

1200

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy

Lea

Seq

Figure 9: Throughput in operations per millisecond of 1,000,000 operations with 20% add, 10% remove, and
70% contains operations, and range of either 200,000 or 2,000,000.

safety, for use as a baseline in these experiments. We describe some of the results we obtained from these
experiments in this section.

We present results from experiments on two multiprocessor systems with quite different architectures. The first
system is a Sun FireTM T2000 server, which is based on a single UltraSPARC r© T1 processor containing eight
computing cores, each with four hardware strands, clocked at 1200 MHz. Each four-strand core has a single 8-
KByte level-1 data cache and a single 16-KByte instruction cache. All eight cores share a single 3-MByte level-2
unified (instruction and data) cache, and a four-way interleaved 32-GByte main memory. Data access latency
ratios are approximately 1:8:50 for L1:L2:Memory accesses. The other system is an older Sun EnterpriseTM

6500 server, which contains 15 system boards, each with two UltraSPARC r© II processors clocked at 400 MHz
and 2 Gbytes of RAM for a total of 30 processors and 60 Gbytes of RAM. Each processor has a 16-KByte
data level-1 cache and a 16-Kbyte instruction cache on chip, and a 8-MByte external cache. The system clock
frequency is 80 MHz.

We present results from experiments in which, starting from an empty skip-list, each thread executes one
million (1,000,000) randomly chosen operations. We varied the number of threads, the relative proportion of
add, remove and contains operations, and the range from which the keys were selected. The key for each
operation was selected uniformly at random from the specified range.

In the graphs that follow, we compare the throughput in operations per millisecond, and the results shown are
the average over six runs for each set of parameters.

Figure 8 presents the results of experiments in which 9% of the operations were add operations, 1% were
remove operations, and the remaining 90% were contains operations, where the range of the keys was either
two hundred thousand or two million. The different ranges give different levels of contention, with significantly
higher contention with the 200,000 range, compared with the 2,000,000 range. As we can see from these
experiments, both our implementation and Lea’s scale well (and the sequential algorithm, as expected, is
relatively flat). In all but one case (with 200,000 range on the older system), our implementation has a slight
advantage.

10



Sun FireTM T2000 Sun EnterpriseTM 6500

Operations: 50% add, 50% remove, 0% contains

Range: 200,000

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80

Threads

T
h

ro
u

g
h

p
u

t

Lazy

Lea

Operations: 50% add, 50% remove, 0% contains

Range: 200,000

0

200

400

600

800

1000

1200

1400

0 20 40 60 80

Threads

T
h

ro
u

g
p

u
t

Lazy

Lea

Figure 10: Throughput in operations per millisecond of 1,000,000 operations, with 50% add and 50% remove
operations, and a range of 200,000

In the next set of experiments, we ran with higher percentages of add and remove operations, 20% and 10%
respectively (leaving 70% contains operations). The results are shown in Figure 9. As can be seen, on
the T2000 system, the two implementations have similar performance, with a slight advantage to Lea in a
multiprogrammed environment when the range is smaller (higher contention). The situation is reversed with
the larger range. This phenomenon is more noticeable on the older system: there we see a 13% advantage to
Lea’s implementation on the smaller range with 64 threads, and 20% advantage to our algorithm with the same
number of threads when the range is larger.

To explore this phenomenon, we conducted an experiment with a significantly higher level of contention: half
add operations and half remove operations with a range of 200,000. The results are presented in Figure 10.
As can be clearly seen, under this level of contention, our implementation’s throughput degrades rapidly when
approaching the multiprogramming zone, especially on the T2000 system. This degradation is not surprising:
In our current implementation, when an add or remove operation fails validation, or fails to acquire a lock
immediately, it simply calls yield; there is no proper mechanism for managing contention. Since the add
and remove operations require that the predecessors seen during the search phase be unchanged until they
are locked, we expect that under high contention, they will repeatedly fail. Thus, we expect that a back-off
mechanism, or some other means of contention control, would greatly improve performance in this case. To
verify that a high level of conflict is indeed the problem, we added counters to count the number of retries
executed by each thread during the experiment. The counters indeed show that many retries are executed on
a 64 threads run, especially on the T2000. Most of the retries are executed by the add method, which makes
sense because the remove method marks the node to be removed before searching its predecessors in lower
layers, which prevents change of these predecessor’s next pointers by a concurrent add operation.

6 Conclusions

We have shown how to construct a scalable, highly concurrent skip-list using a remarkably simple algorithm.
Our implementation is raw, and can clearly benefit from better contention control mechanisms to deal with
highly contended cases. Nevertheless, we believe that for most uses, even in its raw form, it offers an interesting
viable alternative to the ConcurrentSkipListMap.

References

[1] Colvin, R., Groves, L., Luchangco, V., and Moir, M. Formal verification of a lazy concurrent
list-based set. In Proceedings of Computer-Aided Verification (Aug. 2006).

[2] Fraser, K. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2004.

11



[3] Fraser, K., and Harris, T. Concurrent programming without locks. Unpublished manuscript, 2004.

[4] Heller, S., Herlihy, M., Luchangco, V., Moir, M., Shavit, N., and Scherer III, W. N. A
lazy concurrent list-based set algorithm. In Proceedings of 9th International Conference on Principles of
Distributed Systems (Dec. 2005).

[5] Herlihy, M., Luchangco, V., and Moir, M. The repeat offender problem: A mechanism for support-
ing dynamic-sized, lock-free data structures. In Proceedings of Distributed Computing: 16th International
Conference (2002).

[6] Herlihy, M., and Wing, J. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12, 3 (July 1990), 463–492.

[7] Lea, D. Personal communication, 2005.

[8] Lea, D. ConcurrentSkipListMap. In java.util.concurrent.

[9] Michael, M. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Transactions on
Parallel and Distributed Systems 15, 6 (June 2004), 491–504.

[10] Pugh, W. Concurrent maintenance of skip lists. Tech. Rep. CS-TR-2222, 1990.

[11] Pugh, W. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM 33, 6
(June 1990), 668–676.

12


